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Abstract: Current methods for sleep stage detection rely on sensors to collect physiological data.
These methods are inaccurate and take up considerable medical resources. Thus, in this study, we
propose a Taguchi-based multiscale convolutional compensatory fuzzy neural network (T-MCCFNN)
model to automatically detect and classify sleep stages. In the proposed T-MCCFNN model, multi-
scale convolution kernels extract features of the input electroencephalogram signal and a compen-
satory fuzzy neural network is used in place of a traditional fully connected network as a classifier
to improve the convergence rate during learning and to reduce the number of model parameters
required. Due to the complexity of general deep learning networks, trial and error methods are often
used to determine their parameters. However, this method is very time-consuming. Therefore, this
study uses the Taguchi method instead, where the optimal parameter combination is identified over
a minimal number of experiments. We use the Sleep-EDF database to evaluate the proposed model.
The results indicate that the proposed T-MCCFNN sleep stage classification accuracy is 85.3%, which
is superior to methods proposed by other scholars.

Keywords: sleep stage classification; deep learning network; fuzzy neural network (FNN); Taguchi
method; electroencephalography

1. Introduction

According to Maslow’s hierarchy of needs, human beings can only fulfill higher-order
needs if basic ones are fulfilled [1], and sleep is a key physiological need. In general, good
sleep contributes to physical and mental health and emotional stability [2]. Conversely, a
lack of sleep can cause health problems, such as cardiovascular disease [3], hypertension [4],
and stroke [5].

Researchers have used several methods to improve the automated detection of sleep
quality and stage, including polysomnography (PSG), where the individual’s physiological
data are recorded. PSG records biological signals through several mechanisms, including
electrocardiography, electromyography (EMG), electrooculography (EOG), and electroen-
cephalogram (EEG), with EEG being the most widely used method in the field. Experts
require complete and well-defined criteria to conduct sleep stage research. Rechtschaffen
and Kales (R&K) proposed criteria for reporting sleep data [6], and although these criteria
have not been rigorously validated [7], the American Academy of Sleep Medicine (AASM)
improved upon the foundational work of R&K [8], making R&K’s criteria a standard in
the medical community. AASM classifies EEG sleep stages through 30-s interval frequency
sample recordings. These sleep stages are divided into Wake (W), rapid eye movement
(REM), and non-rapid eye movement (NREM). NREM is subdivided into NREM1, NREM2,
NREM3, and NREM4 stages that correspond to the shallowest to deepest stages of sleep,
respectively. NREM3 and NREM4 have no obvious differences, and they are thus often
collectively referred to as slow-wave sleep or deep sleep.

Although scholars have developed a relatively complete sleep stage classification, PSG
records are rich with data, and experts have different approaches to signal evaluation [9].
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Manual sleep stage classification by experts from PSG records is time-consuming, labor-
intensive, and inconsistent, and thus, not a feasible solution. Therefore, automatic sleep
stage classification is required.

Many scholars have developed automatic sleep stage classification systems based on
machine learning. Machine learning typically involves feature extraction and classification.
Phan et al. [10] extracted features from single-channel EEG signals and used the k nearest
neighbor algorithm with the Mahalanobis distance for classification. The method performs
well in addressing four types of sleep stage problems. Liang et al. [11] extracted 13 features
from EEG, EOG, and EMG readings and used fuzzy vector quantization and a genetic
algorithm to improve the resolution of a hidden Markov model (HMM). Fraiwan et al. [12]
used Hilbert–Huang transform to extract features from the input EEG signal, random
forest for classification, Choi-Williams distribution, and continuous wavelet transform.
Khalighi et al. [13] used six EEG channels, two EOG channels, and maximal overlap discrete
wavelet transformation for feature extraction. They also used a support vector machine to
classify the selected features.

Although machine learning methods can solve sleep stage classification problems,
feature extraction is performed independently from classification, and thus, is reliant on
experts. Deep learning technology, which has been widely used in the medical field for the
diagnosis of health problems such as breast cancer [14], epilepsy [15], or arrhythmia [16],
can solve several machine learning problems. Deep learning techniques eliminate the need
for manual feature extraction. During model training, features are automatically generated
according to signals. Khan et al. [17] employed a dilated convolutional neural network
and multi-headed attention mechanism for feature extraction. Ishaq et al. [18] extracted
features using time series-based Temporal Convolutional Neural (TCN). Other scholars
have employed deep learning-based models for sleep stage detection as well. Kanwal
et al. [19] used a Fourier transform to convert the original one-dimensional EEG signal into
the input data of a convolutional neural network (CNN) in the form of a two-dimensional
image. Huang et al. [20] developed a neural network architecture that combined a one-
dimensional CNN and HMM. The neural network architecture performed well on Fpz-Cz
and Pz-Oz EEG channels. Toma and Choi [21] used the Fpz-Cz channel’s EEG and EOG
signals as input for the CNN and a recurrent neural network hybrid model. They evaluated
the performance of the model in the Sleep-EDF dataset [22].

Although scholars have used deep learning to solve sleep stage classification problems,
their experiments have typically involved the use of a fully connected network (FCN) as a
model classifier. FCN, an artificial neural network, relies on non-physically interpretable
weight updates through backpropagation. To address this problem, many scholars have
introduced fuzzy theory into neural networks (i.e., ANFIS [23] and IT2FNN [24]). FNNs
combine neural network architecture with fuzzy logic. They have the neural networks’
parameter learning ability and fuzzy theory’s capability for human-like thinking. FNN can
be divided into Mamdani-type FNN [25] and Takagi-Sugeno-Kang (TSK)-type FNN [26].
TSK-type FNNs have better performance than the Mamdani-type FNN [26]. Zhang and
Kandel [27] proposed compensatory fuzzy sets to improve the convergence speed and
performance of FNNs.

Because deep learning model architectural parameters are obtained through training
results (which may rely on academic experience or trial and error), obtaining them can be
a time-consuming and costly process. In the field of engineering, Taguchi’s method [28]
is often used to improve parameter optimization: it requires minimal experimentation to
produce optimal parameters and improve system performance.

In this study, we proposed a Taguchi-based multiscale convolutional compensatory
FNN (T-MCCFNN) for the automatic detection and classification of sleep stages, which
assists doctors in obtaining patient’s sleep information and identifying sleep problems,
such as insomnia. In the proposed T-MCCFNN model, multiscale convolution kernels
were used to extract features of the input EEG signal and a compensatory FNN was used
as a classifier. Since the parameters of the general deep learning network are not easy to
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determine, the Taguchi method is used to find the optimal parameter combination with a
small number of experiments.

The rest of this paper is organized as follows: Section 2 introduces the proposed
T-MCCFNN architecture and the Taguchi method’s experimental procedure. Section 3
describes the results of the T-MCCFNN architecture using the Sleep-EDF dataset, and
Section 4 concludes the paper.

2. Materials and Methods

This section presents the proposed sleep stage detection method. Section 2.1 introduces
the proposed T-MCCFNN model. The T-MCCFNN model was employed to classify the
EEG signals recorded from the Fpz-Cz channel into five distinct sleep stages: W, REM,
N1, N2, and N3. Section 2.2 introduces our use of the Taguchi method to optimize the
T-MCCFNN parameters through a minimal number of experiments.

2.1. Proposed T-MCCFNN Model

The proposed T-MCCFNN model includes two parts: a convolutional neural network
and a TSK-type compensatory fuzzy neural network. The convolutional neural network
uses convolution kernels with different ratios to obtain feature signals of different scales
from the input EEG signal. A TSK-type compensatory fuzzy neural network adopts TSK-
type fuzzy rules, and increases the convergence speed of network training by compensatory
fuzzy sets. The architecture of the T-MCCFNN model is shown in Figure 1, where C and
T represent the compensatory operation and the TSK-type fuzzy rule, respectively. The
T-MCCFNN model includes a convolutional layer, a max pool layer, a concatenate layer, a
global maximum pooling layer, a fuzzified layer, a compensatory rule layer, and an output
layer. In the T-MCCFNN model, the operations of each layer are as follows:
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2.1.1. Convolutional Layer

The convolutional layer performs convolution operations. It extracts features from the
EEG signal by sliding the convolution kernel. The operation of the convolutional layer is
as follows:

yconv
f ,i =

ks−1

∑
j=0

xi×sconv+j ∗ wconv
f ,j (1)

where yconv is the output of the convolutional layer, x is the input signal, ∗ is the convolution
operator, wconv is the weight of the convolution kernel, ks is the size of the convolution
kernel, and sconv is the movement pace of the convolution kernel.

2.1.2. Max Pooling Layer

Max pooling layers reduce the output feature maps of convolutional layers, thereby
helping the model learn abstract features to improve generalizability. The operation of the
maximum pooling layer is as follows:

ymp
f ,i = max

0≤j≤ps−1
yconv

f ,i×smp+j (2)

where f is the index value of the feature map, i is the index of the value in the feature
map, mp is the max pooling, ymp is the output of the maximum pooling layer, max(·) is the
maximum value operator, and ps is the pooling kernel size.

2.1.3. Concatenate Layer

The concatenate layer concatenates output feature maps from differing sizes along the
channel axis of the input features as follows:

yD
f ,i =

{{
ymp

1,1 , . . . , ymp
1,N

}
, . . . ,

{
ymp

f ,1 , . . . , ymp
f ,N

}}
(3)

where yD is the output of the concatenate layer, {·} is the concatenation operator, and N is
the size of the input feature map.

2.1.4. Global Max Pool Layer

To reduce feature maps from the concatenate layers, we used a global max pooling
layer to perform the maximum operation on each feature map. The operation of the global
max pooling layer is as follows:

yG
f = max

0≤i≤N
yD

f ,i (4)

where yG is the output of the local maximum pooling layer.

2.1.5. Fuzzified Layer

In the fuzzified layer, the input data is fuzzified. Fuzzy if–then rules with compensa-
tion are used and are expressed as follows:

Rule :
(

IF yG
0 is A1,j and . . . and yG

N is AN,j
)1−rj+

rj
R

THEN y = w0,j + w1,jyG
1 + · · ·+ wN,jyG

N

(5)

where A is a fuzzy set, r is the degree of compensation r ∈ [0, 1], R is the number of rules,
and w is the TSK-type fuzzy rule weight. In this study’s method, the Gaussian membership
function is used as a fuzzy set A, which is defined as follows:

yF
i,j = e

−(
yG

i −mi,j
σi,j

)

2

(6)
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where yF is the output of the fuzzy layer, e(·) is the exponentiation operation, and m and σ
represent the mean and standard deviation, respectively, of the fuzzy set A.

2.1.6. Compensatory Rule Layer

The compensatory rule layer performs a fuzzy AND operation on the degree of mem-
bership obtained from the previous layer operation. We used the product operation to
obtain the firing strength fuzzy rule. Additionally, we incorporated a compensatory opera-
tion into the rule layer. The compensatory rule layer is governed by the following equation.

yC
j = (

N

∏
i=0

yF
i,j)

1−rj+
rj
R

(7)

2.1.7. Output Layer

The output layer uses the center of gravity method to obtain the T-MCCFNN model
output. The output layer is operated according to the following equation:

y =
∑R

j=0 yC
j ×

(
w0,j + ∑N

i=1 wi,jyG
i

)
∑R

j=0 yC
j

(8)

2.2. Taguchi Method

The Taguchi method is a widely used method in engineering. This method generates
an orthogonal array (OA) using control factor selection, level selection, and statistical
principles. OA is a high-efficiency technology that improves the effectiveness of experi-
ments and thus reduces the need for extensive experimentation. After the OA experiment
was completed, the results were converted to a signal-to-noise (S/N) ratio and used to
determine the optimal control factors for improving system stability. In this experiment, we
used the Taguchi method to solve the problem of hyperparameters in the neural network.

We found, through previous research experience, that features extracted by the con-
volutional layer exert a considerable influence on classification results. Therefore, we
chose Conv1_filters, Conv1_kernel_size, Conv1_strides, Conv2_filters, Conv2_kernel_size,
and Conv2_strides as control factors in our experiments. To improve the diversity of
convolutional layers in feature extraction, we used multiscale convolution branches for
feature extraction. When more branches are used as control factors, the required number of
experiments increases. Therefore, this study used a scale factor to adjust the convolution
kernel size of the remaining two branches. Table 1 lists each control factor and its level.

Table 1. Each control factor and its level.

No. Control Factors Level 1 Level 2 Level 3

A Conv1_filters 32 64 128
B Conv1_kernel_size 50 100 150
C Conv1_strides 4 6 8
D Scale 2 4 8
E Conv2_filters 64 128 256
F Conv2_kernel_size 7 8 9
G Conv2_strides 1 2 3

This experiment used an OA of L27(37) (as shown in Table 2) based on the seven
control factors and three levels (shown in Table 1). The contribution of each control factor
and level were calculated after the experiment was completed. An S/N ratio (where larger
ratios are preferable) was adopted for evaluation. The S/N ratio is calculated as follows:

SN = −10log10
1
n
(

n

∑
i=0

1
y2

i
) (9)
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where n is the number of experiments, yi represents the accuracy rate obtained in the i-th
time, and SN represents the S/N ratio and its unit in db.

Table 2. L27(37) orthogonal array.

No. A B C D E F G

1 32 50 4 2 64 7 1
2 32 50 4 2 128 8 2
3 32 50 4 2 256 9 3
4 32 100 6 4 64 7 1
5 32 100 6 4 128 8 2
6 32 100 6 4 256 9 3
7 32 150 8 8 64 7 1
8 32 150 8 8 128 8 2
9 32 150 8 8 256 9 3

10 64 50 6 8 64 8 3
11 64 50 6 8 128 9 1
12 64 50 6 8 256 7 2
13 64 100 8 2 64 8 3
14 64 100 8 2 128 9 1
15 64 100 8 2 256 7 2
16 64 150 4 4 64 8 3
17 64 150 4 4 128 9 1
18 64 150 4 4 256 7 2
19 128 50 8 4 64 9 2
20 128 50 8 4 128 7 3
21 128 50 8 4 256 8 1
22 128 100 4 8 64 9 2
23 128 100 4 8 128 7 3
24 128 100 4 8 256 8 1
25 128 150 6 2 64 9 2
26 128 150 6 2 128 7 3
27 128 150 6 2 256 8 1

3. Experimental Results

We evaluated the proposed T-MCCFNN model on the Sleep-EDF database. We also
discussed the Taguchi experiment’s proposed T-MCCFNN model results for comparison
and analysis. Finally, we compared the results with other state-of-the-art methods.

3.1. Dataset

This study used the publicly available Sleep-EDF database [22], which was labeled
and verified by experts. The database analyzed the sleep data of 20 individuals (10 men and
10 women) between the ages of 25 and 34 years old. The PSG signals in the data set include
a horizontal EOG signal, a chin EMG signal, and two EEG signals: the Fpz-Cz channel and
the Pz-Cz channel. This experiment adopted the Fpz-Cz location channel (Figure 2). These
signals were sampled at a rate of 100 Hz and segmented into 30-s intervals for a total of
3000 sampling points. In addition, the signals in the data set are not scaled or preprocessed.
They were then classified into six categories according to R&K’s classification standards: W,
N1, N2, N3, N4, and REM. They represent different levels of the patient’s depth of sleep.
The amount of data for W, N1, N2, N3, and REM are 8285, 2804, 17,799, 5703, and 7717,
respectively. To meet the classification standards of AASM, this experiment combined the
two sleep stages of N3 and N4. These recordings included a total of 42,308 signals divided
into training data and testing data at a ratio of 7:3.
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3.2. Taguchi Experimental Results

The proposed T-MCCFNN model included a CNN and TSK-type compensatory FNN.
The CNN, which used the scale factor to adjust the convolution kernel size of the two re-
maining convolutional branches, comprised three convolutional layers and two maximum
pooling layers. The TSK-type compensatory FNN comprised a fuzzy layer, a compensatory
rule layer, and an output layer. The initial parameters of the proposed T-MCCFNN model
are depicted in Table 3. The model architecture included many tunable hyperparameters.
The Taguchi method was used to find the optimal parameter combination through the use
of L27(37), as shown in Table 2. The subsequently generated OA reduced the number of
experiments required. In our Taguchi experiment, we selected Adam as our optimizer, a
learning rate of 0.001, a batch size of 256, and 50 training epochs. To improve the stabil-
ity of the Taguchi experiment, we conducted ten experiments for each set of parameter
combinations and calculated the average. The results of OA are shown in Table 4.

Table 3. Initial parameters of the proposed T-MCCFNN model.

Layer Channel Kernel Size Strides Other Parameters

Conv layer 1 64 100 6 -
MaxPool layer 1 - 8 8 -
Conv layer 2-1 128 8 1 -
Conv layer 2-2 128 8 1 -

MaxPool layer 2 - 4 4 -
Scale - - - Scale = 4

Concatenate layer - - - Mode = Depthwise
GlobalMaxPool layer - - - -
Compensatory fuzzy

layer - - - Rule_node = 64

Output layer 5 - - -

The S/N ratio of each control factor was calculated and used to analyze the contribu-
tions of each parameter to model performance. As shown in Table 5, the optimal parameter
combinations of Conv1_filters (A), Conv1_kernel_size (B), Conv1_strides(C), Scale (D),
Conv2_filters (E), Conv2_kernel_size (F), and Conv2_strides (G) values were 64, 50, 4, 4,
256, 9, and 1, respectively. The control factors with the highest contribution to the model
performance were Conv2_strides (G), Conv2_filters (E), and Connv1_strides (C). Thus,
changes in stride size tended to affect the performance of the T-MCCFNN model. Figure 3
depicts the main effects on the S/N ratio. In particular, a smaller stride size was associated
with a higher S/N ratio for both Conv1_strides (C) and Conv2_strides (G).
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Table 4. Experimental results of OA.

No. A B C D E F G Avg_acc
(%)

1 32 50 4 2 64 7 1 84.40
2 32 50 4 2 128 8 2 83.63
3 32 50 4 2 256 9 3 82.89
4 32 100 6 4 64 7 1 84.11
5 32 100 6 4 128 8 2 83.43
6 32 100 6 4 256 9 3 82.60
7 32 150 8 8 64 7 1 83.25
8 32 150 8 8 128 8 2 83.13
9 32 150 8 8 256 9 3 82.89

10 64 50 6 8 64 8 3 82.18
11 64 50 6 8 128 9 1 84.19
12 64 50 6 8 256 7 2 84.11
13 64 100 8 2 64 8 3 82.71
14 64 100 8 2 128 9 1 84.16
15 64 100 8 2 256 7 2 83.79
16 64 150 4 4 64 8 3 82.62
17 64 150 4 4 128 9 1 84.56
18 64 150 4 4 256 7 2 83.68
19 128 50 8 4 64 9 2 83.30
20 128 50 8 4 128 7 3 82.66
21 128 50 8 4 256 8 1 84.72
22 128 100 4 8 64 9 2 83.49
23 128 100 4 8 128 7 3 83.04
24 128 100 4 8 256 8 1 84.60
25 128 150 6 2 64 9 2 83.41
26 128 150 6 2 128 7 3 81.71
27 128 150 6 2 256 8 1 84.37

Table 5. S/N ratios of varying parameter combinations.

Level A B C D E F G

1 −1.580 −1.560 −1.550 −1.571 −1.590 −1.575 −1.487
2 −1.560 −1.561 −1.583 −1.5564 −1.578 −1.567 −1.561
3 −1.569 −1.588 −1.576 −1.573 −1.541 −1.556 −1.661

Delta 0.019 0.029 0.033 0.009 0.048 0.009 0.174
Rank 5 4 3 6 2 7 1

Best parameter 64 50 4 4 256 9 1
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3.3. Model Evaluation

This study used performance metrics of accuracy, precision, recall, and F1-score, which
are defined as follows:

Accuracy =
TP + TN

TP + TN + FP + FN
(10)

Recall =
TP

TP + FP
(11)

Precision =
TP

TP + FN
(12)

F1-score =
2× Recall × Precision

Recall + Precision
(13)

where TP, TN, FP, and FN are the numbers of true positives, false positives, true negatives,
and false negatives, respectively.

Figure 4a shows the MCCFNN confusion matrix. Although the model performed
poorly in predicting N1, it performed well in predicting W, N2, N3, and REM in terms of
accuracy. Figure 4b indicates that the use of T-MCCFNN parameter optimization in the
Taguchi experiment yielded improvements in the model’s predictions of W, N3, and REM
by 3.02%, 2.98%, and 8.54%, respectively, in terms of accuracy.
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The comparison results of the proposed T-MCCFNN with other FNNs are shown in
Table 6. In Table 6, MCCNN uses a multi-scale convolution kernel and a fully connected
network. A Mamdani-type MCFNN and TSK-type MCFNN use a multi-scale convolution
kernel and Mamdani-type and TSK-type FNNs. In Table 6, the accuracy of MCCFNN
with TSK-type is 84.4%, which is better than 84.1% of Mamdani-type MCCFNN. After
parameter optimization through the Taguchi experiment, T-MCCFNN can increase the
accuracy by 0.9% compared to TSK-type MCCFNN, and it is better than other FNNs and
fully connected network models. In Table 6, the standard deviation of the accuracy of the
proposed T-MCCFNN is 0.0321, which means that the proposed T-MCCFNN model has
good robustness and universality in terms of accuracy.
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Table 6. Comparison of results of the proposed T-MCCFNN with other fuzzy neural networks.

Methods Accuracy Recall Precision F1-Score Standard Deviation of Accuracy

MCCNN 84.2% 81.2% 87.5% 84.2% 0.0559
Mamdani-type

MCFNN 84.3% 82.1% 86.7% 84.3% 0.0298

TSK-type MCFNN 84.2% 80.8% 87.4% 84.0% 0.0282
Mamdani-type

MCCFNN 84.1% 82.5% 86.0% 84.2% 0.0966

MCCFNN 84.4% 82.4% 86.8% 84.5% 0.0397
T-MCCFNN 85.3% 83.3% 87.3% 85.3% 0.0321

In order to verify that the compensatory FNN has a better convergence speed, this
study uses MCCFNN to compare it with MCFNN without the compensatory fuzzy set. It
can be observed from Figure 5 that MCCFNN tends to converge after nearly 15 epochs.
However, MCFNN slowly converges at 25 epochs. The experimental results indicate that
the MCCFNN with the compensatory fuzzy set has a better convergence speed than the
MCFNN without the compensatory fuzzy set.
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In this paper, we use cross-entropy as the loss function, which is defined as follows:

CE = −∑
i

yilog ŷi (14)

where CE represents cross-entropy; y and ŷ represent our model’s prediction and ground truth.
In addition, this study compares the performance of the multi-scale convolution kernel

(T-MCCFNN) and the single-scale convolution kernel (T-SSCFNN), as shown in Table 7.
In Table 7, the accuracy, recall, precision, and F1-score of T-MCCFNN with multi-scale
convolution kernels have higher performance than T-SSCFNN with single-scale convolution
kernels. In particular, there is a 1.1% increase in the accuracy of T-MCCFNN.

Table 7. Performance comparison of the multi-scale and the single-scale convolution kernel.

Methods Accuracy Recall Precision F1-Score

T-SSCFNN 84.2% 81.4% 87.3% 84.2%
T-MCCFNN 85.3% 83.3% 87.3% 85.3%

Table 8 illustrates the comparison of T-MCCFNN with other deep learning methods.
Supratak et al. [29] proposed the DeepSleepNet network architecture. This architecture
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uses a two-branched convolutional layer to extract features from the raw EEG signal,
and a two-layer bi-directional long short-term memory (Bi-LSTM) as a classifier. Fiorillo
et al. [30] improved the architecture of DeepSleepNet and proposed a DeepSleepNet-lite
network architecture. This architecture discards Bi-LSTM, but uses a general fully connected
network as the output. Phan et al. [31] proposed that the XSleepNet network architecture
is different from [29] and [30]. This architecture uses the original signal and the time-
frequency signal as dual inputs to obtain the characteristics of the time-domain signal and
the frequency-domain signal. Eldele et al. [32] proposed the multi-resolution convolutional
neural network (MRCNN). The architecture of MRCNN introduces an attention mechanism,
enabling it to adaptively focus on important information in the signal. Zhou et al. [33]
proposed a lightweight LightSleepNet network architecture. This architecture uses a
spectrogram as the signal input, and proposes two modules, the concatenation of max-
pooling2D and average-pooling2D module and the multi-convolution block module, to
extract various features from the spectrogram.

Table 8. Comparison results of various deep learning methods.

Methods Accuracy F1-Score
Per-Class F1-Score

W N1 N2 N3 REM

Supratak et al. [29] 82.0% 76.9% 84.7% 46.6% 85.9% 84.8% 82.4%
Fiorillo et al. [30] 82.6% 76.3% 81.6% 42.4% 87.4% 87.9% 82.1%
Phan et al. [31] 83.9% 78.7% 81.6% 52.9% 88.1% 85.3% 85.4%
Eldele et al. [32] 84.4% 78.1% 89.7% 42.6% 88.8% 90.2% 79.0%
Zhou et al. [33] 83.8% 75.3% 90.0% 31.0% 88.0% 89.0% 78.0%

MCCFNN 84.4% 84.5% 89.6% 39.2% 92.1% 88.2% 76.3%
T-MCCFNN 85.3% 85.3% 92.7% 35.9% 88.5% 91.2% 84.8%

Compared with various deep learning methods, the accuracy and F1-score of the
proposed T-MCCFNN are 85.3% and 85.3%, respectively, and both are superior to other
deep learning network methods. In Table 8, although the N1 and REM of the per-class
F1-score in Phan et al. [31] are 52.9% and 85.4%, respectively, which are better than the
proposed method; the W, N2, and N3 of the per-class F1-score in the proposed T-MCCFNN
are 92.7%, 88.5%, and 91.2%, respectively, which are better than the method of Phan
et al. [31]. Overall, the accuracy and F1-score of the proposed T-MCCFNN are superior to
other deep learning network methods.

4. Conclusions

In this study, a T-MCCFNN was proposed for the automatic classification of sleep
stage detection. In this study, the Sleep-EDF database was used to verify the performance
of the proposed model. The experimental results indicate that the accuracy and F1-score of
the proposed T-MCCFNN in sleep stage classification are 85.3% and 85.3%, respectively,
which is better than the methods proposed by other methods. In addition, we have also
shown that the compensatory FNN has a better convergence speed than the general FNN,
and the model with multi-scale convolution kernels has better accuracy, recall, precision,
and F1-score than the model with single-scale convolution kernels. The major contributions
of this study were as follows:

• Multiscale convolution kernels in the T-MCCFNN model were used to extract input
EEG signal features.

• A compensatory FNN was used in place of the traditional FCN classifier to improve
the learning convergence speed and reduce model parameters.

• The Taguchi method was used to find the optimal parameter combination through
minimal experimentation.

• The experimental results indicate that the accuracy, recall, precision, and F1-score
of the proposed T-MCCFNN in sleep stage classification were 85.3%, 83.3%, 87.3%,
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and 85.3%, respectively, which is superior to the scores of the methods proposed by
other scholars.

To detect the patient’s sleep quality in real time, the proposed T-MCCFNN model will
be deployed into the Field-Programmable Gate Array (FPGA) in future work. Because
FPGA is known for its excellent performance and low power consumption, it is very
suitable to be embedded in wearable devices to assist doctors in instantly assessing patients’
sleep quality.
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