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Abstract: Fine-grained image recognition aims to classify fine subcategories belonging to the same
parent category, such as vehicle model or bird species classification. This is an inherently challenging
task because a classifier must capture subtle interclass differences under large intraclass variances.
Most previous approaches are based on supervised learning, which requires a large-scale labeled
dataset. However, such large-scale annotated datasets for fine-grained image recognition are difficult
to collect because they generally require domain expertise during the labeling process. In this study,
we propose a self-supervised transfer learning method based on Vision Transformer (ViT) to learn finer
representations without human annotations. Interestingly, it is observed that existing self-supervised
learning methods using ViT (e.g., DINO) show poor patch-level semantic consistency, which may be
detrimental to learning finer representations. Motivated by this observation, we propose a consistency
loss function that encourages patch embeddings of the overlapping area between two augmented
views to be similar to each other during self-supervised learning on fine-grained datasets. In addition,
we explore effective transfer learning strategies to fully leverage existing self-supervised models
trained on large-scale labeled datasets. Contrary to the previous literature, our findings indicate that
training only the last block of ViT is effective for self-supervised transfer learning. We demonstrate
the effectiveness of our proposed approach through extensive experiments using six fine-grained
image classification benchmark datasets, including FGVC Aircraft, CUB-200-2011, Food-101, Oxford
102 Flowers, Stanford Cars, and Stanford Dogs. Under the linear evaluation protocol, our method
achieves an average accuracy of 78.5%, outperforming the existing transfer learning method, which
yields 77.2%.

Keywords: self-supervised learning; fine-grained image recognition; transfer learning; Vision
Transformer

1. Introduction

Self-supervised learning (SSL) has recently made significant progress in various fields,
including computer vision [1,2], natural language processing [3], and graph representation
learning [4]. SSL aims to learn generic feature representations by encouraging a model
to solve auxiliary tasks that arise from the inherent properties of the data themselves.
The predominant SSL approaches in computer vision seek to maximize the agreement
between different views of an image [1,2,5,6]. Thanks to its strong ability to learn visual
representations in the absence of human annotations, SSL has emerged as a promising
strategy to reduce the reliance on large-scale labeled datasets. Remarkably, SSL-learned
visual representations perform better than supervised learning [1] when transferred to
several downstream vision tasks.
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SSL can be especially useful for tasks requiring heavy annotation costs, such as fine-
grained image recognition [7], because it aims to learn discriminative representations
without using human annotation. However, there are several limitations to the application
of current SSL methods for fine-grained image recognition tasks [8–10]. In contrast with
ordinary computer vision tasks, fine-grained images share many visual characteristics
across their classes. Therefore, a model should learn finer representations that capture
subtle differences among classes. A model trained to classify bird species, for instance,
should be able to learn local patterns, such as beak length, wing shape, and tail color.
However, it is known that existing SSL methods tend to focus on background pixels and
low-level features (e.g., texture and color) [11], which might be detrimental to learning finer
representations for foreground objects. In addition, SSL with fine-grained datasets may not
be as effective as anticipated because the fine-grained image dataset is relatively small in
scale, and SSL is known to benefit from large-scale datasets.

In this study, we focus on SSL for fine-grained image recognition tasks based on
the Vision Transformer (ViT) [12] architecture, which has recently shown remarkable per-
formance in image recognition tasks. In the ViT architecture, an image is divided into
multiple patches, and these patches are converted into a sequence of linear embeddings.
Additionally, a learnable embedding vector, named [CLS] token, is prepended to the em-
bedded patches to form an input sequence. The final output feature that corresponds to the
[CLS] token serves as the image representation, which is then passed to the classification
head for prediction. ViT learns visual representations using self-attention between image
patches rather than convolution operations, enabling the efficient encoding of patch-level
representations. Nevertheless, most existing SSL methods force image-level representa-
tions to be invariant to different image augmentations and discard the final patch-level
representations. However, such information may not be adequately encoded in image-level
representation without explicit regularization because class-discriminative patterns for
fine-grained images are likely to appear in the local area.

To consolidate our motivation, we empirically examined the consistency of the patch
representation (i.e., the final output feature of each patch) from ViT pretrained by DINO [1]
on ImageNet, as shown in Figure 1a. To this end, the two differently cropped views
from an image were fed into the model, and the cosine similarity between the patch
representations corresponding to the same patches in each view was measured. If local
semantic information is well-encoded in the patch representation, the last features of the
same patches will be consistent even with different adjacent patches and thus will show
high similarity. However, DINO, a state-of-the-art SSL method with ViT, does not satisfy
this consistency, as shown in Figure 1b. On various public fine-grained visual classification
(FGVC) datasets, DINO shows strong consistency between image-level representations
(i.e., the final feature of the [CLS] token) but shows poor patch-level consistency. We
argue that a model can better attend to such local information to produce image-level
representations if the semantic information of each patch is properly encoded in its patch-
level representations and eventually can learn finer representations that are beneficial to
fine-grained image recognition.

Motivated by the above discussion, we propose a novel SSL framework that considers
patch-level semantic information to enhance patch-level consistency. Specifically, if an over-
lapping region exists between two different views of an image, the proposed consistency
loss encourages the embeddings of the overlapping patches to be similar. For SSL with
fine-grained images, the ImageNet pretrained model (through SSL) is transferred to the
FGVC task to leverage useful representations from large-scale datasets [13]. We found
that constraining the number of learnable parameters during SSL is helpful for FGVC
downstream tasks. Our extensive experimental results on various FGVC datasets demon-
strated that the proposed consistency loss can further improve the quality of fine-grained
visual representations.
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(a)

(b)
Figure 1. (a) Procedure of evaluating patch-level consistency. (b) Average cosine similarity of image
and patch-level representations on various FGVC datasets. DINO shows low cosine similarity
between patch representations corresponding to the overlapping area, which indicates poor patch-
level consistency.

The contributions of this study can be summarized as follows:

• We explore the effective transfer learning strategies of self-supervised pretrained
representations for SSL with small-scale FGVC datasets. Specifically, it is demonstrated
that high-quality representations can be attained when only the last block of ViT is
updated during transfer learning.

• We propose a novel consistency loss that considers patch-level semantic information
to learn fine-grained visual representations with SSL. As an auxiliary loss function, it
encourages a model to produce consistent representations for the overlapping patches
in augmented views.

• The effectiveness of the proposed method is demonstrated on six different FGVC
datasets, including CUB200-2011 [14], Stanford Car [15], FGVC Aircraft [16], etc. It is
verified quantitatively and qualitatively that our method is effective in learning fine-
grained representations via SSL. Contrary to existing SSL methods, we show that the
proposed loss encourages a model to learn semantically consistent patch embedding.

2. Related Works
2.1. Self-Supervised Learning

Self-supervised learning (SSL) aims to learn useful representations from data, without
human annotation. Contrastive learning [2,5,17,18] has gained significant attention for SSL
owing to its superior performance. Contrastive learning aims to maximize the agreement
between different views from an image (i.e., a positive pair) while repelling those from other
images (i.e., negative pairs) in the feature space. However, these approaches usually incur
substantial memory costs because they require numerous negative samples during training,
such as a large batch size [2] or a large memory bank [5]. Several alternatives have been
proposed for effectively learning visual representations without using negative samples to
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address this problem. Grill et al. [19] proposed training an online network by predicting the
output of a momentum encoder with a stop-gradient operator. Zbontar et al. [6] proposed
optimizing the empirical cross-correlation matrix, which was obtained from a batch of
feature embeddings, to be similar to the identity matrix.

Recently, several attempts have been made to apply SSL to ViT [1,20,21]. For example,
Caron et al. [1] proposed an SSL framework based on the ViT architecture named self-
distillation with no labels (DINO). DINO adopts knowledge distillation within an SSL
framework. Specifically, the momentum encoder is treated as a teacher network and the
student network is trained to match the output distribution of the teacher network, by
minimizing the cross-entropy. However, the patch-level representation may not contain
meaningful information, as shown in Figure 1b, because DINO uses only the last feature of
the [CLS] token for training.

2.2. Fine-Grained Visual Classification

Fine-grained visual classification (FGVC) is a computer vision task focused on distin-
guishing between objects that are visually similar and belong to closely related classes. In
FGVC, a model should be able to capture subtle interclass differences under large intraclass
variance, which presents intrinsic challenges. Most of the existing FGVC approaches fall
into two categories: object-part-based methods and attention-based methods [22].

Earlier works in object-part-based methods use detection or segmentation techniques
to locate important regions, and then the localized information is used as a discriminative
partial-level representation [23–25]. While these methods have demonstrated their effective-
ness, they require bounding-box and segmentation annotations, resulting in a significant
effort to obtain supervised annotations.

In contrast, attention-based methods [26–28] use attention mechanisms to improve
feature learning and identify object details, thus eliminating the need for dense annotations.
RA-CNN [26] iteratively generates region attention maps in a coarse-to-fine manner, using
previous predictions as a reference. PCA-Net [27] uses image pairs of the same category to
compute attention between feature maps to capture the common discriminative features.
With the great success of ViT in computer vision, there have been several attempts to extend
the use of ViT in FGVC, such as TransFG [29], SIM-Trans [30], and AFTrans [31]. Similarly,
these approaches utilize self-attention maps to enhance feature learning and capture object
details. While these studies have achieved considerable success, the challenge posed by
high annotation costs remains. In this study, we seek to explore techniques that enable the
learning of finer representations without relying on label information.

2.3. Transfer Learning

Transfer learning is a popular approach that aims to transfer pretrained knowledge
to various domains and tasks [32]. A widely used strategy is to fine-tune a large-scale
pretrained model (e.g., ImageNet) to a downstream task or dataset. The effect of transfer
learning can be interpreted as an expert in a specific field quickly adapting to similar fields.
Accordingly, it can be expected to achieve high performance even with a small amount of
training data [33,34]. Thus, we considered transferring the ImageNet pretrained model via
SSL to FGVC tasks by setting the pretrained weight as the initial parameter.

Although numerous methods for effective transfer learning have been proposed,
most of them consider supervised learning for downstream tasks [35,36]. Contrary to
previous approaches, we study SSL for downstream tasks because our goal is to learn finer
representations without label information. Similarly, hierarchical pretraining (HPT) [13]
transfers SSL-pretrained models by conducting SSL once again on the downstream dataset.
While HPT is similar to our proposed method in assuming SSL for downstream tasks,
they focus on CNN-based architectures and have shown that only updating normalization
layers, such as batch normalization [37] during transfer learning is effective. In this study,
we focus on the ViT architecture and suggest a more effective strategy that only trains the
last block of ViT during transfer learning.
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3. Methods
3.1. Transfer Learning

SSL does not require a human-annotated dataset in the training process but is based
on the fact that unlabeled data are rich in themselves [2]. Furthermore, ViT has a lower
locality inductive bias than CNNs; therefore, it is difficult to train with a small dataset [38].
Training a self-supervised model based on ViT from scratch is challenging because FGVC
datasets are generally small in scale.

In this study, we address this issue by transfer learning from ImageNet pretrained
models. Specifically, the initial parameters of ViT are set to the pretrained weights with
DINO and then optimized in a self-supervised manner on FGVC datasets. Meanwhile,
FGVC datasets are typically small scale, where SSL is known to benefit from training
on large-scale unlabeled data. In this situation, updating all parameters during transfer
learning may lead to suboptimal performance. Previous literature has shown that updating
only the normalization layer when transferring a self-supervised pretrained model with
SSL can be an effective strategy [13]. However, these results are mainly obtained with
CNN models, and it remains unclear for ViT due to the architectural difference. Hence,
we conducted experiments by hierarchically setting the learnable parameters to explore
effective transfer learning strategies. We evaluated the scenarios of learning all parameters
of ViT, just the normalization layer following [13], or the last block.

3.2. Consistency Loss

We propose regularizing patch-level features explicitly with consistency representation
learning, as shown in Figure 2. First, we create augmented views of an input image x
that includes local and global views. Each augmented view is an input to the teacher and
student networks, which have the same architecture but different parameters. The final
output of the [CLS] token contains the overall semantic information of the image, and
the patch embedding vectors focus on a more local region (i.e., each patch). The outputs
from each [CLS] token should be similar in the embedding space since the augmented
views generated from a single image share the same semantic information. To this end, we
consider the pretraining objective in DINO, a noncontrastive SSL framework:

L[CLS] = −P
(

g[CLS]

)>
log P

(
l[CLS]

)
, (1)

where g[CLS] and l[CLS] are image-level representations, the outputs of the projection head h,
and P denotes a softmax transformation. By minimizing the cross-entropy loss, the model
learns to match the image-level representations of the augmented views.

To further enhance the quality of the representations, we propose a consistency loss
Lcon for patch embedding vectors to learn internal fine-grained structures within an image:

Lcon = − 1
N

N=H×W

∑
i=1

P
(

gi
patch

)>
log P

(
li
patch

)
, (2)

where gpatch and lpatch are patch-level representations associated with overlapping regions
of the two augmented views. As shown in Figure 2, the region of interest (RoI) align layer
is applied to the corresponding overlapping features to match the spatial dimension of
overlapping representations from two different global and local views. H and W are the
height and width of the output feature map from the RoI align layer, respectively. The
model is capable of learning local fine-grained features by encouraging the distribution
of patch-level features corresponding to the same area (i.e., patches representing the same
semantics) to be similar. As shown in Figure 1b, the proposed consistency loss significantly
contributes to the generation of consistent representations for the overlapping patch tokens
and the [CLS] token. The output feature of a specific patch depends on the surrounding
patches because ViT is a self-attention-based architecture. However, overlapping patches
still have the same semantic information because they originate from a single image.
Therefore, it is reasonable to produce similar representations for these patches. Note that
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the consistency loss function is not calculated if there is no overlapping region between
augmented views.

Patch + Position 
Embedding

MLP Head (    ) MLP Head (    )

Transformer Encoder (    ) Transformer Encoder (    )

Linear Projection of Flattened Patches Linear Projection of Flattened Patches* Extra learnable  
  token[CLS]

View
View

Input image

EMA

RoI align

RoI align

pooled feature

stop  grad

pooled feature

0 * 1 2 3 4

* 1 2 3 40

* 1 2 3 4

* 1 2 3 40

0 5 6 7 8

5 6 7 8

Figure 2. Framework overview of the proposed consistency loss. The ‘∗’ symbol represents an extra
learnable [CLS] token. We first find the intersection region between the global view (g) and local view
(l) and generate a corresponding feature map by RoI align pooling. Through the consistency loss, the
RoI feature vectors of the two views are to be similar feature vectors.

The overall SSL objective is L = L[CLS] + λLcon, which learns both global- and local-
level representations. We applied a stop-gradient operator to the teacher network, updated
it with an exponential moving average (EMA) of the student parameters, and set the
parameter λ = 0.5 for all experiments.

4. Experiment

We performed two sets of experiments to demonstrate the effectiveness of the proposed
method for fine-grained visual classification. It was confirmed that applying consistency
loss during SSL yields better representations on the six FGVC benchmark datasets. We
also observed that freezing the lower blocks of the pretrained SSL model on ImageNet is
effective for transfer learning with small-scale FGVC datasets. Furthermore, the proposed
consistency loss was applied to SSL with ImageNet, a representative large-scale coarse-
grained dataset. We show that our method is advantageous for learning fine-grained
representations through qualitative and quantitative evaluations even though ImageNet
classification performance slightly decreases compared with DINO.

4.1. Dataset

We conducted experiments on six widely used datasets for fine-grained visual classifi-
cation: FGVC Aircraft, CUB-200-2011, Food-101, Oxford 102 Flowers, Stanford Cars, and
Stanford Dogs.

• FGVC Aircraft (Aircraft) [16] contains 10, 000 images, consisting of 6667 training
images and 3333 test images. Each image is annotated with four hierarchical airplane
model labels: model, variant, family, and manufacturer. We focus on classifying variant
annotation that includes 100 different subcategories.

• Stanford Cars (Car) [15] contains 16, 185 images of 196 classes of cars. It is split
into 8144 training and 8041 test data. Categories are generally defined according to
information about the manufacturer, model, and year of release.

• Oxford 102 Flowers (Flower) [39] includes 102 categories of flower images commonly
seen in the UK. The training set consists of 20 images per class, and the test set has
6149 images. A single image may contain several flowers. Each image is annotated
with a subcategory label.
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• Food-101 (Food) [40] consists of 101, 000 images of 101 food categories. There are
manually annotated 250 test images and 750 training images for each class.

• CUB-200-2011 (CUB) [14] is the most widely used FGVC dataset. It contains
11, 788 images of 200 species of wild birds, which are divided into 5994 for training
and 5794 for testing.

• Stanford Dogs (Dog) [41] is a collection of 120 different dog categories from around
the world. It has 12, 000 training data and 8580 test data.

4.2. Implementation Details

By default, the pretrained ViT-S/16 with the DINO framework on ImageNet-1K was
used as our initial model. For SSL with FGVC datasets, the models were trained for
5000 iterations, considering the size of the fine-grained dataset, with the AdamW optimizer
and a batch size of 256. The learning rate increased linearly during the first 60 iterations to
its base value: lr = 5× 10−4 × batch_size/256. After this warm-up, the learning rate was
decayed using a cosine schedule [42]. Weight decay also followed a cosine schedule from
0.04 to 0.4. We used the same data augmentations as DINO, consisting of random crop,
random horizontal flip, random color jittering, Gaussian blur, and solarization. There are
two types of views: local and global. For both views, the same data augmentation was used,
except for the cropping scale with respect to the original image, to ensure that the local
view represents a small region of the image and the global view represents a large region
of the image. The projection head h was defined as three-layer MLPs with a 8192 output
dimension following DINO. We pretrained and fine-tuned the ViT with 224-sized square
images and referenced DINO for most other settings. We used a RoI align layer that outputs
a 3× 3–sized feature map to compute the consistency loss.

4.3. Experimental Results

Transfer learning. We carried out experiments that froze particular model parameters
during transfer learning to investigate how to effectively use the representations pretrained
on a large-scale dataset. The comparative results for each dataset are listed in Table 1. The
evaluation protocols of k-NN and linear probing were used to examine the quality of the
representations.

Table 1. Test accuracy on each dataset under linear probing (k-NN) evaluation. Bold font denotes
the best-performing transfer learning method. The “w/o FT” refers to an initial model (i.e., the
pretrained model with ImageNet), and the “Full FT” is a model that is fully fine-tuned via SSL on
the target FGVC dataset. Note that the transfer learning process is conducted in a self-supervised
manner, and the ground-truth labels are only used in the evaluation process.

Transfer Learning (SSL) Aircraft [16] Car [15] Flower [39] Food [40] CUB [14] Dog [41]
w/o FT 61.0 (36.7) 65.8 (22.5) 96.3 (86.5) 79.8 (67.7) 80.8 (69.5) 83.7 (77.3)
Full FT 14.0 (3.5) 50.1 (14.5) 84.5 (72.7) 80.9 (72.7) 56.9 (42.2) 69.0 (62.2)
LayerNorm FT [13] 60.0 (36.4) 66.3 (23.1) 96.9 (88.1) 80.8 (69.8) 76.9 (60.8) 82.1 (74.0)
Lastblock FT 62.3 (37.8) 68.7 (25.8) 97.2 (90.7) 82.8 (75.7) 76.1 (60.5) 80.4 (73.6)
Lastblock FT + Lcon 63.6 (39.2) 68.9 (26.8) 96.9 (90.9) 82.6 (75.9) 77.1 (60.8) 81.8 (74.2)

As shown in Table 1, “Full FT” demonstrates a degraded performance than “w/o FT”
on most of the datasets. Specifically, linear probing performance decreased by an average of
18.7%. However, we observed a slight performance improvement in the Food dataset, which
had a relatively sufficient amount of training data. These results confirmed that updating
all parameters during SSL with a small-scale dataset might degrade the performance.

However, the overall k-NN and linear probing accuracy are slightly improved when
only the layer normalization is fine-tuned using the target dataset. In the Food dataset,
there was a performance improvement of 2.1% k-NN accuracy over “w/o FT”. Additionally,
we examined updating the last block, and the results indicated better performance than
fine-tuning only the layer normalization. In particular, the accuracy on Cars increased
by 2.4%. These results demonstrate that updating only the last block is more effective
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when fine-tuned with a small-scale dataset in SSL scenarios. However, the pretrained
DINO performed best on the CUB and Dog datasets. We conjecture that because ImageNet
contains many dog and bird images, the model can learn adequate representations without
further fine-tuning.

We applied the consistency loss term to fine-tune the last block to verify the effective-
ness of the proposed consistency loss. The performance can be further enhanced when
the consistency loss is combined with the DINO loss, as shown in the last row of Table 1.
By considering patch-level consistency, the performance is increased over the absence
of the consistency loss in every case except for the linear evaluation on the Flower and
Food datasets. In addition, it is possible to mitigate the performance decrease caused
by naive fine-tuning on the CUB and Dog datasets. Furthermore, a comparison of the
confusion matrices of “LayerNorm FT” and the proposed method on the Aircraft dataset
is presented in Figure 3. Positive values in the off-diagonal elements indicate that the
misclassification of “LayerNorm FT” is greater than that of the proposed method. Similarly,
negative values for the diagonal elements indicate that our proposed method achieves a
higher correct classification rate compared with “LayerNorm FT”. As shown in Figure 3, the
proposed method effectively reduces the number of misclassified samples and improves
the correct classification compared with “LayerNorm FT”. Specifically, the accuracy of the
proposed method is increased in 63 out of 100 classes in the Aircraft dataset. Notably, for
classes such as 707-320 and 767-300, our method achieves 15% higher accuracy compared
with “LayerNorm FT”.

Predicted class

Ac
tu

al
 c

la
ss

"LayerNorm FT"  "Lastblock FT + Lcon"

4

2

0

2

4

Figure 3. Difference in confusion matrices obtained from linear probed models of “LayerNorm FT”
and “Lastblock FT + Lcon” in Table 1 on Aircraft. Each element is computed by subtracting the
corresponding element of the “Lastblock FT + Lcon” confusion matrix from the “LayerNorm FT”
confusion matrix.

We visualized the attention map from fine-tuned models with and without consistency
loss to qualitatively demonstrate the effects of consistency loss. The model trained solely
with DINO loss assigns high attention scores to both the object and background patches, as
shown in Figure 4. On the other hand, objects could be more precisely segmented from the
background by applying the consistency loss function.
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DINO

Ours

Aircraft Car Flower Food CUB Dog

Figure 4. Visualization of masks created by thresholding the self-attention map at 70% of its mass.
We demonstrate the resulting masks from fine-tuned models of ViT-S/16 trained with DINO and our
method. Specifically, the first row shows the resulting mask for the model with only the last block
fine-tuned using the DINO loss. The second row is the visualization result of the model trained with
consistency loss under the same setting.

Table 2 contains the fine-grained classification performance of each pretrained model
after end-to-end supervised fine-tuning instead of a linear evaluation. At this time, we
also consider the model pretrained on ImageNet in a supervised manner, denoted as
“Supervised”. The SSL pretrained models performed exceptionally better than “Supervised”
in the Aircraft, Car, and Flower datasets. In addition, the performance increases when
the last block is pretrained during transfer learning to the target dataset (see the third
row of Table 2). Specifically, the proposed method shows the best performance among
the SSL pretrained models on every FGVC dataset (fourth row of Table 2). On Aircraft,
the proposed method improves the performance by 3.96% over “Supervised”. In the
cases of the Food, CUB, and Dog datasets, the supervised pretrained model performed
the best. In summary, the proposed method does not surpass “Supervised” on the Food,
CUB, and Dog datasets, but it performs best on all datasets compared with SSL pretrained
models. As a result, we confirmed that SSL with the proposed consistency loss helps learn
fine-grained representations.

Table 2. Test accuracy on each dataset under fine-tuning evaluation. The first row is the pretrained
model with ImageNet in the supervised learning setting. The models in the second and third rows
are pretrained using the DINO framework (i.e., the SSL setting). +Lcon is a pretrained model by
applying our proposed consistency loss term.

Pretrained Model Aircraft [16] Car [15] Flower [39] Food [40] CUB [14] Dog [41]
Supervised 81.34 90.15 97.53 90.97 85.36 87.74
Full FT 84.70 91.94 98.10 90.67 82.07 82.33
Lastblock FT 85.05 92.14 98.21 90.78 81.45 82.34
Lastblock FT + Lcon 85.30 93.10 98.54 90.86 82.29 83.11

ImageNet experiments. The previous experimental results demonstrated the effectiveness
of the proposed consistency loss in the transfer learning framework. In this section, we
further investigate the effect of consistency loss when applied to a coarse-grained dataset.
To this end, we trained ViT-S/16 on the ImageNet dataset from scratch for 300 epochs.
Similar to the previous experiments, we set λ and the output size of the RoI align layer to
0.5 and 3× 3, respectively.

First, we compared the test accuracy on ImageNet with that of DINO. We pretrained
the model on ImageNet with consistency loss and then examined the top 1 accuracy of
k-NN classification and linear probing on the validation set of ImageNet. We observed that
the proposed consistency loss decreased performance when trained on a large-scale coarse-
grained dataset, such as ImageNet. DINO shows 72.8 and 76.1 of test accuracy for k-NN
and linear probing, respectively. However, when consistency loss is applied, the accuracy
slightly decreases to 71.4 and 74.2 for k-NN and linear probing, respectively. This negative
effect is consistent with observations from previous studies [43,44]. Similar to these studies,
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our method encourages a model to better focus on the small patch regions to capture the
subtle patterns. However, for the coarse-grained dataset, these patch regions are more
likely to contain irrelevant background information compared with the fine-grained one.
Hence, we conjecture that this negative effect might be caused by the use of background
information as a shortcut in classification tasks.

Next, the quality of the finer representation of ImageNet pretrained models was
evaluated by using the k-NN classification accuracy on the FGVC datasets. In Table 3, we
compare several SSL methods based on the ViT-S/16 architecture, including MoCov3 [20],
iBoT [21], and DINO. The proposed method performed the best among all the SSL methods
for the Aircraft, Car, and Flower datasets. Consistent with previous experimental results,
the consistency loss was particularly effective on the Aircraft, Car, and Flower datasets.
The proposed method demonstrated better performance in half of the fine-grained datasets,
although it did not show the highest accuracy across all datasets. When we ranked these
methods based on their performance on each dataset, the average rank of the proposed
method was the best among the comparison targets.

Table 3. Fine-grained recognition performance of ImageNet pretrained models.

Method Aircraft [16] Car [15] Flower [39] Food [40] CUB [14] Dog [41] Avg. Rank
MoCo v3 [20] 26.61 16.94 78.45 61.60 44.06 64.71 3.83
iBoT [21] 35.88 20.84 85.02 68.70 66.86 78.39 2.17
DINO [1] 36.66 22.52 86.45 67.65 69.45 64.45 2.17
Ours 37.32 23.22 87.54 66.25 64.36 75.20 1.83

For a qualitative evaluation, we visualized the attention map of the pretrained model
with ImageNet. We compared our proposed model with the primary baseline DINO, and
the visualization results are shown in Figure 5. From these results, we can observe that our
proposed model segments the target object more clearly than DINO. Overall, the model
trained with the DINO framework tended to focus on small regions with high attention
scores. In contrast, the model trained with consistency loss concentrates on larger areas
of an object. These qualitative results demonstrate that the proposed consistency loss
helps a model learn image-level representation by aggregating all informative local (i.e.,
patch-level) representations, not merely focusing on the most discriminative region.

To further investigate the localization capability of the proposed method, we compared
the semantic segmentation performance with DINO using the Flower and CUB datasets.
Following the previous study [1], the segmentation results are obtained by thresholding
the self-attention map from the ImageNet pretrained models, without further training for
the segmentation task. As shown in Table 4, our proposed method clearly outperforms
DINO on both datasets. These results suggest that the proposed consistency loss enhances
the model’s focus on object regions (i.e., foreground), revealing its potential applicability to
dense prediction tasks, such as object detection and semantic segmentation.
Ablation study. Two hyperparameters are associated with the proposed consistency loss:
the weight of the consistency loss λ and the output size of the RoI alignment layer. In
this section, we describe an ablation study to further investigate the impact of each hyper-
parameter. For the RoI pooling size, we examine {1× 1, 3× 3} with default consistency
loss weight (i.e., λ = 0.5). For the weight of consistency loss, we consider three values
of {1, 0.5, 0.1} with a default RoI pooling size of 3× 3. Table 5 shows k-NN evaluation
results for each dataset after fine-tuning using the proposed method. Overall, it is observed
that the choice of each hyperparameter does not have a noticeable impact on performance,
which confirms that the proposed method is robust to these hyperparameters.
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Car

Flower

Food

CUB

Dog

Figure 5. Visualization of attention maps from ImageNet pretrained models. The left column
indicates the original images from each FGVC dataset. The middle and the right columns represent
the attention maps of DINO and the proposed method, respectively. Six attention maps from the last
block are summed and L2-normalized for visualization.

Table 4. Segmentation performance comparison between DINO and our model. We demonstrate
results using a pretrained ViT-S/16 with ImageNet and evaluate the Jaccard index between ground
truth and predicted masks by applying a 60% self-attention map threshold. The result for the
best-performing head is shown.

Method Flower [39] CUB [14]

DINO [1] 29.33 22.02
Ours 44.87 37.64

Table 5. k-NN accuracy of models trained with different λ and pooling size.

λ Pooling Size Aircraft [16] Car [15] Flower [39] Food [40] CUB [14] Dog [41] Avg.
0.5 3× 3 39.2 26.8 90.9 75.9 60.8 74.2 61.3

1× 1 38.1 27.6 89.9 75.9 60.6 74.3 61.1
1

3× 3
38.9 26.5 90.5 75.5 60.9 74.6 61.1

0.5 39.2 26.8 90.9 75.9 60.8 74.2 61.3
0.1 39.6 26.9 90.5 75.9 60.8 74.0 61.3
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5. Conclusions

In this study, we attempt to apply SSL to small-scale fine-grained data. To this end,
we utilize a pretrained ViT with an SSL framework and explore an effective transfer
learning strategy. Moreover, we propose consistency loss, which acts as a regularizer
to preserve patch-level semantics in the representation space. Extensive experiments
on six FGVC benchmark datasets demonstrate that fine-grained representations can be
effectively learned using the proposed consistency loss function. Our proposed method can
be utilized in various real-world fine-grained image recognition applications that require
extensive labeling efforts, including medical image diagnosis, species identification in
ecological research, and others.

Although the proposed method offers clear advantages for the FGVC task, it shows
lower performance on a coarse-grained dataset such as ImageNet, as reported in previous
studies. This issue might be caused by the use of background information as a shortcut
in classification tasks. Further investigation is required to determine the causes of these
limitations and potential solutions. Meanwhile, direct aggregation of the patch-level
representations for the FGVC task could be considered to further improve our method.
Exploring effective strategies to integrate the encoded patch information into the final
prediction could be an interesting research topic, which we leave for future work. In
addition, real-world scenarios often involve the availability of weakly labeled data or
limited labeled data. Therefore, extending the proposed method to weakly supervised
learning or semisupervised learning settings can be a promising research direction. In this
case, further investigation should be conducted to determine effective strategies to fully
exploit the limited label information.
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