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Abstract: In order to improve the classification effect of the logistic regression (LR) model for breast
cancer prediction, a new hybrid feature selection method is proposed to process the data, using the
Pearson correlation test and the iterative random forest algorithm based on out-of-bag estimation
(RF-OOB) to screen the optimal 17 features as inputs to the model. Secondly, the LR is optimized using
the batch gradient descent (BGD-LR) algorithm to train the loss function of the model to minimize
the loss. In order to protect the privacy of breast cancer patients, a differential privacy protection
technology is added to the BGD-LR model, and an LR optimization model based on differential
privacy with batch gradient descent (BDP-LR) is constructed. Finally, experiments are carried out
on the Wisconsin Diagnostic Breast Cancer (WDBC) dataset. Meanwhile, accuracy, precision, recall,
and F1-score are selected as the four main evaluation indicators. Moreover, the hyperparameters
of each model are determined by the grid search method and the cross-validation method. The
experimental results show that after hybrid feature selection, the optimal results of the four main
evaluation indicators of the BGD-LR model are 0.9912, 1, 0.9886, and 0.9943, in which the accuracy,
recall, and F1-scores are increased by 2.63%, 3.41%, and 1.76%, respectively. For the BDP-LR model,
when the privacy budget ε is taken as 0.8, the classification performance and privacy protection effect
of the model reach an effective balance. At the same time, the four main evaluation indicators of the
model are 0.9721, 0.9975, 0.9664, and 0.9816, which are improved by 1.58%, 0.26%, 1.81%, and 1.07%,
respectively. Comparative analysis shows that the models of BGD-LR and BDP-LR constructed in
this paper perform better than other classification models.

Keywords: breast cancer; feature selection; batch gradient descent; differential privacy; logistic regression

1. Introduction

Cancer is the leading cause of human mortality worldwide, and the treatment of
cancer consumes a lot of medical resources and increases the burden on society, so that
cancer has become a common social issue all over the world [1]. Breast cancer is one of the
malignancies with the highest morbidity and mortality in women [2]. The symptoms of
early-stage breast cancer are not obvious, and advanced cancer cells will rapidly metastasize,
leading to systemic multiorgan lesions that will directly threaten the lives of patients, so
early diagnosis is the key to improving the survival rate of breast cancer patients [3].

At present, there are three common methods for early diagnosis of breast cancer:
clinical evaluation [4], imaging evaluation [5], and tissue biopsy. Using machine learning
methods on these detection data for data analysis and data mining can assist doctors in
reducing misdiagnosis and missed diagnosis caused by subjective factors and improve the
detection rate of breast cancer [6]. Machine learning is at the core of artificial intelligence and
data science. As machine learning continues to be optimized, cancer prediction accuracy
continues to improve [7].
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Machine learning methods have worked well in the diagnosis of breast cancer.
Arpit, B. et al. [8] used the multilayer perceptron (MLP), K-nearest neighbor (KNN),
genetic algorithm (GP), and random forest (RF) to classify breast cancer cells, and the ex-
perimental results showed that the RF model had the highest classification accuracy, which
could reach 0.9624. Fatih Ak, M. [9] used data visualization and multiple machine learning
models to analyze breast cancer diagnosis, and experiments showed that the LR model
had the highest classification accuracy of 0.981. However, the algorithm is data demanding
and does not have the performance to handle missing values. Mahesh, T.R. et al. [10] used
six methods including an ensemble learning technique, support vector machine (SVM),
KNN, decision tree (DT), RF, and LR to classify and predict breast cancer data, of which
the accuracy of the ensemble learning technique was the highest at 0.9814, followed by the
LR model at 0.9632. Naseem, U. et al. [11] proposed a breast cancer diagnosis system and
prognosis automatic detection system based on an ensemble of classifiers. Experimental
results on the WDBC dataset showed that the ensemble method is superior to other single
methods, with an accuracy of 0.9883.

Recently, scholars have made a lot of contributions to improving the accuracy of breast
cancer prediction, and some of them have improved the machine learning model [12,13].
Wang et al. [14] proposed an SVM-based weighted area under the curve (AUC) ensemble
learning model for breast cancer diagnosis, and the results showed that the proposed
WAUCE structure could improve the diagnostic accuracy by 0.94% on small datasets, but
the WAUCE model has a long computational time. Zheng et al. [15] extracted breast
cancer tumor features and diagnosed them according to a K-means and SVM hybrid
algorithm, and the results showed that the hybrid algorithm improved the accuracy to
0.9738. Ajay Kumar et al. [16] used a user-defined weighted set voting scheme for breast
cancer classification, assigned custom-based weights, and used an ensemble classifier to
outperform each estimator for the final classification of cancer. The highest accuracy of the
proposed ensemble classifier reached 0.9647. X. Jia et al. [17] proposed a whale optimization-
based algorithm to improve the accuracy of breast cancer classification by iteratively
adjusting the parameters of SVM. Experiments were carried out on the WDBC dataset, and
the results showed that the WOA-SVM model had higher classification accuracy than the
traditional breast cancer classification models, with an accuracy of 0.975.

Other scholars focus on the feature selection of data [18–24]. In the process of pre-
diction, feature selection can eliminate irrelevant variables and redundant features to
achieve effective dimensionality reduction and improve the accuracy of the algorithm [25].
Rao, H. et al. [26] proposed a new feature selection method based on bee colony (ABC) and
extreme gradient boosting (XGBoost), which effectively reduced the dimensionality of the
dataset, and the accuracy of the XGBoost was 0.928 on the WDBC dataset. Nevertheless,
the study is limited to theories related to decision trees. Algherairy et al.’s [27] study on the
WDBC dataset showed that the LR model was the best classifier, and the accuracy of the
LR model could be improved from 0.972 to 0.982 by using the forward feature selection
method. Abdel-Basset, M. et al. [28] proposed a new grey wolf optimizer (GWO) algorithm
combining two-stage variation to solve the feature selection problem and selected the KNN
classifier to classify breast cancer data, of which the accuracy of the final model could reach
0.9482. Mahesh, T.R. et al. [29] proposed a breast cancer prediction XGBoost ensemble
model based on known feature patterns. In order to deal with the impact of data balance
on classification results, SMOTE was used to process the data, and then the naïve Bayes
classifier (NB), DT, and RF were combined with XGBoost to classify the data. According
to experimental analysis, the classification effect of the XGBoost–random forest ensemble
classifier was the best. The classification accuracy of the model was 0.982. Singh, L.K.
et al. [30] proposed a unique feature selection method based on eagle strategy optimization
(ESO), the gravitational search optimization (GSO) algorithm, and their hybrid algorithm,
which could select the fewest features to achieve the highest accuracy. Experimental results
showed that the proposed method achieved great results on the WDBC dataset with an
accuracy of 0.9896.
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Machine learning methods have contributed to the early diagnosis of breast cancer.
Making improvements to the classification model and processing the data using feature
selection methods can improve the classification of breast cancer, but the classification of
breast cancer is still not optimal for the existing research. In addition, there is a risk of
leaking specific private information in the training data to attackers through the structure of
the model [31]. In recent years, the leakage of private information of patients has occurred
frequently. With the advancement of cloud technology and big data, it is easier for attackers
to collect patients’ private information and speculate about patients’ sensitive information
through correlation and other means [32]. Therefore, while combining machine learning
models with cancer diagnosis, it is also necessary to pay attention to the privacy protection
of data.

Commonly used privacy protection techniques are anonymity-based privacy pro-
tection, encryption-based privacy protection, and noise-based privacy protection [33].
Differential privacy technology based on noise was proposed by Dwork [34] of Harvard
University in 2006 by adding a series of “noise” to the original data, making it difficult
for attackers to achieve accurate calculation of an individual user’s privacy data, so as to
improve the efficiency of data sharing and use under the premise of protecting data security.
The application of privacy protection technology in data mining has become a research
hotspot in the field of artificial intelligence [35–37], and how to achieve the combination
with machine learning with a smaller accuracy loss cost is still an urgent problem to be
solved [38].

In summary, there are two main problems in the study of breast cancer prediction:
(1) how to improve the prediction effect through feature selection and model improvement;
(2) how to improve the classification effect and at the same time make the model have
privacy protection function. To solve these two problems, this paper proposes a new hybrid
feature selection method to process data. At the same time, it combines differential privacy
technology and a logistic regression algorithm to construct a breast cancer classification
model with higher classification performance and data privacy protection. The main
process is shown in Figure 1, and the main contributions are as follows:

(1) Improve the effect of breast cancer prediction. Firstly, a new hybrid feature selection
method is proposed to eliminate weakly correlated features and redundant features,
which is divided into two steps: in the first step, the features with an absolute value of
the Pearson correlation coefficient greater than or equal to 0.3 are screened out; in the
second step, the optimal combination of features is screened to find the final features
by the iterative RF-OOB algorithm. Then, the BGD algorithm is used to optimize the
LR, and the loss function of the model is trained to minimize the loss to improve the
classification effect of the model. In order to verify the effectiveness of hybrid feature
selection, a control group experiment is set up to compare the results.

(2) Differential privacy protection technology is added to the process of breast cancer
prediction. In the BGD algorithm, Gaussian noise is added to each layer of gradient
descent, which makes the model have accurate classification performance while
protecting data privacy. Finally, the optimal results of the model in this paper are
compared with the results in other papers.
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Figure 1. Flowchart of breast cancer classification model with data privacy protection. 
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2. Methods and Materials

This section introduces the basic theoretical concepts of differential privacy preserving
techniques, feature selection methods, LR algorithms, and batch gradient descent algo-
rithms. In particular, the feature selection methods contain the Pearson correlation test and
random forest algorithm based on out-of-bag estimation.

2.1. Differential Privacy

Definition 1 (differential privacy). If there is a mechanism F satisfying differential privacy
protection, the sum of its outputs is S and Pr[] is the probability of the output results. For all
adjacent data sets A and A′, there is

Pr[F(A) = S]
Pr[F(A′) = S]

≤ eε (1)

Mechanism F is said to satisfy differential privacy [39], where ε is the privacy budget.
When ε is smaller, F needs to give a very similar output and therefore provide higher
privacy. Conversely, a larger ε allows F to give less similar outputs, providing less privacy.
Satisfying Equation (1) is called the strictly satisfying ε -differential privacy definition.

Definition 2 (approximate differential privacy). In the process of experimentation, because of
too-strict protection, the availability of data will be seriously affected. In order to solve this problem,
Dwork et al. [40] gave the concept of approximate differential privacy, when the

Pr[F(A) = S] ≤ eεPr[F(A′) = S] + δ (2)

where the privacy parameter δ is a small constant indicating the “probability of failure” that does
not meet this approximate differential privacy definition, and we set the δ to 0.00001. Like strict
differential privacy, approximate differential privacy, which is known as (ε,δ)-differential privacy,
also satisfies sequence combinatory and parallel combinatory.

Satisfying approximate difference privacy means that if we change an element in the
database, the probability of the output should be close to the probability of the original
data, thus protecting the original data from leakage [41].
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Definition 3 (global sensitivity). The sensitivity of the function reflects the degree to which the
output changes when the input of the function changes. For a query function f : D → Rk and a
norm function ‖·‖, the sensitivity is

s( f , ‖·‖) = max
d(A,A′)≤1

∥∥ f (A)− f (A′)
∥∥ (3)

The norm function is usually L1 or L2 [42], the length of the vector V is k, the L1 norm
is defined as ‖ν‖1 = ∑k

i=1|νi|, thus the sum of the elements of the vector and the L2 norm is

defined as ‖ν‖2 =
√

∑k
i=1 νi

2 . In two-dimensional space, the L2 norm is always less than
or equal to the L1 norm.

Definition 4 (Gaussian noise mechanism). The Gaussian mechanism cannot satisfy strict ε-
differential privacy, but it can satisfy (ε,δ)-differential privacy, so for the function f : D→ Rk , the
Gaussian mechanism defined below is applied to obtain F(A) satisfying approximate differential privacy:

F(A) = f (A) + N(σ2) (4)

where N(σ2) represents the Gaussian (normal) distribution sampling result with a mean of 0 and a
variance of σ2, where σ2 ≥ c∆2 f 2/ε2, c2 ≥ 2 ln(1.25/δ) [39], ∆2 f is the L global sensitivity.

2.2. Pearson Correlation Coefficient Test

The Pearson correlation coefficient [43] is used to test the correlation of each feature
with the target variable, and the Pearson correlation coefficient formula is as follows:

ρXmXn =
Cov(Xm, Xn)√

DXm ∗ DXn
=

E(XmXn)− EXm ∗ EXn√
DXm ∗ DXn

(5)

where ρXmXn indicates the correlation coefficient between two variables, Cov(Xm, Xn)
indicates the covariance between two variables, EXm indicates the expectation of the
variable, and DXm represents the variance of the variable.

According to Equation (5), the correlation coefficient between each feature and the
target variable is calculated. Based on the thresholds set in this paper, values with absolute
values of correlation coefficients greater than the thresholds are filtered to weed out vari-
ables other than those with weak correlations. The filtered feature variables are used as
candidate features for secondary feature screening.

2.3. Random Forest Algorithm Based on Out-of-Bag Estimation (RF-OOB)

Because of the subset of candidates obtained by the correlation coefficient screening
method, features with high correlation will occur, and redundancy between such features
will affect the classification results of the model. Therefore, secondary feature screening of
random forests estimated outside the bag is also required for candidate subsets.

About 36.8% of the sample data of the RF model was not extracted by the bootstrap
sampling [44], which is out-of-bag data of the decision tree. Out-of-bag estimation is to
use these data to test the model, and the ratio of misclassified data to the total number
of out-of-bag data is out-of-bag estimation, which is also an unbiased estimation of the
generalization error of the ensemble classifier. Due to the presence of out-of-bag samples,
cross-validation testing is not required for random forest out-of-bag estimation.

As shown in Equation (6), the sum of the out-of-bag score (oob-score) and the out-of-
bag error is 1. For a single decision tree Ti trained by the sampling method, operating with
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out-of-bag data produces an oob-score. So, for T decision trees, there will be T oob-scores.
Finally, the mean is derived to obtain the oob-score for the whole random forest.

oob_score = 1−

n
∑

i=1
( fi − yi)

2

n
∑

i=1
(yi − ŷ)2

(6)

2.4. Logistic Regression (LR)

LR is a classification algorithm based on logarithmic probability functions. Its core
idea is to nest an S-shaped sigmoid function on the basis of linear regression, so as to
convert the output result of linear regression into a value close to 0 or 1, and the sigmoid
function formula is:

g(z) =
1

1 + ez (7)

where z = wT · x, w is the weight that needs to be learned, and x is the sample feature
vector. g(z) represents the predicted probability value corresponding to the event when
the event is inferred from the sample.

The fitting function Hθ(x) for LR is:

Hθ(x) = g
(

θTx
)
=

1
1 + e−θT x

(8)

where P(y = 1|x; θ) = Hθ(x) , P(y = 0|x; θ) = 1− Hθ(x) .
The loss function for LR is:

J(θ) = − 1
m

[
m

∑
i=1

y(i) log
(

Hθ(x(i)) + (1− y(i)) log
(

1− Hθ(x(i))
))]

(9)

In LR model, the parameters are generally estimated by the maximum likelihood
method [45]. The loss function can measure the gap between the actual variable values and
the predicted values. The smaller the loss function, the more accurate the predicted values
are. In general, if the difference between the loss function values of the training set and the
test set is very small, which both achieve low loss values, then the model can be considered
to perform well on both the training set and the test set with a good fit [46].

2.5. Batch Gradient Descent (BGD)

Gradient descent is a commonly used optimization algorithm. Its core idea is to grad-
ually adjust the parameters through iteration, so that the loss function of the model reaches
the minimum value. The BGD algorithm is a variant form of the gradient descent algorithm.

θn+1 = θn −∇l(θ; x(i), y(i)) (10)

where∇l(θ; x(i), y(i)) denotes the gradient of the function l(θ) with respect to the parame-
ter θ. The BGD algorithm uses the entire training set for each iteration and computes the
local gradient of the error function with respect to the parameter vector θ while proceeding
to the next iteration in the direction of the gradient descent until the algorithm converges
to a minimum value.

3. Selection of Indicators for the Evaluation

Evaluation indicators are quantitative indicators for evaluating the performance of
the model, and if the selected evaluation indicators are not reasonable, it will affect the
orientation of the result analysis. Therefore, different evaluation indicators should be
selected for specific data and models.
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In this paper, breast cancer prediction is a binary classification problem, then the
classification results can generate a confusion matrix, as shown in Table 1, where TP
indicates that the positive class is predicted as the number of positive classes; TN indicates
that the negative class is predicted as the number of negative classes, which can be referred
to as the true counterexample; FP indicates that the negative class is predicted as the
number of positive classes, which is referred to as the first type of error; FN indicates that
the positive class is predicted as the number of negative classes, which is referred to as the
second type of error.

Table 1. Confusion matrix.

Label
Predicted Results

Positive Negative

Real situation
Positive TP FN

Negative FP TN

In order to measure the classification effect of the model in this paper, the four perspec-
tives of the model—the overall accuracy of the model, the accuracy of the positive class pre-
diction, the coverage ability of the positive class, and the comprehensive performance—are
taken into account. The accuracy, precision, recall, and F1-score are selected as the four
main evaluation indicators to evaluate the prediction effect of the model. And these evalu-
ation indicators have values between 0 and 1. The closer the value is to 1, the better the
classification effect of the model is. The receiver operating characteristic (ROC) curve is
also selected as an assistant indicator to compare the classification effect among the models.
The specific meanings are as follows:

(1) Accuracy: represents the total proportion of all predictions that are correct (positive
and negative categories) and can be expressed as accuracy = TP+TN

TP+TN+FP+FN . For
breast cancer prediction, a high accuracy rate indicates that the model is better at
correctly classifying both malignant and benign tumors. Accuracy is justified because
it provides an assessment of overall classification accuracy and can help determine
the model’s ability to discriminate between the two types of tumors.

(2) Precision: indicates how many of the samples predicted to be positive are truly
positive, which can be expressed as precision = TP

TP+FP , also known as PPV.
(3) Recall: indicates how many positive cases in the sample were predicted correctly,

which can be expressed as precision = TP
TP+FN , also known as TPR.

(4) F1-score: it can be expressed as F1 = 2 PPV×TPR
PPV+TPR . F1-score is a comprehensive evalua-

tion index of extrinsic methods. For breast cancer prediction, F1-score is reasonable
because it balances the model’s ability to correctly classify malignant and benign
tumors. It also comprehensively evaluates the precision and recall of the model,
which is one of the very important evaluation indicators.

(5) The receiver operating characteristic (ROC) curve: in the ROC curve, the horizontal
axis is the false positive rate (FPR) and the vertical axis is the true positive rate (TPR).
The points closer to (0, 1) correspond to the better classification performance of the
model. AUC is the area under the ROC curve, between 0 and 1. As a numerical value
it can be visualized to evaluate the classifier, the larger the value the better. When
AUC = 1, it is a perfect classifier. When 0.5 < AUC < 1, it is better than random
guessing. When AUC = 0.5, like random guessing, the model has no predictive value.
When AUC < 0.5, the model is less predictive than random guessing.

4. Data Preprocessing

Data preprocessing helps to improve the accuracy of analysis results. For different
datasets and different tasks, there will be different data preprocessing methods. In this
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paper, the WDBC dataset is first introduced in detail, followed by Z-score standardization
of the data according to the characteristics of the dataset.

4.1. Introduction to Data

The WDBC dataset used in this paper was provided by the renowned Dr. Williams of
the University of Wisconsin Institute for Clinical Medicine [47] and the eigenvalues were
computed from digitized images of fine needle aspiration (FNA) of breast masses. The
dataset contains 569 sets of experimental samples. The following ten characteristics of
the nucleus of the cells taken from each subject are mainly collected: radius, perimeter,
smoothness, area, compactness, concavity, symmetry, texture, concave points, and fractal
dimension. Of the experimental samples, 357 sets of data are for benign samples of breast
cancer and 212 sets of data are for malignant samples of breast cancer. The breast cancer
dataset has one sample label (benign and malignant) and 30 features. The first 10 features
are the mean values of the nuclei feature values in the sample images, the 11th to 20th
features are the standard deviations of the nuclei feature values, and the 21st to 30th features
are the maximum values of the nuclei feature values. The classification label represents the
type of breast cancer.

4.2. Data Standardization

Some of the feature data of the WDBC dataset are shown in Table 2, from which it can
be seen that there are differences in the magnitude of each feature, and if not standardized,
direct experiments will lead to the inability to obtain the real results of the research object.
In order to reduce the impact of the data dimension on the model, the data need to
be processed dimensionlessly. Commonly used dimensionless processing methods are
min–max (normalization) and Z-score standardization [48]. In this paper, based on the
characteristics of the WDBC dataset, Z-score standardization is applied to the data.

Table 2. Partial sample characteristic data.

Texture_Mean Perimeter_Mean Area_Mean Smoothness_Mean Symmetry_Mean

10.38 122.8 1001 0.1184 0.2419
17.77 132.9 1326 0.08474 0.1812
21.25 130 1203 0.1096 0.2069
20.38 77.58 386.1 0.1425 0.2597
14.34 135.1 1297 0.1003 0.1809
15.7 82.57 477.1 0.1278 0.2087

19.98 119.6 1040 0.09463 0.1794

5. A Logistic Regression Optimization Model Based on Hybrid Feature Selection and
Differential Privacy

In order to improve the effectiveness of the breast cancer classification model and
protect the patient’s privacy, first, a hybrid feature selection method that can effectively
eliminate redundant variables and select the optimal features is proposed. Second, the LR
model is optimized using the BGD algorithm to minimize the loss function of the model.
Finally, a logistic regression optimization model based on the hybrid feature selection and
differential privacy is proposed by adding the Gaussian noise mechanism on this basis.

5.1. Hybrid Feature Selection

In order to improve the model’s accuracy, this paper proposes a new hybrid feature
selection method, which combines the Pearson correlation test and the RF-OOB algorithm
to effectively eliminate irrelevant and redundant features. The method is divided into
two parts, as shown in Figure 2: in the first part, the Pearson correlation coefficient is first
utilized to measure the correlation between each feature and the target variable, and the k
features whose absolute value of the correlation with the target variable is greater than or
equal to 0.3 are screened out from the sample training set D(Xn

m, Ym) . In the second part, the
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out-of-bag estimation random forest algorithm is used to calculate the feature importance
of the remaining k features. Simultaneously, feature combinations are performed according
to the feature scores from high to low. Lastly, the feature combinations with the highest
score are iteratively filtered to obtain k′ features to realize redundant feature removal.
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Figure 2. Flowchart of hybrid feature selection.

Using Equation (5), the Pearson correlation coefficients between each feature and
the target variables (benign and malignant) are calculated. The feature variables with an
absolute value of correlation coefficient greater than or equal to 0.3 are filtered out. Finally,
the filtered feature variables are used as candidate features. In order to avoid redundancy
among the candidate subsets, it is necessary to carry out the secondary feature screening for
RF-OOB on the candidate subsets, and the specific steps are shown in Figure 3: (1) firstly,
RF-OOB is applied to calculate the feature importance of each feature, and the features are
ranked according to feature importance. The subset of features with the highest feature
importance is used as the initial feature combination, and RF-OOB is applied to calculate
the model score. (2) Add the subset of features with the second highest feature importance
as a new feature combination to be input into the RF-OOB algorithm and calculate the new
model score. (3) Add a subset of features one by one according to their importance as a
new combination of features and compute a new model classification score. This is iterated
until all the feature subsets are traversed. Finally, the feature combination with the highest
model classification score is selected as the optimal feature.

5.2. Logistic Regression Optimization Model Based on Batch Gradient Descent (BGD-LR)

The smaller loss function represents the better prediction effect of the model. In order
to solve the problem of the poor classification effect of a traditional logistic regression
model on the WDBC dataset, this paper uses the BGD algorithm to optimize the LR model
so that the loss function reaches the minimum value. The specific steps of Algorithm 1 are
as follows:

Algorithm 1 BGD-LR algorithm

Input : a dataset D
(
Xn

k′ , Yk′
)

that has been filtered with a mixture of features, initialize the θ

Output: prediction results
1. Take the partial derivative of the loss function J(θ) and compute the gradient using the full
training set of samples.
2. Update the model parameters θ according to Equation (10).
3. Repeat steps 2 through 3 for multiple iterations until the specified number of iterations is
reached and return θ.
4. Calculate the predicted classification results: calculate the predicted values according to the
updated θ and Formula (8) in step 2, and output the classification results.
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5.3. Logistic Regression Optimization Model for Batch Gradient Descent with Differential
Privacy (BDP-LR)

In order to solve the problem that traditional LR cannot protect data privacy, this
paper uses the BGD algorithm to optimize the loss function of the LR model. At the same
time, Gaussian noise is added to each layer of gradient descent, which enables the model
to have accurate classification performance while protecting data privacy.

Adding Gaussian noise to the BGD-LR is the core idea of the BDP-LR algorithm. Since
the loss function of the LR model is Lipschitz continuous and bounded [49], it means that
the global sensitivities of these gradient functions are all bounded.

i f
∥∥∥x(i)

∥∥∥
2
≤ b then

∥∥∥∇l(θ; x(i), y(i)
)∥∥∥

2
≤ b (11)

Thus, for a BGD-LR model, if it can be guaranteed that this gradient is bounded, it can
be straightforward to increase the noise by giving the sensitivity as b, with an upper bound
on the sensitivity of L2 obtained by the cropping technique b. The sensitivity formula for
the cropping gradient in this paper is:∥∥∥L2_clip

(
∇l
(

θ; x(i), y(i)
)

, b
)
− L2_clip

(
∇l
(

θ; x(i), y(i)
)

, 0
)∥∥∥

2
(12)

The BGD model after adding noise [50] is

θn+1 = θn −∇l
(

θ; x(i), y(i)
)
+ N

(
σ2
)

(13)

The specific steps of Algorithm 2 are as follows:
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Algorithm 2 BDP-LR algorithm

Input : a dataset D
(
Xn

k′ , Yk′
)

that has been filtered with a mixture of features, initialize the θ

, the privacy budget ε

Output: prediction results
1. Take the partial derivative of the loss function J(θ) and compute the gradient using the full
training set of samples.
2. Add Gaussian noise to the gradient descent algorithm for a single layer: choose a suitable
privacy budget ε. According to Equations (11) and (12), the L2 sensitivity upper bound b obtained
by the cropping technique is utilized to increase the Gaussian noise. The θ after adding noise is
obtained according to Equation (13).
3. Add Gaussian noise to the BGD algorithm:
a. Based on step 1, add noise to k gradients, and sum the noise gradient values.
b. Calculate the Gaussian noise count value for the number of training samples (sensitivity of 1).
c. Divide the value of the noise gradient in (a) by the value of the Gaussian noise figure in (b).
4. Calculate the predicted classification results: calculate the predicted values according to the
updated θ and Formula (8) in step 2, and output the classification results.

5.4. Privacy Analysis of the BDP-LR Algorithm

A and A′ are two neighboring datasets, F(A) and F(A′) denote the set of all outputs
of the neighboring datasets after the BDP-LR algorithm, respectively. S denotes all outputs
of the algorithm, then:

Pr[F(A)= S]
Pr[F(A′)= S]

=
Pr
[

f (A) + N
(
σ2) = S

]
Pr[ f (A′) + N(σ2) = S]

=
Pr
[
N
(
σ2) = S− f (A)

]
Pr[N(σ2) = S− f (A′)]

=
exp(− [S− f (A)]2

2σ2 )

exp(− [S− f (A′)]2

2σ2 )
=

exp(− [S− f (A)]2

2σ2 )

exp(− [S− f (A′)]2

2σ2 )

= exp

(
[S− f (A′)]2

2σ2 − [S− f (A)]2

2σ2

)

= exp
(

1
2σ2

{
[S− f (A) + ∆ f ]2 − [S− f (A)]2

})
= exp

(
1

2σ2

[(
s + ∆ f )2 − s2

])
Due to the constant positivity of the probability values,∣∣∣∣ln e

1
2σ2 [(s+∆ f )2−s2]

∣∣∣∣ =∣∣∣∣ 1
2σ2

[(
s + ∆ f )2 − s2

] ∣∣∣∣
=

∣∣∣∣ 1
2σ2

(
2s∆ f + ∆2 f

)∣∣∣∣
When σ2 ≥ c∆2 f /ε2, c2 ≥ 2ln(1.25/δ

)
, it can be proven that 1

2σ2

(
2s∆ f + ∆2 f

)
≤ ε,

then Pr[F(A)=S]
Pr[F(A′)=S] ≤ eε.
In the batch gradient algorithm, a Gaussian noise mechanism with a privacy budget of

ε is executed on each disjoint gradient according to the parallelism and combinatoriality [51]
of differential privacy, so that the algorithm satisfies (ε,δ)-differential privacy in each round
of iterations.

6. Experimental Results and Analysis

In order to find the best combination of hyperparameters for each model to optimize
the breast cancer classification results, in this paper, the grid search method and 5-fold cross-
validation method are used to determine the optimal hyperparameters of the models. Then,
this paper describes six sets of experiments: the first set of experiments is to standardize
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the data by the Z-score standardization; the second set of experiments is to perform hybrid
feature selection on the data; the third set of experiments is to verify the effectiveness of the
BGD algorithm for LR model optimization; the fourth set of experiments is to verify the
effect of hybrid feature selection on the model performance; the fifth set of experiments is
to compare the experimental results of the BGD-LR model with the experimental results
of other papers without considering privacy protection; and the sixth set of experiments
compares the performance of the BDP-LR model with other differential privacy-based
machine learning models while considering privacy preservation. Finally, the results
are analyzed.

6.1. Experimental Environment and Model Hyperparameters

The operating system used for the experiments is Windows 11, the environment is
Python 3.9.7, the processor is Intel(R) Core(TM) m3-6Y30 CPU @ 0.90GHz1.51 GHz, and
the RAM is 4.00 GB. The experiments are conducted using the WDBC dataset, and the
data are divided into a test set and training set according to a ratio of 8:2. Both the grid
search method and the cross-validation method are used to improve the accuracy of the
model. The grid search method is a parameter-tuning method to find the best combination
of hyperparameters by trying all possible combinations of hyperparameters to improve
the accuracy of the model. Also, to avoid model overfitting, the cross-validation method
is used to assess the generalization ability of the model. This impact of the differences
between the training set and the test set is reduced. The commonly used cross-validation
methods are K-fold cross-validation and leave-one-out cross-validation. In this paper, we
use 5-fold cross-validation to divide the dataset into five copies. Each time, four copies are
used as the training set and the remaining one as the validation set. This is repeated five
times, and the average value is taken as the final result. The specific steps are as follows:

1. Firstly, select a set of parameter value ranges for each hyperparameter.
2. Then, evaluate the performance of the adjusted model by the cross-validation method.
3. Finally, select the parameter with the best performance as the best combination.

The optimal parameter combinations of the model determined according to the above
method are shown in Table 3.

Table 3. Optimal hyperparameters of the model.

Model Hyperparameter Meaning Value

RF
n_estimators Number of weak classifiers 200

oob_score Whether to use out-of-bag samples TRUE

LR
penalty Penalty term L2
solver Optimization algorithm liblinear

C The inverse of the regularized intensity 1

GDP-EBM
min_samples_leaf Minimum number of samples at leaf nodes 2

learning_rate Learning rate 0.03

DP-NB var_smoothing Smoothing parameter 0.000000001

DP-DT max_depth Maximum number of layers generated 9

DP-RF
max_depth Maximum number of layers generated 10

n_estimators Number of weak classifiers 100

6.2. Experimental Design

In this paper, six groups of experiments are designed, from which the average of
the results of one hundred experiments is taken as the final results for the model with
added differential privacy due to the randomness of the added noise, and the six groups of
experiments are as follows:

1. In order to reduce the influence of data magnitude on the model impact, the data are
subjected to Z-score standardization in this paper.
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2. In order to eliminate weakly correlated variables and redundant features from breast
cancer data, this paper includes hybrid feature selection on the data.

3. In order to test the optimization effect of the BGD model on the LR algorithm, the loss
function graph of the BGD-LR is analyzed in this paper.

4. In order to testify to the impact of hybrid feature selection algorithms on model
performance, we set up a control group experiment and analyze the results from the
four main evaluation indicators: accuracy, precision, recall, and F1-score.

5. The experimental results of this paper are compared with those of other papers. The
breast cancer classification model proposed in this paper is compared with existing
research results without considering privacy protection.

6. The prediction results of the BDP-LR model in this paper are compared with other
machine learning models based on differential privacy when privacy protection
is considered.

6.3. Analysis of Experimental Results
6.3.1. Results of Data Standardization

In order to reduce the influence of data magnitude on the model impact, Z-score stan-
dardization is applied to the WDBC dataset, and some of the results are shown in Table 4.

Table 4. Results of data standardization.

Compactness_Mean Concavity_Mean Concave
Points_Mean Radius_se Perimeter_se

3.283515 2.652874 2.532475 2.489734 2.833031
−0.48707 −0.02385 0.548144 0.499255 0.263327
1.052926 1.363478 2.037231 1.228676 0.850928
3.402909 1.915897 1.451707 0.326373 0.286593
0.53934 1.371011 1.428493 1.270543 1.273189

1.244335 0.866302 0.824656 −0.25507 −0.3213
0.088295 0.300072 0.646935 0.149883 0.15541

6.3.2. Results of Hybrid Feature Selection

First, the Pearson correlation coefficients between each feature and the target variables
are calculated, and values with absolute values of the correlation coefficients greater than
or equal to 0.3 are filtered out. Then, the feature importance of the candidate subset is
computed using the out-of-bag estimation random forest algorithm. In the meantime,
the individual features are ranked according to their importance from highest to lowest,
and the final results are shown in Table 5, where ρX1X2 represents the Pearson correlation
coefficient and number is the sorted sequence number.

According to Table 5, there are 23 candidate features with Pearson correlation coeffi-
cient greater than 0.3. The 23 features are screened using the iterative RF-OOB algorithm,
and the results of each feature combination are shown in Table 6. The model classification
score of the optimal feature combination is 0.96837, and there are 17 features in the feature
combination. Therefore, these 17 features are used as the final input values of the breast
cancer classification model.
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Table 5. The features are ranked in order of feature importance.

Number Feature ρX1X2 Feature_Importance

0 radius_worst 0.77645 0.15864
1 perimeter_worst 0.78291 0.15337
2 concave_points_worst 0.79357 0.11731
3 area_worst 0.73383 0.11674
4 concave points_mean 0.77661 0.06276
5 area_mean 0.70898 0.05056
6 perimeter_mean 0.74264 0.04596
7 concavity_mean 0.69636 0.04008
8 area_se 0.54824 0.04007
9 radius_mean 0.73003 0.03839

10 concavity_worst 0.65961 0.03644
11 smoothness_worst 0.42147 0.01698
12 texture_worst 0.45690 0.01536
13 texture_mean 0.41519 0.01475
14 perimeter_se 0.55614 0.01408
15 radius_se 0.56713 0.01369
16 symmetry_worst 0.41629 0.01368
17 compactness_worst 0.59100 0.01291
18 compactness_mean 0.59653 0.00994
19 concave points_se 0.40804 0.00884
20 fractal_dimension_worst 0.32387 0.00851
21 smoothness_mean 0.35856 0.00646
22 symmetry_mean 0.33050 0.00447

Table 6. The oob-score for different combinations of features.

Feature Combination oob-Score

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21 0.96837
13, 15, 20, 16, 7 0.96662

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19 0.96662
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18, 5, 12, 22, 4, 8 0.96639

13, 15 0.96488
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9 0.96488

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18, 5, 12, 22 0.96488
13 0.96487

13, 15, 20, 16 0.96487
13, 15, 20, 16, 7, 3, 2, 6 0.96487

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18, 5, 12, 22, 4 0.96487
13, 15, 20 0.96313

13, 15, 20, 16, 7, 3, 2, 6, 11 0.96310
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18 0.96310

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17 0.96136
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1 0.96136

13, 15, 20, 16, 7, 3 0.95960
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14 0.95960

13, 15, 20, 16, 7, 3, 2, 6, 11, 0 0.95959
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10 0.95959

13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18, 5, 12 0.95959
13, 15, 20, 16, 7, 3, 2, 6, 11, 0, 19, 17, 14, 1, 10, 9, 21, 18, 5 0.95785

13, 15, 20, 16, 7, 3, 2 0.95609

6.3.3. Loss Function of the BGD-LR Model

The loss function for training the LR model using the BGD algorithm is shown in Figure 4.
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From Figure 4, it can be seen that the loss function values of the training and test sets
decrease with each iteration of gradient descent, and with the increase in the number of
iterations, the loss function values gradually converge to reach their respective minimum
values. Since the loss function values of the train and test sets are low and the difference
is between 0.023 and 0.0402, the difference is small. Therefore, from the point of view of
the loss function, it can be seen that the difference between the prediction results of the
BGD-LR model and the real labels is relatively minor, in other words, the fitting effect
is great.

6.3.4. Impact of Hybrid Feature Selection Algorithms on Model Performance

In order to verify the effectiveness of hybrid feature selection, we set up a control group
and an experimental group for comparison. The data in the control group are only screened
by the Pearson correlation coefficient in feature selection, followed by prediction. The data
in the experimental group are screened by the hybrid feature selection method proposed in
this paper, and then the prediction of breast cancer is carried out. The comparison results
are shown in Table 7.

Table 7. Comparison of results before and after hybrid feature selection.

Model Privacy Accuracy Precision Recall F1-Score

Control group

BGD-LR 0 0.9649 1.0000 0.9545 0.9767

BDP-LR

0.2 0.8936 0.9840 0.8765 0.9256

0.4 0.9249 0.9903 0.9117 0.9490

0.6 0.9454 0.9928 0.9361 0.9634

0.8 0.9563 0.9949 0.9483 0.9709

1 0.9566 0.9954 0.9482 0.9711

Experimental
group

BGD-LR 0 0.9912 1.0000 0.9886 0.9943

BDP-LR

0.2 0.9170 0.9849 0.9065 0.9431

0.4 0.9561 0.9933 0.9495 0.9706

0.6 0.9629 0.9959 0.9559 0.9753

0.8 0.9721 0.9975 0.9664 0.9816

1 0.9777 0.9981 0.9731 0.9853

According to Table 7 and Figure 5, it can be seen that, compared with the control
group, the accuracy, recall, and Fl-score of the experimental group of the BGD-LR model
improved by 2.63%, 3.41%, and 1.76%, respectively. For the BDP-LR model, when the
privacy budget ε added in each iteration is 0.2, the four main evaluation indicators of the
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model increase by 2.34%, 0.09%, 3.00%, and 1.75%, respectively. When the privacy budget ε
is 0.4, the four main evaluation indicators of the model improve by 3.12%, 0.3%, 3.78%, and
2.16%, respectively. When the privacy budget ε is 0.6, the indicators of the model increase
by 1.75%, 0.31%, 1.98%, and 1.19%, respectively. When the privacy budget ε is 0.8, the
four main evaluation indicators improve by 1.58%, 0.26%, 1.81%, and 1.07%, respectively.
And when the privacy budget ε is 1, the four main evaluation indicators increase by 2.11%,
0.27%, 2.49%, and 1.42%, respectively. Obviously, after the breast cancer data are processed
by hybrid feature selection, the model classification results of the experimental group are
all better than those of the control group, therefore, hybrid feature selection can effectively
improve the classification performance of the model.
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After comparative analysis, it can be seen that the optimal accuracy, precision, recall,
and F1-score of the BGD-LR model are 0.9912, 1, 0.9886, and 0.9943, respectively. When
the added privacy budget ε is 1, the BDP-LR model has the best combined classification
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results, and its accuracy, precision, recall, and Fl-score are 0.9777, 0.9981, 0.9731, and
0.9853, respectively.

6.3.5. Comparative Analysis with Previous Studies

In order to further verify the effectiveness of the breast cancer classification model
developed in this paper, the classification results of this paper are compared with those
of other studies. Firstly, the breast cancer classification model proposed in this paper is
compared with the results of existing studies without considering privacy protection, and
the results are shown in Table 8.

Table 8. Comparison of the results of the BGD-LR model with other breast cancer classification models.

Literature Method of Feature Selection Method of Classification Time Accuracy

[26] ABC XGBoost 2019 0.928
[21] GA SVM 2020 0.988
[20] GeFeS KNN 2020 0.985
[18] χ2 test + (ET) + (RFE) + RF ET 2020 0.952
[19] WCHI2 KNN 2020 0.986
[24] ALO BPNN 2020 0.9842
[28] GWO KNN 2020 0.948
[23] BBA OGCNN 2020 0.935
[22] Krill herd (KH) + SVM BPNN 2021 0.978
[27] Forward selection LR 2022 0.982
[30] ESO RF 2023 0.9896
[12] - SV-naïve Bayes-3-MetaClassifiers 2020 0.981
[13] - IRFRE 2020 0.951
[11] - (SVM + LR + NB + DT) + ANN 2022 0.9883
[9] - LR 2020 0.981
[8] - RF 2022 0.9624

[10] - EL 2022 0.9814
this paper Pearson + RF-OOB BGD + LR 0.9912

GA = genetic algorithm, GeFeS = generalized wrapper-based feature selection, ET = extra tree, RFE = recursive
feature elimination, BPNN = back propagation neural network, IRFRE = improved random forest-based rule
extraction, BBA = binary bat algorithm, OGCNN = one-pass generalized classifier neural network, EL = ensemble
learning technique, WCHI2 = with chi-square feature selection technique, ALO = ant lion optimization algorithm.

As can be seen from Table 8, through comparative analysis, the prediction method for
breast cancer classification proposed in this paper outperforms previous research results
with an accuracy of 0.9912. Therefore, the hybrid feature selection method and the BGD-LR
model used in this paper provide the best classification results.

6.3.6. Comparative Analysis of BDP-LR Model Results with Other Models

The prediction effect of the BDP-LR model in this paper is compared with the DP-
NB [35], DP-RF [36], DP-DT [36], and GDP-EBM [37] models under the consideration of
privacy preservation. The variation of the four main evaluation indicators with ε for each
model is shown in Figure 6.

The results show that when increasing the value of privacy budget ε from 0.001 to 2
with WDBC data, the four main evaluation indicators of each model gradually increase
and fluctuate up and down a certain value range with the increase in privacy budget
ε. According to Formula (2), the smaller ε is, the better the privacy protection effect is.
So, the critical value of ε needs to be selected to provide balance between the model’s
classification performance and privacy protection effect. According to the trend of the
four main evaluation indicators in Figure 6, 0.8 is chosen as the privacy budget value of
the BDP-LR model when the model has better classification performance and a stronger
privacy protection effect.

At a privacy budget ε of 0.8, the experimental results of the BDP-LR model are com-
pared with other machine learning models based on differential privacy. The performance
of each model is evaluated using the ROC curve with AUC, as shown in Figure 7. In
addition, the average values of the four main evaluation indicators obtained by running
100 experiments are shown in Table 9.
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As shown in Figure 7, the AUC value of the BDP-LR model is 0.9974. The AUC values
for the GDP-EBM and DP-NB models are 0.9694 and 0.9663, respectively. The AUC value
of the DP-DT model is 0.7535, and the AUC value of the DP-RF model is 0.8684. The
higher the prediction accuracy, the closer the AUC value is to 1. Therefore, based on the
ROC curves, it can be seen that the BDP-LR model has the highest classification accuracy,
followed by the GDP-EBM and DP-NB models.

The experimental results show that the four main evaluation indicators of the BDP-LR
model are better than those of the other models when the privacy budget is 0.8, and the four
main evaluation indicators are 0.9721, 0.9975, 0.9664, and 0.9816, respectively. Therefore, the
logistic regression optimization model based on hybrid feature selection and differential
privacy proposed in this paper not only provides high privacy to protect the patients’
privacy but also provides superior classification results.

7. Conclusions

Early diagnosis of breast cancer is significant. Applying machine learning to the
prediction of breast cancer cells can assist doctors in reducing the rate of leakage and
misdiagnosis. However, at this stage, there are still problems of low correct prediction
rate and patient privacy leakage. In order to improve the correct rate of breast cancer
diagnosis, this paper proposes a breast cancer classification method with higher classifi-
cation performance, which firstly combines the Pearson correlation test and the RF-OOB
algorithm to construct a new hybrid feature selection strategy and secondly optimizes the
LR model by using the BGD algorithm. In order to make the model have the effect of
protecting patients’ privacy, Gaussian noise is added to the BGD algorithm to build the
BDP-LR model. In the paper, the accuracy, precision, recall, and F1-score are selected as
the four main evaluation indicators of the models. The hyperparameters of each model are
determined using the grid search method and the cross-validation method. Experiments
on the WDBC dataset show that the hybrid feature selection method proposed in this paper
can improve the prediction performance of each model. Comparative analysis shows that
the BGD-LR and BDP-LR models constructed in this paper are better. However, the hybrid
feature selection method used in this paper has a long computation time, and this paper is
limited to combining differential privacy techniques with machine learning models. In the
future, further research will be carried out on local differential privacy techniques, deep
learning, and so on. At the same time, these studies will be applied to the classification
and prediction of breast cancer, contributing to the early diagnosis of breast cancer and the
protection of patients’ privacy.
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