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Abstract: The human digestive system is susceptible to various viruses and bacteria, which can lead
to the development of lesions, disorders, and even cancer. According to statistics, colorectal cancer
has been a leading cause of death in Taiwan for years. To reduce its mortality rate, clinicians must
detect and remove polyps during gastrointestinal (GI) tract examinations. Recently, colonoscopies
have been conducted to examine patients’ colons. Even so, polyps sometimes remain undetected. To
help medical professionals better identify abnormalities, advanced deep learning algorithms that can
accurately detect colorectal polyps from images should be developed. Prompted by this proposition,
the present study combined U-Net and YOLOv4 to create a two-stage network algorithm called UY-
Net. This new algorithm was tested using colonoscopy images from the Kvasir-SEG dataset. Results
showed that UY-Net was significantly accurate in detecting polyps. It also outperformed YOLOv4,
YOLOv3-spp, Faster R-CNN, and RetinaNet by achieving higher spatial accuracy and overall accuracy
of object detection. As the empirical evidence suggests, two-stage network algorithms like UY-Net
will be a reliable and promising aid to image detection in healthcare.

Keywords: colorectal polyp; colonoscopy; deep learning; image detection; object detection algorithm;
two-stage network algorithm

1. Introduction

Cancer is a life-threatening disease that seriously affects human health, accounting
for many deaths in Taiwan annually. For instance, approximately 28.0% of deaths in 2021
were cancer-related (51,656 deaths) [1]. Among all types of cancer, colorectal cancer has
the second-highest incidence rate and the third-highest mortality rate [2]. Because its early
symptoms are often not obvious, regular screening tests are needed to detect them. As
statistics show, the earlier colorectal cancer is accurately diagnosed and properly treated,
the higher the survival rate. In some cases, the survival rates may even exceed 90% [2].
Since colorectal cancer develops from polyps in the colon, early detection and removal
of such polyps at the treatable stage can halt their progression and reduce associated
death rates.

As mentioned above, the most effective approach to prevent colorectal cancer is for
individuals to undergo regular screening. Among the tools used to achieve this purpose is
colonoscopy. It is a highly patient-centered and minimally invasive procedure that enables
medical professionals to observe, diagnose, and treat colon abnormalities. Nevertheless, the
rates of misdiagnosis for colorectal cancer after a colonoscopy can range from 5% to 27% [3].
At least four reasons can explain these high error rates: (1) inexperienced endoscopists who
are not familiar with the appearances of polyps may encounter difficulty in detecting them;
(2) polyps smaller than one centimeter can be very smooth, flat and easily overlooked [4];
(3) polyps may exist beyond the field of view of endoscopes and (4) abnormalities may
remain unnoticed due to rapid movements of endoscopes during examinations [5].

However, with the assistance of advanced technologies, clinical data such as colonoscopy
images can be stored appropriately for instant and subsequent analysis. This advantage
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benefits patients, medical practitioners, and the healthcare system. Doctors can save as
many images as they need for an immediate diagnosis. These digitalized images can also be
scrutinized for further justification and assessment. Moreover, such images can be applied
to train computer-aided diagnosis (CADx) algorithms (e.g., image detection algorithms)
to assist medical professionals in making correct diagnoses [6]. For instance, busy and
exhausted proctologists, particularly those working in understaffed medical institutions,
can employ CADx tools to help detect abnormalities from images and reduce the miss rate
for colorectal polyps.

Only a limited number of image detection algorithms have been specifically designed
to analyze medical images. One such algorithm is U-Net, which can extract information
from a large number of images. Another algorithm that excels over others in detection
accuracy is YOLOv4. However, no study has yet integrated the two algorithms to test
whether the resulting model could accurately detect colorectal polyps from colonoscopy
images. To bridge this research gap, the present study first combined U-Net and YOLOv4
to create a two-stage, deep-learning network algorithm called UY-Net. Its accuracy was
then evaluated. Based on the evidence collected through this study, two contributions
are noted:

1. UY-Net displays higher spatial accuracy and overall accuracy of polyp detection than
other single detection algorithms such as YOLO3-spp, YOLOv4, RetinaNet, and Faster
R-CNN. The development and utilization of the two-stage deep learning network,
instead of the one-stage or two-stage detection algorithms, can significantly reduce
misdiagnosis for colorectal polyps. Patients only receive the most suitable treatment
when colorectal polyps are accurately detected. UY-Net can support clinicians in
accomplishing this goal.

2. For the two-stage network algorithm, the sequence of performing image segmentation
followed by image detection assumes a critical role in enhancing its accuracy. Precise
segmentation of objects in advance can improve the performance of subsequent
detection algorithms. This accounts for why the detection accuracy of UY-Net reaches
a significantly high level.

2. Literature Review

Most of the early algorithms used for detecting colorectal polyps involved analyzing
edge shapes [7], textures [8], colors [9], or a combination of these factors [10]. For example,
Hwang et al. [7], who had observed that most polyps have an elliptical shape, proposed
a new model to detect colorectal polyps. They applied the marker-controlled watershed
algorithm, along with other techniques, to conduct region segmentation, ellipse fitting, and
ellipse filtering by computing curve direction, curvature, edge distance, and intensity. In
contrast, Ameling et al. [8] chose texture features, like grayscale intensity and local binary
patterns, to distinguish colorectal polyps. Tajbakhsh, Gurudu, and Liang [10] employed
shapes and texture features to recognize polyps. They differentiated regions with polyps
from polyp-free areas by analyzing texture features such as local binary patterns (LBP: a
texture descriptor used to represent the local texture of a computer image or vision by
comparing the intensity of a pixel to those of its neighboring pixels), distribution of intensity
values, and frequency content of a local neighborhood. They also examined shape features
by considering boundary curves to enhance the reliability of localization. However, the
applicability of these traditional models is limited and restricted because they can only
recognize typical polyps but not those with non-typical shapes or textures.

With the recent development of deep learning techniques, algorithms based on Convo-
lutional Neural Networks (CNNs) have gained considerable attention. Take Bernal et al.’s
study [11] as an example. They used WM-DOVA energy maps to localize the positions of
colorectal polyps without considering the sizes or types of such polyps. Pozdeev, Obukhova,
and Motyko [12] advanced a fully automated system to segment colorectal polyps using a
Fully Convolutional Network (FCN) for pixel-level prediction. Likewise, Bernal et al. [13]
adopted CNNs and achieved state-of-the-art (SOTA) performance in a competition to detect
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colorectal polyps in colonoscopy videos automatically. Shin et al. [14] also employed a
region-based CNN for the automated detection of colorectal polyps in colonoscopy. They
chose Inception ResNet for feature learning and incorporated post-processing techniques
to reach more reliable detection. Another study by Shin et al. [15] used Generative Adver-
sarial Networks (GAN) [16] to generate images of colorectal polyps. In their study, image
generation was unsatisfactory, but image detection was still significantly improved.

Moreover, a study by Wang et al. [17] showed that using the SegNet architecture [18]
to detect colorectal polyps achieved a detection speed of 25 frames per second. It also
demonstrated high sensitivity, specificity, and memory efficiency. Poorneshwaran et al. [19]
selected GAN to segment colorectal polyps from images. In their model, GAN comprised
the generator and discriminator. The generator was responsible for generating polyp
segmentation masks, while the discriminator distinguished real masks from fake ones.
Since the generator and discriminator were incorporated, high segmentation precision
was observed on a challenging dataset. Similarly, Guo and Matuszewski adopted the
Fully Convolutional Neural Network (FCNN) architecture, reporting that their proposed
algorithm effectively segmented polyps from images [20,21]. Along with these researchers,
Kang and Gwak [22] trained and fine-tuned two Mask R-CNN models where ResNet50
and ResNet100 were used as backbone architectures, respectively. By combining the two
models using an ensemble method, their resulting framework significantly outperformed
other SOTA methods in segmenting colorectal polyps. Lee et al. [23] utilized the YOLOv2
algorithm [24] for the localization and detection of colorectal polyps. They contended that
YOLOv2 yielded high sensitivity and near real-time computational performance, with great
potential to compensate for the limited visual field of an endoscopist.

As prior literature suggests, successfully recognizing colorectal polyps from images
primarily relies on fulfilling three major functions: segmentation, localization, and detec-
tion. In deep learning, effective image segmentation involves the precise classification of
individual pixels and the delineation of boundaries. To achieve the localization function,
the coordinates of the bounding box must be calculated correctly. Finally, the detection
function can be satisfied by accurately predicting the classification of target objects. There-
fore, a deep learning algorithm that aims to attain the three functions, concurrently or
separately, must consist of four components: Input, Backbone, Neck, and Head. These
components are explained as follows:

• Input can be an inputted image, a patch, or a processed and sampled image;
• Backbone is responsible for pre-training, and a network based on CNNs such as

ResNet, CSPDarkNet, AlexNet, DarkNet, or VGGNet is commonly adopted;
• Neck is to extract features at different levels, and another network such as Feature

Pyramid Network (FPN), PANet, or Bi-FPN can be chosen to attain this objective;
• Head is responsible for predicting bounding boxes, and a one-stage network (e.g., Re-

gion Proposal Network: RPN, YOLO, or RetinaNet [25]) or a two-stage network
(e.g., Faster R-CNN [26] or R-FCN) can be selected for this purpose.

Of the current deep learning algorithms, YOLOv4 [27] has gained great popularity
among researchers. It is an updated version of YOLOv3 [28]. The older algorithm calls
for revision because CNNs can encounter the problem of gradient vanishing when the
number of network layers is increased. This leads to information loss at each network layer
during the training phase and deteriorates the efficiency of layer learning. For instance,
if the information is propagated by copying, as in the case of ResNet, it will demand
more computational resources to process. To solve this problem, researchers develop or
choose innovative networks as the backbones of YOLOv4. For instance, DarkNet or other
DarkNet-based networks such as Cross Stage Partial Network (CSPNet) [29] are commonly
selected. With these new backbone architectures, information is split and combined in the
propagation process through the use of additional transition layers. This allows certain
information to be directly merged with the convolution results, thereby reducing computa-
tional complexity, facilitating the network’s learning capacity, and increasing the utilization
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of layer parameters. Accordingly, YOLOv4 achieves higher accuracy but demands lower
hardware requirements than the older algorithm while maintaining the same speed.

Recently, significant progress has been witnessed in image segmentation following
the introduction of CNN-based architectures. By repeatedly downsampling the inputted
images, low-level features (also known as feature maps) can be effectively extracted. Subse-
quently, upsampling can be performed to enable pixel-level prediction and image segmen-
tation. To illustrate, after Long, Shelhamer, and Darrell [30] had advanced FCN (the first
end-to-end trainable image segmentation algorithm), Ronneberger, Fischer, and Brox [31]
modified it to create U-Net. U-Net is a deep-learning algorithm specifically designed for
medical image segmentation [32]. Its architecture consists of a U-shaped network that en-
ables the capture of both contextual and positional information. It also includes a pathway
between an encoder and a decoder (i.e., the skip connection). The encoder comprises multi-
ple convolutional and pooling layers and is responsible for feature extraction. The decoder
in U-Net uses deconvolution to restore localization information. With the established skip
connections, high-level features learned in the encoder can be transmitted to the decoder.
This helps reduce information loss during the upsampling process. Figure 1 illustrates the
architecture of U-Net.
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It is worth noting that medical images typically exhibit relatively simple semantic
features, fixed structures, and less irrelevant information. In other words, most features
extracted from these images convey plain yet sufficient information, making the skip
connections in the U-shaped structure relatively effective. Since U-Net utilizes a U-shaped
structure, its application for segmenting medical images holds great promise.

As discussed earlier, both U-Net and YOLOv4 are highly suitable for detecting ab-
normalities from medical images, including those obtained by endoscopes. U-Net is also
known for its relatively simple structure, while YOLOv4 is renowned for its widespread us-
age. However, no study has ever combined the two algorithms to establish a new two-stage
network model, let alone explore its accuracy in detecting polyps from colonoscopy images.
To gather evidence to answer the unknown question, the present study combined U-Net
and YOLOv4 to create UY-Net. The accuracy of UY-Net was estimated and compared to the
performance of the four individual object detection algorithms (i.e., YOLO3-spp, YOLOv4,
RetinaNet, and Faster R-CNN). To be specific, two hypotheses formulated for testing were
presented as follows:
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1. Performing U-Net first would result in precise segmentation of abnormalities from the
colonoscopy images; after abnormalities were precisely segmented, the subsequent
application of YOLOv4 would result in accurate detection of colorectal polyps;

2. UY-Net would achieve higher accuracy of polyp detection than the four detectors.

3. Method
3.1. UY-Net

UY-Net consists of two main components: (1) image segmentation and (2) object
localization and detection. In the present study, image segmentation was first performed,
followed by object detection. In the first stage, U-Net (with the Adam optimizer and
ResNet as the backbone) was applied to segment images. Figure 2 presents sample images
of segmentation.
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Figure 2. Sample images of segmentation.

In the second stage, YOLOv4 (DarkNet as the backbone) was utilized to detect colorec-
tal polyps. Its application resulted in the bounding box localization information of polyps,
including xcenter, ycenter, yolow, and yoloh. Figure 3 illustrates the framework of UY-Net for
image segmentation, localization, and detection.

As shown, xcenter represents the proportion of the center x-coordinate of the bounding
box relative to the length of the entire image’s x-axis. Similarly, ycenter represents the
proportion of the center y-coordinate of the bounding box relative to the length of the
entire image’s y-axis. On the other hand, yolow represents the proportion of the width
of the bounding box relative to the width of the entire image, while yoloh represents the
proportion of the height of the bounding box relative to the height of the entire image.

3.2. Dataset

This study analyzed the images obtained from the Kvasir-SEG dataset [33]. This
dataset comprises 1000 images of colorectal polyps, along with data of corresponding
Mask and Bounding Box Ground Truth. The resolution of these images varies, ranging
from 332 × 487 to 1920 × 1072 pixels. The ground truth has been manually annotated by
medical experts using the Labelbox software. The dataset contains a total of 1071 colorectal
polyps, including 700 large polyps (larger than 160 × 160 pixels), 323 medium-sized polyps
(between 160 × 160 and 64 × 64 pixels), and 48 small polyps (smaller than 64 × 64 pixels).
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3.3. Intersection over Union (IoU) and Average Precision (AP)

The two types of metrics commonly used to assess object detection and localization
are IoU and AP. In the present study, IoU was calculated by dividing the intersection of
the ground truth and predicted regions by the union of the ground truth and predicted
regions. In other words, it measured the overlap ratio between the two regions. The
Equation (1) is shown below: (GT stands for the ground truth region, and PD stands for the
predicted region).

IoU =
GT∩ PD
GT∪ PD

(1)

Figure 4 depicts the intersection and union between the ground truth and predicted
regions. The red area represents the ground truth, while the yellow area represents the
predicted region.
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AP was calculated as the area under the precision-recall curve. The predicted targets
were evaluated based on IoU calculations. If the value of IoU was greater than a predefined
threshold, then the target would be considered a true positive (TP). If the value of IoU
was below the threshold, the target would be considered a false positive (FP). Both TP and
FP represented the states in the confusion matrix (see Figure 5). In the present study, the
threshold for AP was set within a specified range. For example, the IoU threshold was
set from 0.25 to 0.75 with an interval of 0.05, denoted as (AP@[0.25:0.05:0.75]). If the IoU
threshold was 0.50, it would be referred to as AP50.
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Precision was the proportion of predicted targets that were true targets (also known as
the Positive Predictive Value: PPV). Recall was the proportion of targets that were correctly
predicted as targets (also known as Sensitivity). Precision (2) and Recall (3) equations are
shown below.

Precision =
TP

TP + FP
(2)

Recall =
TP

TP + FN
(3)

The calculation of AP involved selecting the maximum precision corresponding to
each change in Recall. Then, these recalls were considered as calculation points. The
Equation of AP (4) is shown below:

AP =
k=n−1

∑
k=0

[Recalls(k)− Recalls(k + 1)]× Precisions(k) (4)

where Recalls (n) = 0, Precisions(n) = 1, n = Number of Thresholds

3.4. Settings and Procedures

In the present study, Faster R-CNN, RetinaNet, YOLOv3-spp, YOLOv4, and UY-Net
were tested. By incorporating these algorithms into the experiment, it became possible to
assess whether the proposed network could outperform one-stage or two-stage detectors
in accurately detecting polyps.



Appl. Sci. 2023, 13, 10800 8 of 12

The training was conducted using Google Colab with an NVIDIA Tesla P100 GPU and
the PyTorch machine learning library. The dataset was divided into 880 training images and
120 validation images. Since the image sizes were not fixed, they were uniformly resized to
512 × 512 for training. Because UY-Net is a combination of the two different algorithms, its
training was conducted separately. U-Net was trained using both the images of colorectal
polyps and their corresponding masks. YOLOv4, on the other hand, was trained using the
colorectal polyps and the ground truth bounding boxes.

The configuration of hyper-parameters is crucial for the training of deep learning
models. For U-Net, the backbone was ResNet, the learning rate was set to 1 × 10−5, the
optimizer was Adam, the batch size was 8, the loss function was cross-entropy, and the
decay rate was 1 × 10−4. The respective hyper-parameter settings for all algorithms are
presented in Table 1.

Table 1. Hyper-parameters of YOLOv4 and UY-Net.

Algorithm Learning Rate Optimizer Batch Size Anchors Loss Threshold

Faster R-CNN 2.5 × 10−4 Adam 8 256 L1smooth log loss 0.4
RetinaNet 1 × 10−5 SGD 8 15 L1smooth focal loss 0.3

YOLOv3-spp 1 × 10−3 SGD 16 8 MSE, CE 0.25
YOLOv4 1 × 10−3 SGD 16 8 CioU, CE 0.25
UY-Net 1 × 10−3 SGD 32 18 CioU, CE 0.25

4. Results and Discussion

The values of AP and IoU were computed and used as indexes to estimate the accuracy
of object detection. Table 2 presents these results.

Table 2. AP and IoU for different algorithms.

Algorithm Backbone AP IoU

Faster R-CNN ResNet 0.7866 0.5621
RetinaNet ResNet 0.8697 0.7313

YOLOv3-spp ResNet 0.8105 0.8248
YOLOv4 DarkNet 0.8513 0.8205
UY-Net DarkNet, U-Net 0.9915 0.9395

The table shows that the AP and IoU values for YOLOv4 and YOLOv3-spp are all
above 0.81, indicating that the two YOLO models detect polyps to an adequate level. This
finding aligns with what previous research has reported [34]. For instance, Doniyorjon
et al. [35] tested five YOLO algorithms (i.e., YOLOv3, YOLOv3-tiny, YOLOv4, YOLOv4-
tiny, and YOLOv4-tiny with the Inception-ResNet-A block), and all models were found
to achieve at least 89% training accuracy and 85% testing accuracy. In other words, they
effectively detected polyps by drawing bounding boxes around these detected objects.
As Doniyorjon et al.’s study and the present study suggest, YOLO algorithms can aid
medical practitioners in detecting abnormalities from endoscopic images. However, UY-
Net achieves a significantly higher accuracy level (AP = 0.9915; IoU = 0.9395), exceeding
that of YOLOv3-spp or YOLOv4 by at least 10%. Based on this finding, the first hypothesis
of this study can be substantially corroborated:

1. Applying U-Net followed by YOLOv4 results in considerably higher accuracy in
detecting colorectal polyps from colonoscopy images.

The proposed two-stage network displays the highest levels of spatial accuracy and
overall accuracy of object detection. This suggests that image detection should not be car-
ried out alone but coupled with image segmentation. For example, de Moura Lima et al. [36]
proposed a two-stage design that used transformers to detect polyps in colonoscopy images.
In the segmentation stage, they first used the Dense Prediction Transformer (DPT) model
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to extract depth maps of salient objects. Then, they used the Visual Saliency Transformer
(VST) architecture to extract depth geometric information of regions associated with these
suspicious objects. In the second stage, DEtection TRansformer (DETR) architecture was
applied to detect the polyps. de Moura Lima et al.’s model achieved an AP of 0.92 in
the Kvasir-SEG dataset. Like UY-Net, it can also accurately detect colorectal polyps in
medical images. Therefore, a design with two stages, first for image segmentation and/or
extraction, followed by image detection, may be a promising framework for facilitating
polyp detection accuracy.

Moreover, UY-Net surpasses RetinaNet by at least 12% and Faster R-CNN by 20%
in accuracy. RetinaNet is a detector that combines region proposal generation and object
classification into one stage. By simplifying its architecture and incorporating FPN to create
a feature pyramid, RetinaNet may perform well on detection accuracy and speed [25].
Faster R-CNN [37], on the other hand, is a two-stage detection algorithm. In its first stage,
RPN is used to output a set of regional proposals. In the second stage, these regional
proposals are used for object detection and classification. Regardless of their one-stage or
two-stage detection design, both RetinaNet and Faster R-CNN do not achieve the same
level of accuracy in polyp detection as UY-Net. This finding lends strong support to the
second hypothesis:

2. The two-stage network UY-Net would be more accurate in detecting colorectal polyps
than the one-stage or two-stage detection algorithms.

It also highlights the need to experiment with a segmentation architecture and a
detection algorithm to design an innovative two-stage network. To illustrate, in the present
study, we hypothesized that the more precisely a region with abnormalities could be
segmented in advance, the more likely it was for these abnormalities to be accurately
detected thereafter. Therefore, U-Net was trained first to precisely extract and obtain regions
of interest (ROI) from images. Then, YOLOv4 underwent training, but it was not applied
to analyze the well-segmented regions until its accuracy was elevated. The exceptional
performance of UY-Net in polyp detection validates our hypothesis, implying that the
procedural sequence should factor into the improved accuracy of object detection. The two
algorithms of a two-stage model should be trained independently, with the segmentation
algorithm being trained first, followed by the training of the detection algorithm and its
application.

To the best of our knowledge, this study may be the first attempt to create a two-stage
network by combining U-Net and YOLOv4. As ELKarazle et al. ([34], p. 10) argued, “the
YOLO architecture has been the preferred go-to solution for real-time detection tasks as
it can process 45 frames per second”. This feature makes it popular among researchers
and one of the most used methods for polyp detection. Yang and Yu [38] also emphasized
that U-Net is distinguished from other segmentation algorithms by its relatively simple
structure with few parameters. This simplicity helps to avoid overfitting and improves
the accuracy of image segmentation. U-Net is, therefore, one of the most preferred image
segmentation methods in the medical domain, especially for small datasets such as the
Kvasir-SEG dataset. Furthermore, the common adoption of YOLOv4, U-Net, and their
revised versions has led to the availability of several open-source libraries for executing
these algorithms [39]. Encouraged by the promising results of the present study and the
availability of the source codes, some researchers in the medical field may choose to develop
and evaluate their own two-stage network models using the recently improved versions of
YOLO and U-Net. Other researchers may be motivated to incorporate different CNN-based
segmentation and detection architectures to develop novel two-stage frameworks. Either
way, these researchers can generate new models to improve the accuracy of detecting
colorectal polyps from endoscopic images. In this respect, the present study significantly
contributes to the medical research community by creating a new and promising pathway
and protocol for advancing medical image research.
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5. Conclusions

The novelty of the present study lies in the incorporation of a segmentation algorithm
and a detection algorithm into a two-stage network. While some researchers continue to
focus on improving single algorithms, the present study explores a novel and promising
alternative by developing and evaluating the two-stage model for polyp detection. The
present study also takes an innovative approach to model training. The segmentation
algorithm is trained first, followed by the detection algorithm. The sequence of training
may assume a significant role in the high accuracy of the proposed model. Taken together,
the colorectal polyps in colonoscopy images can be computationally quantifiable and
identifiable through object localization and detection after being precisely segmented. UY-
Net, therefore, can outperform any of the single detection algorithms in the accuracy of
colorectal polyp detection. This sheds light on the potential of a two-stage network model
for improving the detection and diagnosis of abnormalities in medical images.

It is important to note that the present study deliberately lowers resolutions of certain
original input images (e.g., from 1920 × 1072 to 512 × 512) to reduce memory complexity
and time required to run the algorithms. Additionally, all the algorithms are executed on a
GPU instead of a CPU. This would improve runtime. Moreover, U-Net is trained with the
Adam optimizer in order to reduce memory usage and increase inference speed. However,
UY-Net contains YOLOv4, a deep-learning algorithm known to be memory-intensive.
It also needs to run U-Net. Accordingly, UY-Net excels at polyp detection but incurs
greater memory complexity and longer runtime when contrasted with a single algorithm.
Researchers, therefore, should continue to delve deeper into the use of deep learning in
bioengineering to develop fast, reliable, and efficient algorithms for image detection.

Although the findings are promising, caution should be exercised before the results
can be appropriately generalized. First, colorectal polyps may develop into cancer, so
failing to detect them will pose a life-threatening danger to patients. Researchers still
need to improve the UY-Net algorithm to reduce the miss rates. To this end, we plan to
replicate the present study and incorporate the relatively recent U-Net3+ and YOLOv7
into a two-stage model. We will then compare the accuracy of this new model with that
of UY-Net to assess if it can better detect colorectal polyps than the older model. Second,
calculating the bounding box based on the edges seems intuitively simple. Nevertheless,
the edges obtained by U-Net tend to be less smooth. These minor irregularities in the edges
may or may not impact the precision of image segmentation. More effort is needed to
clarify this concern.
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