
Citation: Ueng, S.-K.; Chang, C.-C.

Concealed Conduit Routing in

Building Slabs. Appl. Sci. 2023, 13,

10847. https://doi.org/

10.3390/app131910847

Academic Editor: Asterios Bakolas

Received: 31 August 2023

Revised: 25 September 2023

Accepted: 26 September 2023

Published: 29 September 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Concealed Conduit Routing in Building Slabs
Shyh-Kuang Ueng * and Chun-Chieh Chang

Department of Computer Science and Engineering, National Taiwan Ocean University, No. 2, Peining Road,
Keelung 202301, Taiwan; 10957037@mail.ntou.edu.tw
* Correspondence: skueng@mail.ntou.edu.tw

Featured Application: The proposed piping algorithm and data structures can benefit the con-
struction and manufacturing industries.

Abstract: Concealed pipes are vital facilities for transporting water, air, electricity, and natural gas
in modern buildings. These pipes are constructed inside slabs of buildings, and thus conventional
piping algorithms, dedicated to arranging exposed pipes in open spaces or on object surfaces,
are not suitable for laying out their paths. In this article, an innovative method is presented for
designing the concealed conduits of modern buildings. In the proposed piping procedure, the target
building is regarded as a framework composed of beams, columns, and slabs. These substructures
are encoded in a weighted graph, which serves as the top-level representation of the workspace.
Then, these substructures are split into voxels and constitute the bottom-level representation of the
workspace. Each concealed pipe is constructed by using a two-stage piping scheme to comply with
the representation of the workspace. In the first stage, the slabs containing the terminals of the pipe
are located in the top-level representation, and the shortest path connecting these slabs is calculated
using Dijkstra’s algorithm. In the second stage, a feasible space is generated by collecting selective
voxels in these slabs first. Then, the pipe path is routed inside the feasible space by a shortest-path-
finding computation. Next, the pipe surface is generated and represented by using triangle meshes.
Finally, the bottom-level representation is modified and the routing process is repeated to lay out
the remaining concealed pipes. The experimental results show that the proposed piping procedure
efficiently arranges concealed pipes inside buildings of various topologies and internal layouts. As
it benefits from the two-level representation and the two-stage routing method, the piping process
consumes reasonable computational costs. The paths of the resultant pipes are optimized, and their
positions meet the geometrical constraints and safety regulations.

Keywords: concealed conduit design; pipe routing; building construction; computer-aided design

1. Introduction

Pipe systems are widely used in vehicles, engines, factories, and refineries to transport
fuels, water, air, and raw materials. They are essential components in the manufacturing,
chemical, and transportation industries. Many efficient algorithms have been proposed for
routing them since the 1970s [1,2]. Since pipes are utilized in various applications [3–6], the
paradigms, domain representation methods, and limitations of these published algorithms
are different. However, they share a common aspect: The target pipes are exposed conduits.
That is, they aim to lay out pipes in open spaces or on the surfaces of objects, and the
resultant pipes are visible and accessible to the users.

In modern buildings, there are hoses, conduits, and wire harnesses inside the walls,
floors, and ceilings. These pipes are invisible and inaccessible to us but we rely on them to
deliver ventilation air, tap water, electrical power, digital signals, and natural gas such that
decent living and working conditions can be maintained. In construction industries, these
pipes are included in the Mechanical Electronic and Plumbing (MEP) systems and must be
carefully planned prior to the construction of the buildings [6–8].

Appl. Sci. 2023, 13, 10847. https://doi.org/10.3390/app131910847 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131910847
https://doi.org/10.3390/app131910847
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131910847
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131910847?type=check_update&version=1

Appl. Sci. 2023, 13, 10847 2 of 18

Figure 1 reveals the major difference between exposed conduit systems (left part) and
concealed conduit systems (right part). The exposed conduits are routed in open spaces or
on the surfaces of machinery. They may penetrate the walls to connect terminals residing
in different rooms, but their paths do not reside below the surfaces of the walls and the
machinery. On the other hand, the concealed pipes are built inside the walls, floors, and
ceilings of the building. They wander in the walls, floors, and ceilings to connect terminals.
Their paths are laid out within the slabs of the building.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 2 of 19

these pipes are included in the Mechanical Electronic and Plumbing (MEP) systems and

must be carefully planned prior to the construction of the buildings [6–8].

Figure 1 reveals the major difference between exposed conduit systems (left part) and

concealed conduit systems (right part). The exposed conduits are routed in open spaces

or on the surfaces of machinery. They may penetrate the walls to connect terminals resid-

ing in different rooms, but their paths do not reside below the surfaces of the walls and

the machinery. On the other hand, the concealed pipes are built inside the walls, floors,

and ceilings of the building. They wander in the walls, floors, and ceilings to connect ter-

minals. Their paths are laid out within the slabs of the building.

Figure 1. (a) Exposed conduits and (b) concealed conduits. The exposed conduits are built in open

spaces or on the surfaces of objects while the concealed conduits are constructed inside the walls,

ceilings, and floors of a building. The working domain of concealed conduits is more complicated,

and the routing process would be challenging.

Solely based on the functionality of transportation, concealed conduits can be re-

placed with exposed ones. However, concealed conduits possess at least the following

advantages over exposed pipes: (1) They do not occupy valuable living space; (2) they do

not hinder the operations of machinery and the movement of humans; (3) they do not

need supporting racks; (4) they are resilient to intentional or unintentional collisions; (5)

and for the sake of aesthetics, they do not produce unpleasant visual effects. Therefore,

concealed conduits are widely installed in modern buildings, and routing them is an im-

portant issue in building design and construction.

The complexity and costs of a pipe-routing process are significantly influenced by

the characteristics of the workspace [1]. Exposed pipes are laid in open spaces or on the

surfaces of machinery [2–5]. Their workspaces are extensible and more flexible. On the

other hand, concealed conduits are buried inside the walls, floors, ceilings, columns, and

beams of buildings. Their workspaces are confined within these substructures only and

are impossible to extend. Furthermore, staircases, windows, and doors in the buildings

significantly reduce the usable portions of the workspace and increase the geometric com-

plexity of the workspaces. To make matters worse, concealed pipes should be buried be-

low the surfaces of these substructures at a certain distance such that they will not be

damaged when the surfaces are hammered, decorated, or tiled. Hence, the workspace of

a concealed conduit system is much thinner and more limited than expected. The exam-

ples shown in Figure 1 reveal the characteristics of the working domains of concealed

pipes.

In addition to overcoming the above challenges, the transportation functionalities,

construction costs, and safety regulations must be also taken into consideration when

routing concealed conduits. These requirements make laying out concealed conduits more

difficult. Conventional piping algorithms are not suitable for arranging concealed con-

duits. Specialized routing methods and new workspace representations have to be devel-

oped to fulfill the piping task.

Figure 1. (a) Exposed conduits and (b) concealed conduits. The exposed conduits are built in open
spaces or on the surfaces of objects while the concealed conduits are constructed inside the walls,
ceilings, and floors of a building. The working domain of concealed conduits is more complicated,
and the routing process would be challenging.

Solely based on the functionality of transportation, concealed conduits can be replaced
with exposed ones. However, concealed conduits possess at least the following advantages
over exposed pipes: (1) They do not occupy valuable living space; (2) they do not hinder
the operations of machinery and the movement of humans; (3) they do not need supporting
racks; (4) they are resilient to intentional or unintentional collisions; (5) and for the sake of
aesthetics, they do not produce unpleasant visual effects. Therefore, concealed conduits are
widely installed in modern buildings, and routing them is an important issue in building
design and construction.

The complexity and costs of a pipe-routing process are significantly influenced by
the characteristics of the workspace [1]. Exposed pipes are laid in open spaces or on the
surfaces of machinery [2–5]. Their workspaces are extensible and more flexible. On the
other hand, concealed conduits are buried inside the walls, floors, ceilings, columns, and
beams of buildings. Their workspaces are confined within these substructures only and
are impossible to extend. Furthermore, staircases, windows, and doors in the buildings
significantly reduce the usable portions of the workspace and increase the geometric
complexity of the workspaces. To make matters worse, concealed pipes should be buried
below the surfaces of these substructures at a certain distance such that they will not be
damaged when the surfaces are hammered, decorated, or tiled. Hence, the workspace of a
concealed conduit system is much thinner and more limited than expected. The examples
shown in Figure 1 reveal the characteristics of the working domains of concealed pipes.

In addition to overcoming the above challenges, the transportation functionalities,
construction costs, and safety regulations must be also taken into consideration when
routing concealed conduits. These requirements make laying out concealed conduits more
difficult. Conventional piping algorithms are not suitable for arranging concealed conduits.
Specialized routing methods and new workspace representations have to be developed to
fulfill the piping task.

1.1. Methodology Overview

In this article, we propose a piping algorithm for designing concealed conduits. To con-
quer the aforementioned challenges, we first invent an innovative representation method

Appl. Sci. 2023, 13, 10847 3 of 18

to encode the workspace. Then we design a two-stage routing algorithm to compute
the pipe paths. As a result, the proposed method achieves the following goals: (1) The
resultant pipes are confined inside the walls, floors, and ceilings and are at a safe distance
from the open space; (2) the length and number of bends of the resultant pipes are opti-
mized; (3) the functionalities and safety regulations of the resultant pipes are satisfied; and
(4) the computations are efficiently carried out without performing exhaustive search in
the workspace.

The proposed piping method is composed of two major tasks, the preprocessing
and the pipe routing computations, as shown in Figure 2. The preprocessing builds a
hierarchical representation of the workspace. The walls, ceiling, and floors of the target
building are regarded as slabs. By representing the slabs as vertices and creating edges
between them, the working environment (the target building) is converted into a weighted
graph, which serves as the top level of the hierarchical representation. Then, each individual
slab is decomposed into voxels and transformed into a 3D image. In the following step, the
voxels of the slabs are labeled according to their positions and usability. For example, the
voxels, occupied by windows, doors, and other openings, are marked as obstacle voxels,
and the voxels within a predefined distance from the slab surfaces are labeled as infeasible
voxels. As the labeling ends, the bottom level of the hierarchical representation is generated,
as shown in Figure 2a.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 3 of 19

1.1. Methodology Overview

In this article, we propose a piping algorithm for designing concealed conduits. To

conquer the aforementioned challenges, we first invent an innovative representation

method to encode the workspace. Then we design a two-stage routing algorithm to com-

pute the pipe paths. As a result, the proposed method achieves the following goals: (1)

The resultant pipes are confined inside the walls, floors, and ceilings and are at a safe

distance from the open space; (2) the length and number of bends of the resultant pipes

are optimized; (3) the functionalities and safety regulations of the resultant pipes are sat-

isfied; and (4) the computations are efficiently carried out without performing exhaustive

search in the workspace.

The proposed piping method is composed of two major tasks, the preprocessing and

the pipe routing computations, as shown in Figure 2. The preprocessing builds a hierar-

chical representation of the workspace. The walls, ceiling, and floors of the target building

are regarded as slabs. By representing the slabs as vertices and creating edges between

them, the working environment (the target building) is converted into a weighted graph,

which serves as the top level of the hierarchical representation. Then, each individual slab

is decomposed into voxels and transformed into a 3D image. In the following step, the

voxels of the slabs are labeled according to their positions and usability. For example, the

voxels, occupied by windows, doors, and other openings, are marked as obstacle voxels,

and the voxels within a predefined distance from the slab surfaces are labeled as infeasible

voxels. As the labeling ends, the bottom level of the hierarchical representation is gener-

ated, as shown in Figure 2a.

Figure 2. Overview of the proposed concealed pipe routing method.

The routing computation is comprised of two stages, as shown in Figure 2b. In the

first stage, the proposed algorithm calculates an abstract path in the weighted graph for

each pipe. Then, the pipes are routed one by one in the following computations. Before

arranging a pipe, the proposed piping method creates a feasible space by using the ab-

stract path of this pipe and the relevant slabs stored in the bottom-level representation.

Next, the pipe path is calculated in the feasible space. Then, the geometric model of the

pipe is generated. In the final step, the workspace is updated to reflect the existence of the

pipe and the routing computations are repeated for the next pipe.

Figure 2. Overview of the proposed concealed pipe routing method.

The routing computation is comprised of two stages, as shown in Figure 2b. In the
first stage, the proposed algorithm calculates an abstract path in the weighted graph for
each pipe. Then, the pipes are routed one by one in the following computations. Before
arranging a pipe, the proposed piping method creates a feasible space by using the abstract
path of this pipe and the relevant slabs stored in the bottom-level representation. Next,
the pipe path is calculated in the feasible space. Then, the geometric model of the pipe is
generated. In the final step, the workspace is updated to reflect the existence of the pipe
and the routing computations are repeated for the next pipe.

1.2. Related Work

Most piping methods treat pipe design as shortest-path-finding problems, as revealed
by the investigation of [1]. In Refs. [3,6], the researchers proposed building a graph structure
in the workspace. Then pipes are routed in this graph by using shortest-path-searching
methods like Dijkstra’s algorithm [9] and the A* method. These two research studies

Appl. Sci. 2023, 13, 10847 4 of 18

adopted a widely used piping strategy, which encodes the workspace as a graph and finds
the pipe paths by using A* or Dijkstra’s algorithm.

However, minimizing the costs of multiple pipes simultaneously is an NP-hard prob-
lem [1]. Using deterministic algorithms to optimize pipe routing is impractical. In Ref. [10],
Qu et al. proposed routing pipes using ant colony optimization (ACO) methods. They
employed swarms of artificial ants to search pipe paths and utilized pheromones to guide
the ants such that good pipe paths were gradually constructed. In Ref. [11], a genetic algo-
rithm was proposed by Ito to schedule and calculate pipes. In the method, the positions
and directions of pipes are encoded in chromosomes and are revised by using cross-over,
mutation, and duplication operators in the hope of generating optimal pipe routes. The
domain knowledge, expertise, and experiences of engineers are valuable resources for
solving piping problems. In Ref. [12], scientists designed expert systems, incorporating
computational power and memory capacities of computers and human wisdom, to design
optimal pipe routes. The above research utilizes artificial intelligence techniques to find
optimal answers in the solution space such that an exhaustive search can be avoided.

Besides being economical, a pipe must also meet safety regulations such that poten-
tial hazards are avoided, and the operational and maintenance costs can be minimized.
Ueng et al. proposed creating a distance field in the workspace to eliminate infeasible space
before routing pipes [4]. Consequently, the resultant pipes possess minimum lengths and
meet all safety regulations. In the work of [13], an ACO path-finding procedure is proposed
to route a water distribution network. The researchers proposed utilizing geometrical
information systems to adapt critical path analysis such that unwanted paths are removed
and optimal water pipes are searched. In the studies of [10,11], the researchers rely on
a fitness function or a cost function to direct the path-finding process. Hence, the costs
of violating safety regulations are high and the resultant pipes will be routed away from
hazards. This strategy prevents violations of safety regulations by penalizing the improper
paths. However, it cannot eliminate the possibility of violating constraints, and the safe
gaps between the pipes and the hazards are not guaranteed.

Pipe-routing algorithms have been widely used for designing MEP systems of build-
ings. In [6], Choi et al. devised a modified A* method for creating MEP paths. In their
method, the workspace is imported from a Building Information Modeling (BIM) [7] sys-
tem first. Then, nodes, sub-MEP, and main-MEP systems are created in the building’s
space. In the following computation, a modified A* algorithm is employed to find the
shortest paths for the MEP systems. Zhang et al. proposed a routing algorithm in [14]
for the design of drainage systems of panelized residential buildings. The researchers
employed a modified A* algorithm to arrange the paths of the drainage systems. Since
the drainage and vent pipes must be cut at the edges of panels, they also developed an
integer programming approach for optimizing the pipe-cutting process. They embedded
their piping program into commercial software and demonstrated a successful experiment
in a two-story townhouse of five identical units. As modularization and prefabrication
are widely used for building construction, Samasinghe et al. proposed an optimization
method for modular prefabrication of MEB systems [15]. Their approach combines fuzzy
logic, a dependency structure matrix, and hierarchical clustering techniques. Their goal
is to minimize installation costs by identifying the optimum number of modules and the
best division points of the MEB systems. The goals of these studies are similar to ours.
The resultant pipes are part of MEB systems. However, the workspace of our method is
different from theirs. Our routing environment is confined within the slabs of buildings.

Electrical system design is vital for buildings and communities. Farooq et al. presented
studies on the supportive roles of BIM tools in the design, analysis, planning, and construc-
tion of electrical trade systems [16]. They found that the combination of BIM and GIS is
useful for smart electrical grid construction. Managing the construction of MEB systems is
as important as the design work. In the paper of [17], Teo et al. expanded the functionalities
of BIM systems and incorporated construction management techniques for building MEB
systems. Their 3D MEB design system offers a visualization function such that the target

Appl. Sci. 2023, 13, 10847 5 of 18

MEB system can be visually explored before the installation. Their system reduces manual
work and resolves conflicts by developing better workflows and management strategies. As
a result, the productivity, accuracy, and efficiency of the construction works are increased
while the building expense is reduced. These investigations verify that the BIM systems of
buildings have become the de facto digital representation methods in modern construction
industries, and the geometrical information of the resultant pipes of the MEB systems
should be integrated into BIM systems. Piping is no longer a standalone process.

The representation of the workspace influences the efficiency of the routing process.
In most published studies, the workspaces and the pipes were represented by a single layer
of structures. In the work of [18], Yue et al. proposed a hierarchical layout of the subsea
production control system in the 3D undersea working environment. In their approach,
they used a multi-layer star-tree structure to create the layout of the control network. To find
the optimal layout, they combined the construction costs of the control center, distribution
units, control modules, and umbilical and fly lines to form an objective function. Then,
they applied constraints upon the design such that the connection, terrain, position, and
pipe route requirements could be met. Finally, they utilized A* and swarm-intelligence
algorithms to solve the system and generate the resultant production control system. Their
problem domain representation method is hierarchical. However, the representation is an
abstract structure, a multi-layer star tree in the 3D undersea space. On the other hand, our
workspace encoding scheme uses both an abstract graph and a set of solid 3D images (the
slabs). Hence, ours is more suitable for the routing process inside the walls, floors, and
ceilings of buildings.

The piping algorithms invented by these related research studies focused on routing
exposed conduits in open spaces or on object surfaces. Their workspace representation
schemes are not suitable for encoding the slabs of a building. Their path-finding methods
cannot explore the internals of the slabs. Employing their piping algorithms to arrange
concealed conduits would result in unqualified pipes or violations of safety regulations and
geometric constraints. Thus, in this research, we propose a new piping algorithm dedicated
to laying out concealed conduits in modern buildings.

The rest of this article is organized as follows: Our workspace-encoding strategy and
path-finding scheme are described in Section 2. Test results are presented and explained in
Section 3. The discussion, potential applications, and future work are contained in Section 4.
This article ends with the conclusion part in Section 5.

2. Materials and Methods

The proposed piping method is composed of two computations, the preprocessing and
the pipe routing computation. The first computation generates a digital representation of
the workspace while the second one constructs the pipes. The digital representation encodes
essential information about the workspace and ensures the efficiency of the path-finding
computation. In turn, its contents will be altered by the routing process at the run-time.
In this section, we first present the workspace encoding scheme. Then, we describe the
path-finding procedure. The interdependence between these two computations will also
be explained.

2.1. Workspace Representation

The framework of a modern building is composed of columns, beams, walls, floors,
and ceilings as shown in Figure 3. The walls, ceilings, and floors are slabs, which are
parallel to the xy-, yz-, and zx-planes of the world coordinate system. These slabs constitute
the workspace for pipe-routing in this research. On the other hand, the columns and beams
are regarded as connectors, and their spaces are shared by the slabs. In the proposed
piping method, we design a hierarchical representation to encode the building such that
the workspace can be fully explored and easily updated at the run time. Consequently,
high-quality pipe paths can be produced, and exhaustive searching can be prevented. The
encoding schemes are presented in the following sections.

Appl. Sci. 2023, 13, 10847 6 of 18

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 19

The framework of a modern building is composed of columns, beams, walls, floors,

and ceilings as shown in Figure 3. The walls, ceilings, and floors are slabs, which are par-

allel to the xy-, yz-, and zx-planes of the world coordinate system. These slabs constitute

the workspace for pipe-routing in this research. On the other hand, the columns and

beams are regarded as connectors, and their spaces are shared by the slabs. In the pro-

posed piping method, we design a hierarchical representation to encode the building such

that the workspace can be fully explored and easily updated at the run time. Conse-

quently, high-quality pipe paths can be produced, and exhaustive searching can be pre-

vented. The encoding schemes are presented in the following sections.

Figure 3. The framework of a building is composed of beams, columns, and slabs. The red, green

and blue lines represent the x-, y- and z-axes.

2.1.1. The Top-level Representation

The top level of the hierarchical representation is a weighted graph G, which contains

a vertex set V and an edge set E, i.e., G = {V, E}. We regard the slabs of the target building

as vertices and keep them in V. Then, we check the adjacency relations among the slabs to

create E. If two slabs are adjacent by sharing a beam or a column, then an edge is produced

between them. This edge is associated with a positive weight.

Assuming that these two slabs are S1 and S2, their centers are C1 and C2, and the edge

connecting S1 and S2 is E12, then the weight of E12 is decided as follows:

1. If S1 and S2 are coplanar, the edge weight is equal to the Manhattan distance between

C1 and C2.

2. Otherwise, the edge weight is set to 1.5 times the Manhattan distance between C1 and

C2.

The weight of E12 approximates the shortest path length from C1 to C2. If S1 and S2 are

coplanar, a path from C1 to C2 contains no bend, and thus the weight of E12 is set to the

Manhattan distance between C1 and C2. On the other hand, if S1 and S2 are not coplanar,

this path must make a 90-degree turn inside a beam or a column. In this situation, we

increase the edge weight to reflect the existence of the bend and give a penalty to the path.

By adopting these two principles, we hope that the pipe path will make fewer turns and

contain longer straight segments.

Figure 4 shows an example of the top-level representation. The left part contains a

simple building composed of six slabs. The top-level representation of the simple building

is shown in the right part. There are six vertices in the graph. Each vertex has four neigh-

bors since each slab is adjacent to four slabs in this case. All the slabs are not coplanar.

Thus, the edge weights are equal to 1.5 times the Manhattan distances of the centers of the

neighboring slabs.

Figure 3. The framework of a building is composed of beams, columns, and slabs. The red, green
and blue lines represent the x-, y- and z-axes.

2.1.1. The Top-level Representation

The top level of the hierarchical representation is a weighted graph G, which contains
a vertex set V and an edge set E, i.e., G = {V, E}. We regard the slabs of the target building
as vertices and keep them in V. Then, we check the adjacency relations among the slabs to
create E. If two slabs are adjacent by sharing a beam or a column, then an edge is produced
between them. This edge is associated with a positive weight.

Assuming that these two slabs are S1 and S2, their centers are C1 and C2, and the edge
connecting S1 and S2 is E12, then the weight of E12 is decided as follows:

1. If S1 and S2 are coplanar, the edge weight is equal to the Manhattan distance between
C1 and C2.

2. Otherwise, the edge weight is set to 1.5 times the Manhattan distance between C1
and C2.

The weight of E12 approximates the shortest path length from C1 to C2. If S1 and S2
are coplanar, a path from C1 to C2 contains no bend, and thus the weight of E12 is set to the
Manhattan distance between C1 and C2. On the other hand, if S1 and S2 are not coplanar,
this path must make a 90-degree turn inside a beam or a column. In this situation, we
increase the edge weight to reflect the existence of the bend and give a penalty to the path.
By adopting these two principles, we hope that the pipe path will make fewer turns and
contain longer straight segments.

Figure 4 shows an example of the top-level representation. The left part contains a
simple building composed of six slabs. The top-level representation of the simple building
is shown in the right part. There are six vertices in the graph. Each vertex has four
neighbors since each slab is adjacent to four slabs in this case. All the slabs are not coplanar.
Thus, the edge weights are equal to 1.5 times the Manhattan distances of the centers of the
neighboring slabs.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19

Figure 4. Top-level representation of a simple building: (a) The building, (b) the weighted graph of

the top-level representation (the weights are not revealed).

• Usage and Limitation of the Top-level Representation

Graph G stores the connectivity and distances between the slabs. It also implicitly

records the sizes of the slabs and their co-planarity relations. If we compute the shortest

path from slab Sa to slab Sb, this path will prefer small and coplanar slabs because of the

algorithm employed for computing the path and the way in which we define the edge

weights. Graph G can be used to produce the target pipes only if all the terminals reside

at the slab centers. However, the terminals of the target pipes could be at any position in

the slabs. The pipes created upon G cannot correctly connect them. Secondly, there are

openings in the slabs, the target pipes must bypass these obstacles. Thirdly, the target

pipes must be buried inside the slabs at a safe distance from the surfaces of the slabs.

Graph G does not record depth information about the workspace. These issues imply that

the information stored in G is not enough for routing the target pipes, and hence a finer

representation of the workspace is needed for the pipe-routing process.

2.1.2. The Bottom-level Representation

After creating the weight graph G, we split each slab into voxels by using a regular

grid. The width of a voxel is decided by the users (for example 1 cm). Henceforth, the slabs

become 3D images of voxels and the bottom-level representation of the building is initial-

ized. An example is shown in Figure 5. In this example, each slab is decomposed into a

layer of voxels. However, in a practical case, a slab will consist of more than ten layers of

voxels.

Figure 5. The bottom level of the hierarchical representation is composed of 3D images (slabs).

• Obstacle Voxel Labelling

Since there are windows, doors, and stair openings inside the slabs, the 3D images

have to be further processed to exclude these obstacles. First, the voxels that belong to

doors, windows, and other openings are identified and given a special tag. Hereafter, they

are inferred as obstacle voxels.

• Distance Field Computation

Figure 4. Top-level representation of a simple building: (a) The building, (b) the weighted graph of
the top-level representation (the weights are not revealed).

• Usage and limitation of the top-level representation

Graph G stores the connectivity and distances between the slabs. It also implicitly
records the sizes of the slabs and their co-planarity relations. If we compute the shortest

Appl. Sci. 2023, 13, 10847 7 of 18

path from slab Sa to slab Sb, this path will prefer small and coplanar slabs because of the
algorithm employed for computing the path and the way in which we define the edge
weights. Graph G can be used to produce the target pipes only if all the terminals reside
at the slab centers. However, the terminals of the target pipes could be at any position in
the slabs. The pipes created upon G cannot correctly connect them. Secondly, there are
openings in the slabs, the target pipes must bypass these obstacles. Thirdly, the target
pipes must be buried inside the slabs at a safe distance from the surfaces of the slabs.
Graph G does not record depth information about the workspace. These issues imply that
the information stored in G is not enough for routing the target pipes, and hence a finer
representation of the workspace is needed for the pipe-routing process.

2.1.2. The Bottom-level Representation

After creating the weight graph G, we split each slab into voxels by using a regular
grid. The width of a voxel is decided by the users (for example 1 cm). Henceforth, the
slabs become 3D images of voxels and the bottom-level representation of the building is
initialized. An example is shown in Figure 5. In this example, each slab is decomposed into
a layer of voxels. However, in a practical case, a slab will consist of more than ten layers
of voxels.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 19

Figure 4. Top-level representation of a simple building: (a) The building, (b) the weighted graph of

the top-level representation (the weights are not revealed).

• Usage and Limitation of the Top-level Representation

Graph G stores the connectivity and distances between the slabs. It also implicitly

records the sizes of the slabs and their co-planarity relations. If we compute the shortest

path from slab Sa to slab Sb, this path will prefer small and coplanar slabs because of the

algorithm employed for computing the path and the way in which we define the edge

weights. Graph G can be used to produce the target pipes only if all the terminals reside

at the slab centers. However, the terminals of the target pipes could be at any position in

the slabs. The pipes created upon G cannot correctly connect them. Secondly, there are

openings in the slabs, the target pipes must bypass these obstacles. Thirdly, the target

pipes must be buried inside the slabs at a safe distance from the surfaces of the slabs.

Graph G does not record depth information about the workspace. These issues imply that

the information stored in G is not enough for routing the target pipes, and hence a finer

representation of the workspace is needed for the pipe-routing process.

2.1.2. The Bottom-level Representation

After creating the weight graph G, we split each slab into voxels by using a regular

grid. The width of a voxel is decided by the users (for example 1 cm). Henceforth, the slabs

become 3D images of voxels and the bottom-level representation of the building is initial-

ized. An example is shown in Figure 5. In this example, each slab is decomposed into a

layer of voxels. However, in a practical case, a slab will consist of more than ten layers of

voxels.

Figure 5. The bottom level of the hierarchical representation is composed of 3D images (slabs).

• Obstacle Voxel Labelling

Since there are windows, doors, and stair openings inside the slabs, the 3D images

have to be further processed to exclude these obstacles. First, the voxels that belong to

doors, windows, and other openings are identified and given a special tag. Hereafter, they

are inferred as obstacle voxels.

• Distance Field Computation

Figure 5. The bottom level of the hierarchical representation is composed of 3D images (slabs).

• Obstacle voxel labelling

Since there are windows, doors, and stair openings inside the slabs, the 3D images
have to be further processed to exclude these obstacles. First, the voxels that belong to
doors, windows, and other openings are identified and given a special tag. Hereafter, they
are inferred as obstacle voxels.

• Distance field computation

Then, a distance field is established in the slab by using the Chamfer transforma-
tion [13]. The algorithm can be briefly formulated as follows:

1. The voxels adjacent to the open space or the obstacle voxels are identified. They form
the boundaries of the distance field.

2. The distance values in these boundary voxels are set to one-half of the voxel size.
3. Then, the distance field is expanded by using a multiple-sweeping method until the

distances of all the ordinary voxels have been computed.

The detailed steps of the sweeping can be found in [19]. We omit it here. Chamfer
transform is known to be fast but inaccurate. In this study, the accuracy of the distance
field is not crucial. If higher precision computations are required in the distance field
computation, the methods presented in [20,21] are good choices.

• Peeling the slabs

After the distance field is calculated, the minimum distance from each non-obstacle
voxel toward the workspace boundaries is known. Since the surface of each pipe must
be at a safe distance from the open space, the voxels within this safe distance are found

Appl. Sci. 2023, 13, 10847 8 of 18

and excluded from the workspace. They are regarded as infeasible voxels. They are not
used for routing pipe paths, but they can be used to construct pipe surfaces. Next, the
remaining voxels are labeled as ordinary voxels and will participate in the following routing
procedure.

• Bottom-level representation updating

When a pipe is created, the voxels penetrated by it cannot be used to fabricate other
pipes and must be deleted from the workspace. Consequently, the distance field and voxel
labels in each slab have to be modified at the run-time. The bottom-level representation
is hence a dynamic data structure. Its contents (voxel labels and distance values) are
constantly changed as the pipe-routing process progresses.

2.2. Pipe Path Routing

Once the hierarchical representation of the workspace has been created, the pipe-
routing process starts. The routing process is composed of two stages. The abstract paths of
the pipes are computed in the first stage while the real pipe paths are routed in the second
stage. The key modules of our pipe routing method are presented in this section, including
abstract path generation, pipe scheduling, feasible space creation, and pipe creation steps.

2.2.1. Abstract Pipe Path Calculation

The flowchart of the routing process is shown in Figure 6. The routing process starts
with the abstract path routing. The abstract path of a pipe is the shortest path generated in
the top-level representation. It is utilized to schedule the pipe and generate a subspace to
lay out the real pipe path. The abstract path is produced by the following steps:

1. Locate the vertices (slabs) in G, which contain the terminals of this pipe.
2. Generate a shortest path to connect these vertices using Dijkstra’s algorithm.
3. Duplicate the slabs containing multiple terminals: If a slab contains k terminals

(k ≥ 2), the associated vertex is duplicated k times in the shortest path.
4. Compute the path length by accumulating the weights of the edges in the shortest

path. If the two ends of an edge are the same, its weight is set to one-half of the width
of the slab. (We assume that the slab width > the slab height.)

5. Output the length and vertices of this shortest path.
Appl. Sci. 2023, 13, x FOR PEER REVIEW 9 of 19

Figure 6. Flowchart of the pipe-routing computation. The key computations include abstract path

routing, pipe scheduling, pipe path finding, pipe surface modeling, and workspace updating steps.

The abstract path is a sketch of the real pipe path. Its vertices represent the slabs that

would be penetrated by the pipe, and its length is an estimation of the length of the real

pipe path. These two pieces of data are used in the incoming computations.

2.2.2. Pipe Ordering

As revealed in Figure 6, the pipe scheduling is performed after all the abstract paths

have been constructed. Since a building usually possesses multiple concealed pipes, pipe

scheduling is a necessary job in the piping process. A good schedule can greatly reduce

the total costs of the resultant pipes. Unfortunately, the optimum scheduling problem of

pipe routing is NP-hard [1], and pursuing the best schedule is impractical.

In this research, we order the pipes based on a principle published in [1]. This prin-

ciple suggests that long and thick pipes should be routed first such that the utilization of

the workspace will be higher, and the quality of the final pipe paths could be better. This

principle was widely used in pipe-routing computations and has been proven to be effec-

tive [3–6]. Nonetheless, it is logically contradictory for this research since the actual

lengths of the concealed pipes are unknown before the routing process starts. To resolve

this conflict, we sort the pipes according to the lengths of their abstract paths.

The rationale supporting this approach can be explained as follows: The abstract path

of an individual concealed pipe records the slabs that will be penetrated by this pipe. The

sizes of these slabs and the coplanar relationships between these slabs are reflected by the

length of the abstract path. If the length of the abstract path is longer, then at least one of

the following conditions is true: (1) This pipe would go through larger slabs (longer

length), (2) the pipe would penetrate slabs that are not coplanar (more bends), (3) the pipe

would cover more slabs (longer length), or (4) the pipe has many terminals (more

branches). Based on these conditions, this pipe is likely to be long and consume more

spatial resources. It should be given a higher priority over other pipes.

Other widely used criteria for ordering pipes include the sizes, functionalities, and

safety regulations of the pipes. Large pipes need more space. It is difficult to arrange op-

timal paths for them if the available spaces are occupied by other pipes. Therefore, they

should be built earlier. However, concealed conduits are buried inside slabs. Their sizes

will be approximately equal. Pipe lengths are more important for scheduling pipes. It is

not uncommon that some pipes are more essential than others, for example, the electricity

harnesses in a manufacturing factory. In other cases, safety regulations are the key factors,

for example, natural gas pipes in a building with cooking or heating facilities. Under these

conditions, the functionalities and safety regulations of pipes play key roles in the pipe

scheduling process. However, in this research, we regard merely the pipe lengths as the

only factor when scheduling the pipes. Other considerations would be included in the

future work.

Figure 6. Flowchart of the pipe-routing computation. The key computations include abstract path
routing, pipe scheduling, pipe path finding, pipe surface modeling, and workspace updating steps.

The abstract path is a sketch of the real pipe path. Its vertices represent the slabs that
would be penetrated by the pipe, and its length is an estimation of the length of the real
pipe path. These two pieces of data are used in the incoming computations.

2.2.2. Pipe Ordering

As revealed in Figure 6, the pipe scheduling is performed after all the abstract paths
have been constructed. Since a building usually possesses multiple concealed pipes, pipe
scheduling is a necessary job in the piping process. A good schedule can greatly reduce the

Appl. Sci. 2023, 13, 10847 9 of 18

total costs of the resultant pipes. Unfortunately, the optimum scheduling problem of pipe
routing is NP-hard [1], and pursuing the best schedule is impractical.

In this research, we order the pipes based on a principle published in [1]. This
principle suggests that long and thick pipes should be routed first such that the utilization
of the workspace will be higher, and the quality of the final pipe paths could be better.
This principle was widely used in pipe-routing computations and has been proven to be
effective [3–6]. Nonetheless, it is logically contradictory for this research since the actual
lengths of the concealed pipes are unknown before the routing process starts. To resolve
this conflict, we sort the pipes according to the lengths of their abstract paths.

The rationale supporting this approach can be explained as follows: The abstract path
of an individual concealed pipe records the slabs that will be penetrated by this pipe. The
sizes of these slabs and the coplanar relationships between these slabs are reflected by the
length of the abstract path. If the length of the abstract path is longer, then at least one of
the following conditions is true: (1) This pipe would go through larger slabs (longer length),
(2) the pipe would penetrate slabs that are not coplanar (more bends), (3) the pipe would
cover more slabs (longer length), or (4) the pipe has many terminals (more branches). Based
on these conditions, this pipe is likely to be long and consume more spatial resources. It
should be given a higher priority over other pipes.

Other widely used criteria for ordering pipes include the sizes, functionalities, and
safety regulations of the pipes. Large pipes need more space. It is difficult to arrange
optimal paths for them if the available spaces are occupied by other pipes. Therefore, they
should be built earlier. However, concealed conduits are buried inside slabs. Their sizes
will be approximately equal. Pipe lengths are more important for scheduling pipes. It is
not uncommon that some pipes are more essential than others, for example, the electricity
harnesses in a manufacturing factory. In other cases, safety regulations are the key factors,
for example, natural gas pipes in a building with cooking or heating facilities. Under these
conditions, the functionalities and safety regulations of pipes play key roles in the pipe
scheduling process. However, in this research, we regard merely the pipe lengths as the
only factor when scheduling the pipes. Other considerations would be included in the
future work.

2.2.3. Feasible Space Creation

Once the pipes are sorted, they are to be routed one by one. When routing a pipe, we
can optimize its costs by searching the entire workspace and selecting optimal positions
to shorten its path and reduce the number of bends. However, this will lead to slow
computation and unsafe pipe paths since we have to perform an exhaustive search in the
workspace but do not take safety regulations into consideration.

To overcome these problems, the proposed piping method establishes a feasible space
in the bottom-level representation before routing the target pipe. The feasible space covers
only a small portion of the workspace, and all its voxels are collision-free and satisfy the
safety regulations. Hence, the computation of path-finding is sped up, and the resultant
pipe path meets the geometrical constraints and safety regulations.

• Usage of the distance field

To establish the feasible space, we retrieve the slabs of the abstract path of this pipe first.
These slabs form a subspace, which can be used to lay out the pipe, but we refine it further
to reduce the scope of this subspace and enforce the safety regulations and geometrical
constraints upon its voxels. To do so, we scan the ordinary voxels of these slabs and collect
those ordinary voxels whose distance values d(i, j, k) meet the following conditions:

r + ε1 ≤ d(i, j, k) ≤ 2r + ε1 + ε2,
0 < ε1, 0 < ε2.

(1)

where (i, j, k) denotes the indices of an individual voxel, r is the radius of the pipe, and ε1
and ε2 are user-defined parameters for controlling the spaces between the voxel and the

Appl. Sci. 2023, 13, 10847 10 of 18

obstacles. The collected voxels form a smaller subspace. This smaller subspace is separate
from all obstacles and potential hazards by at least r + ε1 units. Its width is limited by
r + ε2 units. As a result, the subspace is safe for tracing the pipe path while its scope is
much smaller than the entire workspace.

• Connectivity of the terminals and safety gaps

This subspace cannot be used to route the pipe unless it contains all the terminals of
the pipe. To ensure that, we examine all the terminals of the pipe and identify those who
are outside this subspace. If an outsider is found, a breath-first search (bfs) [9] is triggered
from that terminal and is expanded outwards until reaching the current subspace. Then,
those ordinary voxels visited by the bfs are included in this subspace. Once all the terminals
are inside this subspace, the creation of the feasible space is completed.

The routing of the pipe will be carried out within the feasible space. Since the voxels
of the feasible space are screened by Equation (1), the searching space is greatly reduced.
Furthermore, by adjusting ε1, we can create safe gaps between the feasible space and
the obstacles or potential hazards. Thus, the resultant pipe path will not violate any
safety regulations.

2.2.4. Pipe Path Computation

The pipe path is calculated utilizing Dijkstra’s algorithm. To do so, the proposed
method treats the feasible space as a graph. Its voxels become vertices and the connectivity
relations of its voxels are regarded as edges. Since this graph is created by using the voxels
of the feasible space, the edges are parallel to x-, y-, or z-axes, and thus the resultant pipe
path will be composed of straight lines or 90-degree bends.

• Branch scheduling

If the pipe consists of multiple branches, the proposed piping method constructs these
branches one after another. At first, we compute the Manhattan distance between each
pair of the terminals, and the two terminals generating the longest Manhattan distance are
designated as the source and the destination. Then, a shortest path is created to connect
them by using Dijkstra’s algorithm. The resultant path is the initial skeleton of the pipe. In
the following step, one of the unconnected terminals is randomly selected and treated as
the source, and the shortest path from this unconnected terminal to the current skeleton is
computed. Once constructed, the new branch is included in the skeleton, and the above
calculation is repeated to generate the remaining branches. Once all the terminals are
connected, the routing process of the pipe is finished.

• Cost function of path-finding

Dijkstra’s algorithm may produce many bends and elbows in the resultant pipe path
since the feasible space is built upon a regular grid. To reduce the number of bends in the
pipe path, we employ a cost function C(-) to control the forward directions in the pipe path.
Assuming that the current position of the routing is at voxel vi and the cost of the pipe is
C(vi), then the cost for selecting the neighboring voxel vi+1 as the next position is computed
by the following formula:

C(v0) = 0, C(v1) = 1.0,
C(vi+1) = C(vi) + p(vi, vi+1), i ≥ 1.

p(vi, vi+1) =

{
1, {vi−1, vi, vi+1} are collinear,

1 + ω, otherwise.

(2)

where v0 and v1 are the first 2 voxels in the pipe path, C(vi+1) is the new cost, and p(vi,
vi+1) is the incremental value to the current cost. The incremental value is decided by the
direction of the pipe path. If the pipe path marches straightforwardly, the incremental
value is 1. Otherwise, the incremental value is 1 + ω, where ω a positive number, which is
used to penalize the bend caused by the new voxel vi+1. In this research, ω is set to 9 to
benefit straight pipe paths.

Appl. Sci. 2023, 13, 10847 11 of 18

2.2.5. Pipe Surface Generation and Workspace Update

The resultant pipe path is merely the skeleton of the pipe. We have to construct a
geometrical representation for the pipe. At first, we create consecutive cylinders with a
radius r along the pipe path. Then we connect these cylinders to form the surface of the
pipe. In the next step, the surface is discretized into a triangle mesh and kept in a disk file.

Before routing the next pipe, we modify the workspace to reflect the existence of the
pipe. First, we search for the voxels, which are within r units away from the skeleton of the
pipe, and label these voxels with the pipe’s ID. Consequently, these voxels are owned by the
pipe and are regarded as obstacle voxels or potential hazards for the remaining pipes in fu-
ture computations. Then, the distance field in the slabs of the feasible space is re-computed
to measure the distances from their ordinary voxels to this pipe and other obstacles.

3. Results

Based on the proposed algorithm, we implemented a piping system dedicated to
creating concealed conduits in buildings. In this section, we demonstrate two experi-
ments conducted using our piping system. Before showing the test results, we describe
some implementation issues about this program and the methodology that is adopted for
performing the experiments. Then, a simple test case is shown to illustrate the intrinsic
characteristics of the proposed pipe routing method. Next, a complex experiment is pre-
sented to verify the effectiveness of the proposed method. Finally, we give quantitative
data and analysis of the test results. Future research and improvement are suggested in the
next section.

3.1. Implementation Issues

The piping system is implemented using C++ language. The kernels of this system
include preprocessing, building encoding, distance field computation, abstract pipe-path
finding, and pipe-path routing modules. The peripheral subsystems are composed of a
graphic user interface (GUI), a surface modeling function, and a rendering subroutine.
Users can interact with the program via the GUI. The rendering subroutine is implemented
by using OpenGL libraries. It can perform surface rendering as well as volume rendering
to display the working environments and pipes.

The embedded computer system is composed of an Intel i9-10900 CPU, 32 GB RAM,
and an Nvidia GeForce RTX 2060 GPU. The operating system is Windows 10.

3.2. Methodology

Two experiments were conducted to test our piping system. In the first experiment,
the building is composed of a single room, which is used to simulate a simple factory.
Four concealed pipe systems are constructed inside the slabs. Though the geometrical
complexity of the building is simple, the experiment clearly manifests how concealed pipes
are created inside a building and verify the correctness of the proposed method.

In the next test, the target building is an apartment building that contains two units.
Each unit possesses two stories connected by a staircase. Thus, there are four rooms in
the building. The concealed pipes to be routed are more complicated. One pipe may have
nearly 20 terminals located in different rooms. As a result, the settings are complex and
challenging for routing concealed pipes.

The experimental results are illustrated using surface and volume rendering tech-
niques [22]. The pipes are shaded using different colors to highlight their sizes and paths
while the slabs are portrayed in transparent grey color by either surface rendering or vol-
ume rendering. Blending the images of the pipes and the slabs, the quality of the routing
process is visually verified. The lengths and routing costs of all the pipes are also presented
in this section to provide quantitative information about the whole piping process. Analysis
and discussion of the experiments will be given in the next section.

Appl. Sci. 2023, 13, 10847 12 of 18

3.3. Test Case 1

The appearance of the first building is shown in Figure 7a. Its dimensions, slabs,
and openings are depicted in Table 1. It has four walls, one ceiling, and one floor. The
thickness of these slabs is 30 cm. In the experiment, the slabs are decomposed into
1 cm × 1 cm × 1 cm voxels. Thus, a slab contains 10 layers of voxel planes. We use this
model to simulate the piping process in a simple factory.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 12 of 19

finding, and pipe-path routing modules. The peripheral subsystems are composed of a

graphic user interface (GUI), a surface modeling function, and a rendering subroutine.

Users can interact with the program via the GUI. The rendering subroutine is imple-

mented by using OpenGL libraries. It can perform surface rendering as well as volume

rendering to display the working environments and pipes.

The embedded computer system is composed of an Intel i9-10900 CPU, 32 GB RAM,

and an Nvidia GeForce RTX 2060 GPU. The operating system is Windows 10.

3.2. Methodology

Two experiments were conducted to test our piping system. In the first experiment,

the building is composed of a single room, which is used to simulate a simple factory.

Four concealed pipe systems are constructed inside the slabs. Though the geometrical

complexity of the building is simple, the experiment clearly manifests how concealed

pipes are created inside a building and verify the correctness of the proposed method.

In the next test, the target building is an apartment building that contains two units.

Each unit possesses two stories connected by a staircase. Thus, there are four rooms in the

building. The concealed pipes to be routed are more complicated. One pipe may have

nearly 20 terminals located in different rooms. As a result, the settings are complex and

challenging for routing concealed pipes.

The experimental results are illustrated using surface and volume rendering tech-

niques [22]. The pipes are shaded using different colors to highlight their sizes and paths

while the slabs are portrayed in transparent grey color by either surface rendering or vol-

ume rendering. Blending the images of the pipes and the slabs, the quality of the routing

process is visually verified. The lengths and routing costs of all the pipes are also pre-

sented in this section to provide quantitative information about the whole piping process.

Analysis and discussion of the experiments will be given in the next section.

3.3. Test Case 1

The appearance of the first building is shown in Figure 7a. Its dimensions, slabs, and

openings are depicted in Table 1. It has four walls, one ceiling, and one floor. The thickness

of these slabs is 30 cm. In the experiment, the slabs are decomposed into 1 cm × 1 cm × 1

cm voxels. Thus, a slab contains 10 layers of voxel planes. We use this model to simulate

the piping process in a simple factory.

Figure 7. Routing concealed pipes in a single-room building, (a) the building, (b) – (e) routing pipe

1–4, (f) the resultant pipe systems.

Figure 7. Routing concealed pipes in a single-room building, (a) the building, (b–e) routing pipe 1–4,
(f) the resultant pipe systems.

Table 1. Geometric information of the first test model.

Dimension Slabs Opening

Width = 8 m,
Length = 8 m,
Height = 4 m

4 walls (8 m × 4 m),
1 floor (8 m × 8 m),

1 ceiling (8 m × 8 m)

1 door (1.8 m × 3 m),
7 windows (2 m × 2.6 m)

Four concealed pipes are to be routed in the building. Their basic parameters and
applications are listed in Table 2. They are used for transferring electricity, gas, water, and
air. Their diameters are 3, 6, 8, and 3 cm, respectively. The cross-sections of these pipes
occupy at least 9 voxels and at most 64 voxels. In order to meet safety regulations, a pipe
must be separated from other pipes by a certain distance. This distance is called the safe
gap, which is enforced by using ε1 in Equation (1). This safe gap is maintained in only the
plane of the slab that the pipe penetrated. Hence, it is a 2D distance regulation. If we select
a large ε2 when creating the feasible spaces, the feasible spaces are enlarged and allow
the pipes to deviate from existing obstacles and hazards further, and more space will be
engaged in the routing calculation. The safe gaps of the pipes are shown in the fifth column
of Table 2.

Table 2. Pipe parameters in test case 1.

Pipe #(Terminals) Diameter Usage Safe Gap Color

1 4 3 cm Electricity 20 cm Green

2 3 6 cm Natural gas 10 cm Orange

3 6 8 cm Water 5 cm Blue

4 2 3 cm Air 2 cm Red

Appl. Sci. 2023, 13, 10847 13 of 18

The progression of the routing process is shown in Figure 7b–e. In these images, the
slabs are rendered as transparent grey polygons, and the pipes are shaded as solid and
colorful tubes. Pipe 1 is arranged first. Its appearance is shaded green and is shown in
Figure 7b. This pipe has four terminals located at the front and back walls and the ceiling.
These terminals will be used for installing light bulbs and electrical switches. We use white
balls to represent the light bulbs. The next pipe to be routed is pipe 2. Its path is shown in
Figure 7c. We render it using orange. It has three terminals, but the resultant path contains
only one branch. This is because its initial skeleton passes the third terminal, and thus no
extra branch is needed to connect the third terminal.

The third pipe is the water pipe. It has six terminals and its diameter is the largest. Its
path is rendered in blue and displayed in Figure 7d. Its path contains many branches such
that the six terminals can be successfully connected. Its branches are mainly created on
the floor because all terminals except one are located there. The last pipe to be routed is
the air-conditioning pipe. It has only two terminals. Its path is shown in Figure 7e. As the
image shows, its source and destination are at the back and front walls. Its path has to be
routed inside the ceiling to connect these two terminals since the workspace in the floor
has been occupied by the third pipe.

In order to display the 3D positions of these pipes in the building and to examine the
quality of the pipe paths, a virtual reality image is produced to reveal the final scenario of
the working environment. The pipes are portrayed using a surface-rendering subroutine
while the slabs are drawn using a volume-rendering procedure. The final image is displayed
in Figure 7f. As the image shows, the pipes do not cause any collisions with the obstacles
(including the door, other pipes, and the windows) and their paths are hidden inside the
slabs. The image also reveals that the pipe paths contain very few bends. This is caused
by the penalty given in Equation (2). Furthermore, the gaps between the pipes are wide
enough to meet safety regulations.

3.4. Test Case 2

In the next experiment, we build an apartment building and use it as the target
building. Its appearance is shown in Figure 8a. The geometric information of this building
is presented in Table 3. It has two units, and each unit is a two-story apartment. In a unit,
the upper and lower stories are connected via a staircase. We created 11 windows in total
on the front, back, and side walls in each unit. There is a window and a door between the
two units on the second floor. Thus, these two units are connected. Each unit has a door
in its front or side wall. In summary, the building has 20 slabs and 28 openings. Its size is
16 m × 16 m × 8 m. The shapes of the slabs and openings are presented in the second and
third columns of Table 3.

Table 3. Geometric information of the building in the second test.

Components/Dimensions Slabs Opening

Apartment of 2 units,
2 stories in 1 unit,

Width = 16 m,
Length = 16 m,
Height = 8 m,

4 rooms.

20 slabs:
14 (8 m × 4 m) walls,
4 (8 m × 8 m) floors,

2 (8 m × 8 m) ceilings.
Slab thickness = 30 cm.

3 (1.8 m × 3 m) doors:
2 doors in 1st floor,

1 door in the 2nd floor.
23 (2 m × 2.6 m) windows:
11 windows in the 1st floor,
12 windows in the 2nd floor.

2 (4 m × 2 m) staircase openings,
1 opening in each unit.

Appl. Sci. 2023, 13, 10847 14 of 18Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19

Figure 8. Routing concealed pipes in an apartment building, (a) the building, (b) – (e) routing pipe

1–4, (f) the resultant pipe systems.

Our system can produce three-view images to highlight the gaps between the pipes

and the spaces between the pipes and the openings. In Figure 9a–c, the orthographical

projections of the building and the pipes are shown. These images are generated using the

x-, y-, and z-axis projections. Based on Figure 9a, we can see that the pipes do not collide

with any window or door. The image in Figure 9b verifies that the pipes do not go through

the spaces used by the stair openings. Figure 9c shows the relative positions of the pipes

to the windows in the front and back walls. No collision or violation of safety regulations

is found.

Figure 9. Three-view projections of the concealed pipes of experiment 2, (a) the side view, (b) the

top view, and (c) the front view.

3.5. Quantitative Data of the Tests

The lengths and routing costs of the pipes in both test cases are shown in Table 5. For

each test, we present the ID of each pipe, the number of terminals in each pipe, the length

of each pipe, and the computational time (wall-clock time measured in seconds.).

Figure 8. Routing concealed pipes in an apartment building, (a) the building, (b–e) routing pipe 1–4,
(f) the resultant pipe systems.

Four concealed pipes are to be built. Their parameters are listed in Table 4. They are
used to transport electricity, natural gas, water, and air. The first pipe possesses 18 terminals.
The second pipe has 15 terminals. The third and fourth pipes have eight terminals and
four terminals, respectively. The safety gaps and colors of the pipes are 20, 10, 5, and
2 cm, respectively.

Table 4. Pipe parameters in test case 2.

Pipe #(Terminals) Diameter Usage Safe Gap Color

1 18 3 cm Electricity 20 cm Green

2 15 6 cm Natural gas 10 cm Orange

3 8 8 cm Water 5 cm Blue

4 4 3 cm Air 2 cm Red

Compared with the building model of test case 1, this building has more slabs and
openings, and the target pipes possess more terminals too. Hence, the geometrical com-
plexity of the working environment is greatly increased.

Figure 8b–e show the progression of the pipe routing process. The first pipe is shown
in Figure 8b. Its path is confined within the ceilings and walls of the first and second stories.
Its path contains some bends caused by the openings. However, most of its segments
are straight. The second pipe is constructed subsequently, and its path is displayed in
Figure 8c. A great portion of its path goes through the floors. This is because most of its
terminals reside on the first floors and the slabs in the upper story are already occupied by
the first pipe.

The path of the third pipe (in orange color) is portrayed in Figure 8d. Its path wanders
through the spaces left by the first pipe in the upper story. It penetrates the back walls and
ceilings to connect the terminals. The fourth pipe is the last to be routed. The remaining
workspace is mostly in the front walls. Thus, its path is arranged in the front walls. Its path
is shaded in red color and shown in Figure 8e. Figure 8f presents a VR image of the building
after the piping process. It reveals the related positions of the pipes inside the building.

Appl. Sci. 2023, 13, 10847 15 of 18

Our system can produce three-view images to highlight the gaps between the pipes
and the spaces between the pipes and the openings. In Figure 9a–c, the orthographical
projections of the building and the pipes are shown. These images are generated using the
x-, y-, and z-axis projections. Based on Figure 9a, we can see that the pipes do not collide
with any window or door. The image in Figure 9b verifies that the pipes do not go through
the spaces used by the stair openings. Figure 9c shows the relative positions of the pipes
to the windows in the front and back walls. No collision or violation of safety regulations
is found.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 19

Figure 8. Routing concealed pipes in an apartment building, (a) the building, (b) – (e) routing pipe

1–4, (f) the resultant pipe systems.

Our system can produce three-view images to highlight the gaps between the pipes

and the spaces between the pipes and the openings. In Figure 9a–c, the orthographical

projections of the building and the pipes are shown. These images are generated using the

x-, y-, and z-axis projections. Based on Figure 9a, we can see that the pipes do not collide

with any window or door. The image in Figure 9b verifies that the pipes do not go through

the spaces used by the stair openings. Figure 9c shows the relative positions of the pipes

to the windows in the front and back walls. No collision or violation of safety regulations

is found.

Figure 9. Three-view projections of the concealed pipes of experiment 2, (a) the side view, (b) the

top view, and (c) the front view.

3.5. Quantitative Data of the Tests

The lengths and routing costs of the pipes in both test cases are shown in Table 5. For

each test, we present the ID of each pipe, the number of terminals in each pipe, the length

of each pipe, and the computational time (wall-clock time measured in seconds.).

Figure 9. Three-view projections of the concealed pipes of experiment 2, (a) the side view, (b) the top
view, and (c) the front view.

3.5. Quantitative Data of the Tests

The lengths and routing costs of the pipes in both test cases are shown in Table 5. For
each test, we present the ID of each pipe, the number of terminals in each pipe, the length
of each pipe, and the computational time (wall-clock time measured in seconds.).

Table 5. Lengths and routing costs of the pipes in the 2 tests.

Pipe
Test 1 Test 2

#(Terminals) Length (m) Cost (sec.) #(Terminals) Length (m) Cost (sec.)

1 4 19.92 2.59 18 75.53 13.83

2 3 22.30 1.30 15 54.68 10.37

3 6 25.00 3.15 8 72.42 19.69

4 2 12.56 0.40 4 25.78 2.20

Since the second building is larger and more complicated, routing pipes in its slabs
is expected to be more time-consuming and the pipe lengths would be longer. The data
shown in Table 5 match our expectations. By examining the number of terminals and the
length and routing cost of each pipe, we found that the number of terminals is the major
factor influencing the routing time. This phenomenon is more obvious in test 1. The minor
factor affecting the execution time is the pipe length. For example, the third pipe of test 2
has only eight terminals but its length is relatively long and its routing cost is higher.

The other important factor in deciding the cost is the order of pipe. In test 2, the first
pipe has more terminals and its path is longer, compared with pipe 3. However, its piping
cost is lower. This is because this pipe is arranged first, its feasible space is simple, and less
computer time is consumed for searching the path directions and creating the branches. If
we compare images Figure 8b,d, the first pipe has fewer branches than the third pipe. This
property reflects the importance of the pipe scheduling process.

4. Discussion and Future Work

Pipe routing algorithms can be characterized by their working environments, routing
algorithms, data structures, and applications. In Table 6, we list some typical pipe-routing

Appl. Sci. 2023, 13, 10847 16 of 18

research and our work and characterize these methods by using the above factors such that
the differences among them can be highlighted.

Table 6. Comparisons among various piping research.

Researches Routing
Algorithms

Data
Structures

Working
Environment Applications

Kim et al. [3] Genetic
algorithm Graph Vehicles Cables & pipes of

vehicles

Choi et al. [6] A* method Graph Buildings MEB systems

Qu et al. [10] ACO algorithm Octree Engine surfaces Aero-engine pipes

Kang et al. [12] Expert system Graph Ships Pipes of ships

Christodoulou [15] ACO algorithm Graph Communities Water supply
systems

Ours Two-stage Dijkstra
method

Graph + 3D voxel
images Building slabs MEB systems

Based on our investigation into the literature, many researchers use Dijkstra’s method
and the A* algorithm to find the pipe paths. In their work, workspaces are usually encoded
using weighted graphs. However, their applications may be very different. The ACO
algorithm and its variants are the second most popular approaches for laying out pipes.
Their underlying data structures may be grids or weighted graphs. ACO methods are
utilized to find optimal solutions for routing problems with multiple pipes.

To our knowledge, there is no research focusing on the routing process inside building
slabs. Ours might be the first one. Furthermore, to increase computational efficiency, the
proposed method adopts a hierarchical data structure to encode the workspace and a
two-stage piping method to arrange the pipe paths. The embedded routing approach and
data structure are also different from those adopted by the other researchers. However, our
target application is not unique and is similar to those of [6,14–17]. The proposed piping
method is utilized for laying our MEB systems, though the conduits are concealed by the
walls, floors, and ceilings of buildings.

In this research, the pipe paths contain only straight segments and 90-degree elbows.
In reality, 45-degree bends should be allowed in pipe paths. We believe the execution time
and the quality of the piping process might be improved by relaxing the restriction of the
bend angle, especially for pipes relying on gravity to deliver materials.

By examining the images of Figures 7 and 8, we found that the pipe paths are closer to
the boundaries of the slabs. This is because we utilized Equation (1) to form the feasible
space. Therefore, the feasible space of the first pipe is adjacent to the slab boundaries and
the openings. Then, the first pipe becomes an obstacle, and the distance field is renewed.
Next, the feasible space of the second pipe is created adjacent to the slab boundaries and
openings as well as the first pipe. This strategy has a ripple effect. The following pipes
will be routed within a safe but not far distance from the slab boundaries, openings, and
existing pipes. The safety regulations are met, but large spaces may be preserved in the
middle portions of the slabs. This aspect is beneficial for exposed conduits because less
space is used and the pipes are closer to supporting racks, which are usually built near the
surfaces. We believe that it is also good for concealed pipes since users can obtain more
free space for drilling the slabs to install hangers or other facilities.

Additive Manufacturing (AM) has been proposed to construct buildings [23]. Creating
tunnels in slabs manufactured by AM processes will allow users to route electricity wires
and computer network cables afterward. Thus, the proposed algorithm can be employed to
create concealed pipes in the geometric modeling stages of AM processes. Another potential
application of the proposed method is to design tunnels in cooling jackets, especially
incorporated with AM technology [24]. The tunnels of a cooling jacket are concealed
inside the walls of the jacket. Filled with running liquids, they are used to transfer the
heat produced by electronic devices or machines. Their application is different from the

Appl. Sci. 2023, 13, 10847 17 of 18

concealed pipes in a building. However, their geometric characteristics are similar to those
of the concealed pipes. By using the concept of the distance field and voxelization process,
the proposed method is suitable for routing cooling tunnels.

5. Conclusions

This article presents an innovative routing method for concealed pipes. The proposed
algorithm encodes the workspace in a two-level structure. The top-level representation
records the slabs and the connectivity relations of the slabs in a weighted graph. In the
bottom-level representation, the workspace is converted into a set of 3D images of voxels
such that the distance field computation, voxel labeling, and feasible space creation are
simplified. The proposed method employs a two-stage routing procedure to lay out
concealed pipes. In the first stage, the abstract paths of the target pipes are calculated in the
top-level representation of the workspace. Then, in the second stage, the real pipe path of
each pipe is computed in the bottom-level representation. Thus, an exhaustive search is not
required for routing the pipe. The proposed piping procedure creates a feasible space for
routing the path of each pipe. The feasible space is free of any collision and meets all safety
regulations and geometric constraints. Thus, the computational costs are further reduced,
and the quality of the piping process is guaranteed.

We perform experiments to verify the effectiveness of the proposed piping method.
Two test results are presented by using qualitative and quantitative methods. Our piping
system displays the intermediate results at the run-time by using surface rendering and
volume rendering. The resultant images enable users to visually examine the quality of the
pipes. Moreover, we present the computational costs and lengths to express the quantitative
data of the experiments. By analyzing these data, we conclude that the costs of the piping
process are mainly influenced by the number of terminals, the lengths, and the orders of
the pipes.

As AM techniques are gaining popularity in manufacturing and construction applica-
tions, we propose to incorporate the proposed method with AM technology for building
houses and making mechanic components in the future.

Author Contributions: Conceptualization, S.-K.U.; methodology, S.-K.U.; software, C.-C.C..; vali-
dation, S.-K.U. and C.-C.C.; formal analysis, S.-K.U.; investigation, C.-C.C.; data curation, C.-C.C.;
writing—original draft preparation, S.-K.U.; writing—review and editing, S.-K.U.; visualization,
C.-C.C.; supervision, S.-K.U.; project administration, S.-K.U.; funding acquisition, S.-K.U. All authors
have read and agreed to the published version of the manuscript.

Funding: MOST Taiwan, grant number 109-2221-E-019-055.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: This research was funded by MOST Taiwan, grant number 109-2221-E-019-055.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Qian, X.L.; Ren, T.; Wang, C.E. A Survey of pipe routing design. In Proceedings of the Chinese Control and Decision Conference,

Yantai, China, 2–4 July 2008; pp. 3994–3998.
2. Lee, C.Y. An algorithm for path connections and its applications. IRE Trans. Electron. Comput. 1961, 3, 346–365. [CrossRef]
3. Kim, S.; Kim, S.; Choi, T.; Kwon, T.; Lee, T.H.; Lee, K. Automatic design system for generating routing layout of tubes, hoses, and

cable harnesses in a commercial truck. J. Comput. Des. Eng. 2021, 8, 1098–1114. [CrossRef]
4. Ueng, S.K.; Huang, H.K. A distance-field-based pipe-routing method. Materials 2022, 15, 5376. [CrossRef] [PubMed]
5. Asmara, A.; Nienhuis, U. Automatic piping system in ship. In Proceedings of the International Conference on Computer and IT

Application (COMPIT), Leiden, The Netherlands, 8–10 May 2006; pp. 269–280.
6. Choi, W.; Kim, C.; Heo, S.; Na, S. The modification of A* pathfinding algorithm for building mechanical, electronic and plumbing

(MEP) path. IEEE Access 2022, 10, 65784–65800. [CrossRef]

https://doi.org/10.1109/TEC.1961.5219222
https://doi.org/10.1093/jcde/qwab034
https://doi.org/10.3390/ma15155376
https://www.ncbi.nlm.nih.gov/pubmed/35955311
https://doi.org/10.1109/ACCESS.2022.3184106

Appl. Sci. 2023, 13, 10847 18 of 18

7. Gao, H.; Koch, C.; Wu, Y. Building information modelling based building energy modelling: A review. Appl. Energy 2019, 238,
320–343. [CrossRef]

8. Xie, H.; Tramel, J.M.; Shi, W. Building information modeling and simulation for the mechanical, electrical, and plumbing systems.
In Proceedings of the IEEE International Conference on Computer Science and Automation Engineering, Shanghai, China, 10–12
June 2011; pp. 77–80.

9. Horowitz, E.; Sahni, S.S.; Rajasekaran, S. Computer Algorithm; Computer Science Press: New York, NY, USA, 1998.
10. Qu, Y.F.; Jiang, D.; Zhang, X.L. A new pipe routing approach for aero-engines by octree modeling and modified max-min ant

system optimization algorithm. J. Mech. 2018, 34, 11–19. [CrossRef]
11. Ito, T. A genetic algorithm approach to piping route path planning. J. Intell. Manuf. 1999, 10, 103–114. [CrossRef]
12. Kang, S.S.; Sehyun, M.; Hah, S.H. A design expert system for auto-routing of ship pipes. J. Ship Prod. 1999, 15, 1–9. [CrossRef]
13. Christodoulou, S.E.; Ellinas, G. Pipe routing through ant colony optimization. J. Infrastruct. Syst. 2010, 16, 149–159. [CrossRef]
14. Zhang, N.; Wang, J.; Al-Hussein, M.; Yin, X. BIM-based automated design of drainage systems for panelized residential buildings.

Int. J. Constr. Manag. 2022, 1–16. [CrossRef]
15. Samarasinghe, T.; Gunawardena, T.; Mendis, P.; Sofi, M.; Aye, L. Dependency Structure Matrix and Hierarchical Clustering based

algorithm for optimum module identification in MEP systems. Autom. Constr. 2019, 104, 153–178. [CrossRef]
16. Farooq, J.; Sharma, P. Applications of Building Information Modeling in Electrical Systems Design. J. Eng. Sci. Technol. Rev. 2017,

10, 119–128. [CrossRef]
17. Teo, Y.H.; Yap, J.H.; An, H.; Yu, S.C.M.; Zhang, L.; Chang, J.; Cheong, K.H. Enhancing the MEP Coordination Process with BIM

Technology and Management Strategies. Sensors 2022, 22, 4936. [CrossRef] [PubMed]
18. Yue, Y.; Liu, Z.; Zuo, X. Integral layout optimization of subsea production control system considering three-dimensional space

constraint. Processes 2021, 9, 1947. [CrossRef]
19. Liu, M.Y.; Tuzel, O.; Veeraraghavan, A.; Chellappa, R. Fast directional chamfer matching. In Proceedings of the IEEE Conference

on Computer Vision and Pattern Recognition, San Francisco, CA, USA, 13–18 June 2010; pp. 1696–1703.
20. Sethian, J.A. Fast marching methods. SIAM Rev. 1999, 41, 199–235. [CrossRef]
21. Ueng, S.K.; Huang, H.C.; Chou, C.S.; Huang, H.K. Layered manufacturing for medical imaging data. Adv. Mech. Eng. 2019, 11.

[CrossRef]
22. Kaufman, A.; Dachille, F.; Chen, B.; Bitter, I.; Kreeger, K.; Zhang, N.; Tang, Q. Real-time volume rendering. Int. J. Imaging Syst.

Technol. 2000, 11, 44–52. [CrossRef]
23. Tay, Y.W.D.; Panda, B.; Paul, S.C.; Noor Mohamed, N.A.; Tan, M.J.; Leong, K.F. 3D printing trends in building and construction

industry: A review. Virtual Phys. Prototyp. 2017, 12, 261–276. [CrossRef]
24. Szabó, L. Survey on applying 3D printing in manufacturing the cooling systems of electrical machines. In Proceedings of the 2022

IEEE International Conference on Automation, Quality and Testing, Robotics (AQTR), Cluj-Napoca, Romania, 19–21 May 2022;
pp. 1–6.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1016/j.apenergy.2019.01.032
https://doi.org/10.1017/jmech.2016.86
https://doi.org/10.1023/A:1008924832167
https://doi.org/10.5957/jsp.1999.15.1.1
https://doi.org/10.1061/(ASCE)1076-0342(2010)16:2(149)
https://doi.org/10.1080/15623599.2022.2085853
https://doi.org/10.1016/j.autcon.2019.03.021
https://doi.org/10.25103/jestr.106.16
https://doi.org/10.3390/s22134936
https://www.ncbi.nlm.nih.gov/pubmed/35808431
https://doi.org/10.3390/pr9111947
https://doi.org/10.1137/S0036144598347059
https://doi.org/10.1177/1687814019871392
https://doi.org/10.1002/(SICI)1098-1098(2000)11:1%3C44::AID-IMA5%3E3.0.CO;2-8
https://doi.org/10.1080/17452759.2017.1326724

	Introduction
	Methodology Overview
	Related Work

	Materials and Methods
	Workspace Representation
	The Top-level Representation
	The Bottom-level Representation

	Pipe Path Routing
	Abstract Pipe Path Calculation
	Pipe Ordering
	Feasible Space Creation
	Pipe Path Computation
	Pipe Surface Generation and Workspace Update

	Results
	Implementation Issues
	Methodology
	Test Case 1
	Test Case 2
	Quantitative Data of the Tests

	Discussion and Future Work
	Conclusions
	References

