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Abstract: In this paper, we propose an advanced method for adversarial training that focuses on
leveraging the underlying structure of adversarial perturbation distributions. Unlike conventional
adversarial training techniques that consider adversarial examples in isolation, our approach employs
clustering algorithms in conjunction with dimensionality reduction techniques to group adversarial
perturbations, effectively constructing a more intricate and structured feature space for model
training. Our method incorporates density and boundary-aware clustering mechanisms to capture
the inherent spatial relationships among adversarial examples. Furthermore, we introduce a strategy
for utilizing adversarial perturbations to enhance the delineation between clusters, leading to the
formation of more robust and compact clusters. To substantiate the method’s efficacy, we performed
a comprehensive evaluation using well-established benchmarks, including MNIST and CIFAR-10
datasets. The performance metrics employed for the evaluation encompass the adversarial clean
accuracy trade-off, demonstrating a significant improvement in both robust and standard test accuracy
over traditional adversarial training methods. Through empirical experiments, we show that the
proposed clustering-based adversarial training framework not only enhances the model’s robustness
against a range of adversarial attacks, such as FGSM and PGD, but also improves generalization in
clean data domains.

Keywords: deep neural networks; robustness; adversarial attacks; adversarial training; clustering

1. Introduction

With the growing popularity of deep learning (DL), DL-based systems are being
applied in a wide variety of areas [1]. Despite their impressive performance, these models
remain highly susceptible to adversarial attacks, where perturbed inputs are crafted to
deceive the models. Such vulnerability poses significant risks, particularly in security-
critical applications.

Adversarial examples, or inputs designed to cause incorrect predictions, not only are
intriguing from a scientific standpoint but also have substantial practical implications [2–4].
Numerous techniques have been developed to mitigate the susceptibility of DL models
to adversarial attacks [5], with adversarial training emerging as a prominent defensive
strategy [2].

Adversarial training, which involves training models on adversarial examples, has
emerged as a prominent method to increase resistance to adversarial attacks [2]. Properly
trained models not only perform well on clean data but also withstand attacks that these
models are trained to resist. Thus, adversarial training holds the key to a new frontier in
machine learning where models are both high performing and secure [6].

However, current adversarial training methodologies predominantly suffer from many
shortcomings, including model overfitting and a limited capacity, to generalize against
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novel types of adversarial attacks [7,8]. Most prior works have either overlooked this
shortcoming or treated it as an unavoidable consequence of the exhaustive approach [7,8].

Moreover, existing preprocessing defenses against adversarial attacks, such as input
transformations and dimensionality reduction, frequently distort the adversarial examples
to make them less effective but do so without gaining any deeper understanding of the
adversarial structure [9]. These methods often achieve only partial robustness and are
susceptible to adaptive attacks that anticipate such transformations [10].

Contrary to the above approaches, we introduce a novel yet elegantly simple strat-
egy named adversarial structural clustering (ASC) that addresses these issues effectively.
Although clustering is a well-understood technique in machine learning, its application
in the domain of adversarial training is notably absent. Our approach stands apart in its
ability to dissect the complex landscape of adversarial examples into more manageable and
interpretable clusters, thereby allowing for a more targeted and effective training regimen.

The simplicity of ASC lies in its utilization of existing clustering algorithms to catego-
rize adversarial examples based on their structural characteristics, yet this simplicity belies
its effectiveness [11]. ASC creates a more structured space for training, enabling the model
to better capture the commonalities among different types of adversarial input perturba-
tions. To accomplish this, we introduce a density and boundary-aware clustering algorithm.
This allows for effectively capturing and exploiting the salient structure of adversarial
distributions. This happens by utilizing adversarial perturbations to enhance the boundary
delineation between clusters, forming denser, more robust clusters. The formation of these
clusters is guided by the geometric proximity of samples to the decision boundary, which
typically indicates a higher susceptibility to adversarial perturbations. The ASC algorithm
is inspired by the principles of active learning, a paradigm in machine learning where the
learning algorithm selectively queries the most informative instances from the data for
training while disregarding noisy instances. In the context of ASC, the most informative
instances are those that represent different adversarial structures in the input space. We
hypothesize that by training on a structured space that captures the diversity of adversarial
structures and excludes outliers, we can enhance the robustness of deep learning models
against a broad range of adversarial input perturbations. In the course of our research,
we expanded the investigation to explore multiple dimensions. In addition to the specific
clustering techniques tailored for adversarial example grouping, we studied strategies
for selecting samples from these clusters for adversarial training, where each strategy
emphasizes different aspects of the adversarial example’s importance. Furthermore, we
delved into the role of dimensionality reduction in enhancing the efficiency of our proposed
approach. Understanding the interplay between clustering and information content is
essential in our method. For this purpose, we studied a central aspect of this relationship,
which is how the number of clusters affects the entropy of the clustered adversarial exam-
ples. This research contributes to the broader endeavor of creating more reliable and secure
machine learning models, enabling their deployment in critical real-world applications.

In summary, this paper aims to answer a pivotal research question: “Can clustering
techniques be effectively adapted to uncover the structure of adversarial example space and
thereby substantially improve the robustness of deep learning models?” In exploring this
question, we delineate novel methodologies, scrutinize their impact through rigorous eval-
uations, and lay the groundwork for a more robust generation of deep learning algorithms.

The paper is organized as follows: In Section 2, we give the necessary background on
potential clustering algorithms and adversarial attacks to be used. Section 3 provides a
detailed description of our methodology and presents the specific details of the implemen-
tation of the method. Section 4 studies how the number of clusters affects the entropy of
the clustered adversarial example. Section 5 shows different experiments and analysis for
the clustering-based adversarial training. Finally, Section 6 concludes this paper.
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2. Background

In this section, we first delve into the details of generating adversarial examples and
existing defense mechanisms, particularly focusing on adversarial training, discussing its
limitations and the need for our research. Subsequently, we review clustering methods,
emphasizing K-means, agglomerative clustering, and DBSCAN.

2.1. Adversarial Example Generation

Adversarial examples are maliciously crafted input samples designed to confuse
machine learning models. These examples look virtually indistinguishable from normal
samples to the human eye but can lead to erroneous outputs by the machine learning
model. Several adversarial attacks can create such examples; in our study, we will use the
fast gradient sign method (FGSM) [2], and projected gradient descent (PGD) [12]. These
attacks perturb the input sample in a way that maximizes the model’s loss function.

2.1.1. Fast Gradient Sign Method (FGSM)

The fast gradient sign method (FGSM) is an elementary yet effective adversarial attack
introduced by Goodfellow et al. [2]. Its computational efficiency stems from its reliance on
a first-order approximation of the loss function. For a neural network model characterized
by its parameters θ, let L(θ, x, y) denote the loss function, where x is the input data and y is
the true label. The adversarial example x′ can be generated as follows:

x′ = x + ε · sign(∇xL(θ, x, y)) (1)

The term ∇xL(θ, x, y) is the gradient of the loss function L with respect to the input x.
It is a vector in Rd, where d is the dimensionality of the input. Mathematically, this gradient
can be expressed as

∇xL(θ, x, y) =
[

∂L
∂x1

,
∂L
∂x2

, . . . ,
∂L
∂xd

]
(2)

Here, ε is a hyperparameter that controls the magnitude of the perturbation introduced.
In essence, FGSM perturbs each element xi of the input x in the direction that maximizes
the increase in loss L.

2.1.2. Projected Gradient Descent (PGD)

The projected gradient descent (PGD) is an extension of FGSM that employs multiple
iterations to generate more effective adversarial examples. It is considered a robust first-
order adversary due to its efficacy in defeating defensive techniques. An adversarial
example x′i at the ith iteration is computed as

x′i = Clipx,ε(x′i−1 + α · sign(∇xL(θ, x′i−1, y))) (3)

The gradient term ∇xL(θ, x′i−1, y) is computed similarly to Equation (1), but at each
iteration i, the gradient is computed at the perturbed point x′i−1 instead of the original
point x.

The term Clipx,ε is an operation that projects x′i into an ε-ball around x. Formally,
Clipx,ε(z) can be defined as

Clipx,ε(z) = x + clamp(z− x,−ε, ε) (4)

Here, α is the step size controlling how much the adversarial example changes in each
iteration. Note that α may differ from ε used in Equation (1), and its optimal value can be
data and model dependent.
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2.2. Defenses against Adversarial Attacks

There exist other defense strategies in the literature, which range from adversarial
training and model architecture modifications to data preprocessing defenses.

2.2.1. Model Architecture Modifications

These defenses alter the model architecture to introduce intrinsic robustness against ad-
versarial perturbations. Methods such as defensive distillation [13] and feature squeezing [14]
fall into this category. However, these approaches often do not generalize well against
diverse attack types and can introduce additional computational overhead [10].

2.2.2. Data Preprocessing Defenses

Data preprocessing defenses, such as input transformations [15] and randomization [16],
work by transforming the adversarial examples before feeding them into the model. They
aim to either remove or distort the adversarial perturbations so that the model can classify
the altered input correctly. These methods are partially effective but are often circumvented
by adaptive attacks that anticipate such transformations [10].

While data preprocessing defenses have previously been employed, none have lever-
aged clustering to understand the inherent structure of adversarial examples, thus missing
out on a more strategic, targeted, and effective training regimen.

2.2.3. Adversarial Training Defense

Adversarial training (AT) is a defense mechanism designed to improve the model’s
resilience to these adversarial attacks [2]. It incorporates adversarial examples (generated
from any of the aforementioned attacks) into the training process. The intention is to enable
the model to learn from these malicious examples and improve its robustness, equipping it
to better classify similar adversarial examples in the future.

However, despite its effectiveness, AT has limitations. One primary challenge is that
the process is computationally expensive. Moreover, it has been observed that using all
adversarial examples for training may not necessarily improve model robustness, as some
adversarial examples may only introduce noise into the learning process [17]. This is where
our research comes in: we propose a method that judiciously selects adversarial examples
for training, with the aim of improving model robustness.

2.3. Clustering Methods

Clustering is the task of dividing data into groups (clusters) so that items within a
group are more similar to each other than to items in other groups [18]. The simplicity of
our approach lies in its ability to extend conventional clustering algorithms by modifying
the distance metric to incorporate the adversarial degradation potentials. This shift in
distance metric captures the susceptibility of data instances to adversarial perturbations,
allowing for a more robust partitioning in the presence of adversarial noise. In this research,
we focus on K-means, agglomerative clustering, and density-based spatial clustering of
applications with noise (DBSCAN).

K-means is a centroid-based method that partitions data into K nonoverlapping
subsets (clusters) such that each data point belongs to the cluster with the nearest mean.
The algorithm iteratively assigns points to the closest centroid and recalculates the centroid
until a stopping criterion is met.

Agglomerative clustering is a type of hierarchical clustering method that builds a clus-
ter hierarchy. This method starts with each data point as an individual cluster and merges
the closest pair of clusters until only one cluster (or a specified number of clusters) remains.

DBSCAN is a density-based clustering method that is particularly effective for discov-
ering clusters of arbitrary shape and removing noise. It operates by defining a neighborhood
around a data point, and if the number of points within this neighborhood exceeds a certain
threshold, a new cluster is formed. If the neighborhood contains fewer points than the
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threshold but lies within the neighborhood of another cluster, it is added to that cluster.
If it does not meet either criterion, it is classified as noise.

Unlike K-means and agglomerative clustering, which require the number of clusters
as input, DBSCAN infers the number of clusters based on the data, making it more versatile
in handling complex datasets. Moreover, DBSCAN’s ability to detect noise can be beneficial
in the context of adversarial examples, as it allows for the separation of potent adversarial
examples from less impactful ones.

While traditional clustering algorithms provide a strong foundational base, other more
advanced clustering methods, such as biclustering and triclustering, could also be adapted
in a similar fashion.

Biclustering involves clustering both the rows and columns of a data matrix simulta-
neously. This allows for the simultaneous clustering of instances and features, which can
lead to more precise and potentially more robust clustering results.

Triclustering further extends this by clustering in three dimensions, adding another
layer of complexity but also more opportunities for capturing intricate relationships within
the data.

These advanced clustering methods could be incorporated into our model in the same
manner as the traditional clustering methods, by extending their respective distance metrics
with the adversarial degradation potentials. The advantage would be more nuanced cluster
formations, which could potentially be more robust to adversarial perturbations. However,
it is worth noting that these advanced methods often entail higher computational costs,
particularly when dealing with large datasets. The complexity can scale rapidly with the
increase in dimensions and the number of data points. Therefore, while biclustering and
triclustering methods may yield more accurate and robust clusters, they may not be feasible
for larger-scale applications. Our current model aims to strike a balance between accuracy
and computational efficiency, providing a robust yet scalable solution.

In the following sections, we will elaborate on the integration of these clustering
methods into our adversarial example generation and selection process, with a focus on
addressing the limitations of traditional adversarial training.

3. Methodology

This section provides a detailed description of our methodology, which involves
generating adversarial examples, clustering these examples, and selecting specific samples
from the clusters for adversarial training (AT). We also present the specific details of the
implementation of our idea, including the clustering algorithms used, the criteria for sample
selection, and the process of dimensionality reduction. Figure 1 provides an overview of
our proposed methodology.

Selecting Samples from Clusters 
(Random, Probabilistic) 

Clustering of Adversarial 
SamplesGeneration of Adversarial 

Examples
Original dataset

Dimensionality 
Reduction

Task Learning

Outlier

Figure 1. Overview of the proposed methodology. The blue and purple dots represent the original
samples from the two classes. The (×) samples represent adversarial samples generated from both
classes. Further, the adversarial (×) samples are clustered, and the red samples represent samples
chosen by the cluster, while the other off black (×) samples are not inside the cluster.

3.1. Adversarial Example Generation

Our methodology commences with the generation of adversarial examples. Employing
the fast gradient sign method (FGSM) and projected gradient descent (PGD), we produce
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adversarial samples that span the input space. This facilitates the creation of a diverse set
of samples for subsequent operations.

3.2. Dimensionality Reduction

Given the high dimensionality of image data, we also employ dimensionality reduction
techniques as an optional step before clustering to speed up the clustering process and
potentially improve its effectiveness. In this study, we consider principal component
analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE) due to their
prevalence and performance in reducing the dimensionality of data [19].

PCA is a linear method that identifies the directions (principal components) in which
the data vary the most and projects the data onto these directions, discarding less informa-
tive ones. On the other hand, t-SNE is a nonlinear method that constructs a probability
distribution over pairs of high-dimensional objects in such a way that similar objects are
assigned a higher probability, and dissimilar ones a lower probability. The same is done for
the low-dimensional counterparts. t-SNE then minimizes the divergence between the two
distributions, ensuring that similar objects in high-dimensional space remain close in the
reduced space.

3.3. Clustering of Adversarial Examples

Following the generation of adversarial examples, the next step involves clustering
these examples. The rationale behind this is that similar adversarial examples, which lead to
similar misclassifications, are likely to be grouped together. By clustering adversarial exam-
ples, we can identify these groups and tailor our adversarial training process accordingly.

Our approach introduces an extension for the previously described clustering al-
gorithms to effectively capture the structure of adversarial distributions. This makes the
clustering a boundary-aware clustering method that makes use of adversarial perturbations
to enhance the boundary delineation between clusters.

The core idea is to use adversarial perturbations as a guide to shape the formation
of clusters, creating denser and more robust clusters that capture the salient structure of
adversarial distributions. The algorithm works by iteratively adjusting cluster boundaries
based on adversarial feedback, creating a flexible, dynamic clustering algorithm that adapts
to the complex structure of adversarial data.

Our proposed adversarial clustering algorithm can be viewed as a specific case of
clustering algorithms, where the neighborhood definition is based on a novel proposed
distance metric, which incorporates the degradation potential of adversarial examples,
thereby enabling our clustering algorithm to group adversarial examples based on their
potential threat to the model.

3.4. Clustering of Adversarial Samples: Distance Metric and Degradation Potential

We introduce a novel distance metric sensitive to the degradation potential of adver-
sarial examples. This allows our clustering algorithm to group adversarial examples based
on the degree of threat they present to the model, rather than solely on their proximity in
the input space.

First, we define the degradation potential of an adversarial example. Given a neural
network model f with parameters θ, an input x, and its corresponding adversarial input
xadv, we define the degradation potential of xadv on f as follows:

∆adv(xadv, f ) = ∇L( f (xadv; θ), y) (5)

where L denotes the loss function between the model’s prediction f (xadv) and the true
label y. ∇L is the gradient of the loss function L with respect to the input. The term
∇L( f (xadv; θ), y) signifies the change in the model’s loss caused by the adversarial ex-
ample. Calculating this degradation potential is already performed when generating the
adversarial samples, and all that should be done is to save it.
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Next, we define the distance metric Dadv between two adversarial examples xadv1 and
xadv2 in a space governed by the lp norm and the degradation potential ∆adv:

Dadv(xadv1, xadv2) = ||xadv1 − xadv2||p + λ|∆adv(xadv1, f )− ∆adv(xadv2, f )| (6)

The ||||p captures the geometric distance between the two adversarial samples. λ is a
trade-off parameter that controls the relative importance of the input space distance and
the degradation potential difference.

This metric ensures that adversarial examples causing a similar degree of degradation
to the model performance are grouped together. Conversely, adversarial examples causing
distinct levels of performance degradation might be separated, even if they are close in the
input space.

Thus, our distance metric allows the clustering algorithm to capture the nuanced
characteristics of adversarial examples, differentiating clusters according to the nature and
threat level of the adversarial samples. This, in turn, provides a more informed basis for
adversarial training, resulting in more robust models.

We are interested in a more nuanced way of characterizing the “difference” between
degradation potentials of two adversarial samples. Rather than simply taking the abso-
lute difference of degradation potentials, we could quantify the relationship between the
degradation potentials of two adversarial samples. There are various methods to mea-
sure the correlation or similarity between two sets of data, such as Pearson correlation
coefficient (PCC) [20], Spearman’s rank correlation coefficient [21], Kullback–Leibler (KL)
divergence [22], and mutual information (MI) [23].

Among these, KL divergence and mutual information might be the most appropriate
for our case since they are capable of capturing complex relationships between prob-
ability distributions, which could be useful given the highly nonlinear nature of deep
neural networks.

We could incorporate KL divergence or mutual information into the distance metric
Dadv as follows:

Dadv(xadv1, xadv2) = ||xadv1 − xadv2||p + λDKL(∆adv(xadv1, M)||∆adv(xadv2, M)) (7)

where λ is trade-off parameters controlling the importance of the input space distance,
the KL divergence, and the mutual information.

DKL(P||Q) is the KL divergence between the degradation potentials of xadv1 and xadv2.
Let us say that P and Q are two probability distributions. The KL divergence of Q from P is
defined as follows:

DKL(P||Q) = ∑
i

P(i)log
P(i)
Q(i)

(8)

where i ranges over all possible events.
In our case, P and Q are the probability distributions representing the degradation

potentials of xadv1 and xadv2, respectively. The degradation potential of an adversarial
example could be represented as a vector of probabilities over the neural network’s outputs,
possibly obtained by applying a softmax function to the output logits of the network when
fed with the adversarial example.

A crucial thing to note is that KL divergence is not symmetric, i.e., DKL(P||Q) 6=
DKL(Q||P). This means that the order in which the adversarial examples are compared
will affect the result. This could be leveraged to encode some form of directionality into the
clustering process, for example, by always placing the adversarial example that is deemed
more harmful (causes a larger increase in the loss) as P and the less harmful one as Q.
This way, clusters will be more influenced by the more harmful examples, which could
potentially enhance the robustness of the resulting model.
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One practical consideration when computing KL divergence is that it is not defined
when P(i) > 0 and Q(i) = 0. A common solution is to add a small constant to the
distributions, known as smoothing, to ensure that all probabilities are nonzero. This needs
to be done carefully to avoid significantly altering the original distributions.

This version of Dadv allows the clustering algorithm to capture the divergence between
the ways different adversarial samples affect the model’s behavior, thereby providing a
richer characterization of the adversarial sample space.

The overall ASC clustering algorithm is given in Algorithm 1.

Algorithm 1 Density sensitive adversarial clustering

Require: Set of adversarial examples {xadv} , neural network model f with parameters θ ,
lp norm p , trade-off parameter λ

Ensure: Clustering of adversarial examples {C}
1: Compute the degradation potential for all adversarial examples:
2: for xadv in {xadv} do
3: ∆adv(xadv, f ) = ∇L( f (xadv; θ), y)
4: end for
5: Compute the distance matrix using the novel distance metric:
6: for pair of adversarial examples (xadv1, xadv2) in {xadv} do
7: Dadv(xadv1, xadv2) = ||xadv1 − xadv2||p + λ · DKL(∆adv(xadv1, M)||∆adv(xadv2, M))
8: end for
9: Apply any clustering algorithm to {xadv} using the distance matrix Dadv:

10: C = clustering({xadv}, Dadv)
11: return the clusters {C}

It is important to note that the methodology is not limited to a specific model or dataset
and is generalizable across different machine learning tasks.

3.5. Selection of Samples from Clusters

Once the adversarial examples have been generated and subsequently clustered,
an essential task is the selection of representative samples from these clusters for adversarial
training. This step is crucial because not all adversarial examples hold equal significance
for bolstering the robustness of the model. Certain examples can reveal more about the
adversarial subspaces that the model has difficulty with, thereby providing more valuable
insights for model improvement.

The underlying premise of our approach is that incorporating a subset of carefully
chosen adversarial examples into the training process can offer equivalent, if not superior,
improvements to model robustness than using the entire adversarial example set, while
also reducing the computational load.

To facilitate this, we adopt two strategies for the selection of adversarial examples
from the clusters.

3.5.1. Random Cluster Selection

The first strategy involves selecting one cluster randomly in each training iteration.
This method ensures that the model is exposed to a wide variety of adversarial perturbations
throughout the training process. By rotating through different clusters, we avoid the model
overfitting to the adversarial examples from a single or a few clusters, thus ensuring a more
comprehensive improvement in robustness.

In mathematical terms, if we denote the set of all clusters as C = C1, C2, . . . , Cn, in each
iteration i, we select a random cluster Ck, where k ∈ 1, 2, . . . , n. All adversarial examples
from the selected cluster Ck are then used for adversarial training in that iteration.
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3.5.2. Probabilistic Sample Selection within Clusters

The second strategy incorporates all clusters but selects samples from each cluster
based on a sampling probability that depends on their distance from the cluster center.
The rationale behind this approach is to prioritize examples that are more representative of
the adversarial behavior captured by each cluster.

This strategy operates under the assumption that samples closer to the cluster center
are more “typical” adversarial examples for that cluster, while outliers might introduce
noise or be less informative. Hence, samples closer to the center are selected with a higher
probability, effectively serving as a strategy to remove unimportant or noisy samples.

Mathematically, if d(x, Ck) denotes the distance of a sample x from the center of cluster
Ck, the probability of selecting a sample x from cluster Ck for adversarial training, denoted
as p(x, Ck), can be defined as

p(x, Ck) =
1

d(x, Ck) + ε
(9)

Here, ε is a small constant to prevent division by zero. This inverse relationship ensures
that samples closer to the cluster center (smaller d(x, Ck)) have a higher selection probability.

Both strategies allow us to capitalize on the information provided by adversarial
examples in a more targeted and efficient manner, leading to enhanced model robustness
with reduced computational overhead.

4. Clustering and Information Content

Understanding the interplay between clustering and information content is important
in our method. A central aspect of this relationship is how the number of clusters affects
the entropy of the clustered adversarial examples. This section illuminates the relation
between information richness and clustering granularity.

4.1. Defining Cluster Variation and Entropy

Cluster variation: The within-cluster variation, denoted as Wy, for a specific clus-
ter y is the sum of squared distances of the data points within that cluster to its center.
Mathematically, for a cluster y with centroid cy, this is given by

Wy = ∑
x∈y
||x− cy||2.

The total cluster variation W is the summation of the within-cluster variations for
all clusters.

Entropy: Entropy, denoted by H(Y), is a measure of the uncertainty or randomness
of a random variable. In the context of clustering, Y is the random variable representing
cluster assignment. The Shannon entropy for a discrete random variable with probability
distribution p(y) is defined as

H(Y) = −
K

∑
y=1

p(y) log(p(y))

where K is the number of clusters.

4.2. Connection between Cluster Variation and Probability Distribution

To build the connection, we need to make the following assumptions:

1. The data are drawn independently from a mixture of multivariate Gaussian distribu-
tions corresponding to the clusters. Each Gaussian distribution is characterized by its
mean µk and a covariance matrix scaled by Wy.
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2. Clusters with larger variation occupy a more significant volume in the data space,
implying that they are more likely to encompass a randomly drawn data point. The
volume occupied by a cluster in data space can be loosely tied to its spread or variation.
For a multivariate Gaussian distribution, the volume it occupies is directly related to
the determinant of its covariance matrix. In simple terms, if a cluster’s data points
are widely dispersed, its “spread” or ”variation” is large, and it occupies a more
significant volume in the space. As we have tied the cluster variation Wy to the
variance of our Gaussian distribution, clusters with larger Wy will have a larger
determinant of their covariance matrix, thereby occupying a larger volume. Thus,
the probability of a randomly drawn point falling within such a cluster is higher,
validating our assumption.

Given that we are considering our data to be drawn from a mixture of multivariate
Gaussian distributions (each corresponding to a cluster), the volume occupied by each
cluster becomes pivotal in understanding the likelihood of a random sample falling within
a particular cluster.

The volume Vy of the region that is captured by cluster y is influenced by the square
root of its variance (or in multidimensional space, the determinant of its covariance matrix).
Given that Wy is essentially a measure of the squared distances (variances) from the centroid,
it stands to reason that the volume Vy is proportional to Wd/2

y , where d is the dimensionality
of the data.

Assuming that data points are uniformly and randomly sampled, the probability p(y)
that a point lies within cluster y is proportional to the volume Vy of cluster y.

Given the volumes of all clusters, the probability that a randomly drawn data point
lies within cluster y can be determined by the ratio of the volume of cluster y to the sum of
the volumes of all clusters:

p(y) =
Vy

∑K
k=1 Vk

Substituting our earlier derived relationship for volume in terms of Wy:

p(y) =
Wd/2

y

∑K
k=1 Wd/2

k

4.3. Connecting Cluster Variation to Entropy

Entropy, in the context of information theory, quantifies the amount of uncertainty
involved in predicting the value of a random variable. For our clusters, this random
variable Y is the event that a randomly drawn data point belongs to cluster y, and the
uncertainty in this event is determined by the probability distribution p(y) of the clusters.
The entropy H(Y) of this distribution is given by

H(Y) = −
K

∑
y=1

p(y) log p(y)

where K is the number of clusters. From our earlier subsection, we related cluster variation
Wy to the probability p(y):

p(y) =
Wd/2

y

∑K
k=1 Wd/2

k

Inserting this expression into our entropy formula, we obtain

H(Y) = −
K

∑
y=1

Wd/2
y

∑K
k=1 Wd/2

k

log

(
Wd/2

y

∑K
k=1 Wd/2

k

)
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Given this expression, a few key insights emerge:
1. As variation increases: When a cluster has a high Wy, meaning its data points are

widely dispersed, its contribution to the entropy becomes more significant. This is because
the corresponding p(y) value increases, and the logarithmic term in the entropy formula
amplifies this effect.

2. Influence of dimensionality d: The dimensionality d of the data can also impact
the entropy. As the dimensionality increases, the proportional contribution of each cluster
to the entropy can change dramatically, leading to higher uncertainties and thus higher
entropy values.

3. Effect of number of clusters K: The total number of clusters also influences the
entropy. With fewer clusters, individual p(y) values might be larger, leading to potentially
larger entropy values. On the contrary, with more clusters, each cluster’s probability could
be smaller, potentially reducing the overall entropy.

In essence, the cluster variation provides a proxy measure for the entropy of the
clustering. Clusters with high variation (indicative of capturing a wider range of data
points with varying characteristics) tend to contribute more to the entropy, symbolizing
higher unpredictability or uncertainty in data point assignment to these clusters.

It is also worth briefly noting the theoretical congruence of our approach with frame-
works such as information bottleneck (IB) theory [24] and maximum coding rate reduc-
tion [25]. In the context of the IB theory, our clustering strategy can be considered as an
information compression step, encapsulating the vast space of adversarial examples into
more informationally dense cluster representatives. This aids the model in navigating a
potentially less complex and more informative adversarial landscape. From the perspective
of maximum coding rate reduction, our method could encourage the model to preserve
meaningful mutual information between challenging adversarial examples and the out-
put labels, thereby refining the model’s ability to focus on relevant ’signals’ over ’noise’.
However, constructing a rigorous theoretical framework around these ideas would require
extensive analysis and is considered as a direction for future research.

5. Experiments

The primary objective of our experimental design is to rigorously validate the efficacy
of our cluster-based adversarial training approach. We benchmark our methodology
against standard adversarial training (AT). The straightforwardness of AT makes it an ideal
baseline, as it allows for isolating the impacts of our novel contributions in clustering over
its foundational principles.

In each training epoch, the model undergoes two separate training phases: an initial
training phase using clean data, followed by a subsequent training phase that utilizes
adversarial examples. The model is dynamically trained on both clean and adversarial
instances within the same epoch to improve its generalization capabilities. We employ
the L∞ norm as the metric to quantify the magnitude of perturbations induced by the
adversarial attacks. The experimental evaluations were conducted on a single NVIDIA
(Santa Clara, CA, USA) GeForce GTX 1080 Ti graphics processing unit.

To precisely address the issue of adversarial data in training, we employ various
clustering algorithms to augment the training data with clustered adversarial samples.
The generation and clustering of adversarial samples are achieved through a hierarchi-
cal process: Initially, adversarial samples are generated, followed by clustering these
samples. Finally, they are integrated into the training set as per the selected sampling
strategy. We empirically set the number of clusters for K-means and agglomerative clus-
tering within the range [1, 10]. For DBSCAN, which does not require a predetermined
number of clusters, only the best results are reported for comparative evaluation with other
clustering algorithms.
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5.1. Results on MNIST and CIFAR-10

The allowed adversarial perturbation ε, in this case, is 0.5 for MNIST [26] and 0.05 for
CIFAR-10 [27], and the maximum number of iterations for PGD is 20.

In this study, the choice of hyperparameters was a crucial factor that influenced the
performance of the adversarial clustering algorithm. Below, we discuss our choice and
tuning of key hyperparameters.

• The p in the lp norm determines the distance metric in the input space. We experi-
mented with different p-values, such as 1 (Manhattan distance), 2 (Euclidean distance),
and ∞ (Chebyshev distance). Through cross-validation on a separate validation set,
we found that the l2 norm (Euclidean distance) provided the best balance between
performance and computational efficiency for our experiments.

• λ is the trade-off parameters in our distance metric that control the relative importance
of the input space distance and the degradation potential difference. We performed a
grid search over a predefined range for λ values, which varied between 0.1 and 1.0.
λ = 0.5 resulted in the best clustering performance on a validation set.

• The hyperparameters of DBSCAN, i.e., MinPts (the minimum number of points re-
quired to form a dense region) and εDBSCAN (the maximum distance between two
samples for them to be considered as in the same neighborhood), also play a role
in our method. MinPts was chosen as 4 following the general recommendation for
different datasets. For εDBSCAN , we conducted a series of experiments with values
ranging from 0.1 to 1.0. The optimal performance was observed at εDBSCAN = 0.5, so
this value was chosen.

• Learning rate and batch size: We use the Adam optimizer with an initial learning
rate of 0.001 and a learning rate schedule that reduces the learning rate by a factor
of 0.1 every 20 epochs. Momentum is set to 0.9. These choices are made after a
comprehensive grid search in the hyperparameter space. The incorporation of learning
rate schedules and momentum ensures quicker convergence and adaptability to the
local optima of the loss landscape. We note that this strategy obviates the need for a
rigorous convergence proof, as the empirical results demonstrate stable and repeatable
convergence for our model architecture and dataset.
Three batch sizes were considered: 32, 64, and 128. A batch size of 64 was selected
based on the trade-off between computational efficiency and the stability of the gradi-
ent updates.

We conducted an extensive hyperparameter tuning process involving grid search and
cross-validation to ensure that our chosen hyperparameters generalized well and led to
robust and consistent results across various adversarial settings.

5.2. Overall Comparison

In order to ascertain the comparative effectiveness of the various clustering algo-
rithms, we collate the maximum adversarial and clean accuracies attained under FGSM
and PGD attack scenarios. These empirical outcomes are systematically tabulated in
Tables 1 and 2, and are juxtaposed with the results obtained through traditional adversarial
training techniques.

Table 1. Comparison of model robustness under FGSM and PGD attacks on MNIST.

Model Clean Accuracy % FGSM Accuracy % PGD Accuracy %

Original model (clean data only) 98.5 17.2 13.9
AT baseline 89.1 81.8 68.7
K-means + AT 93.7 88.3 83.1
K-means_ASC + AT 94.1 88.9 83.8
Agglomerative clustering + AT 92.5 87.9 82.2
Agglomerative clustering_ASC + AT 92.7 88.2 82.7
DBSCAN + AT 95.4 91.7 86.6
DBSCAN_ASC + AT 96.3 92.1 87.7
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Table 2. Comparison of model robustness under FGSM and PGD attacks on CIFAR-10.

Model Clean Accuracy % FGSM Accuracy % PGD Accuracy %

Original model (clean data only) 83.53 10.5 1.1
AT baseline 73.3 46.0 41.9
K-means + AT 75.6 49.5 44.4
K-means_ASC + AT 75.5 49.9 44.5
Agglomerative clustering + AT 73.5 46.7 42.1
Agglomerative clustering_ASC + AT 73.7 46.9 42.4
DBSCAN + AT 75.1 48.5 42.9
DBSCAN_ASC + AT 75.3 48.9 43.5

From Tables 1 and 2, we see that all models that were preprocessed using clustering
algorithms outperformed the baseline adversarial training model. This suggests that the
process of clustering, by naturally grouping similar adversarial examples together, has a
positive effect on the model’s ability to generalize and defend against adversarial attacks.

Interestingly, the model that used our proposed adversarial structural clustering
(ASC) algorithm for preprocessing exhibited the highest robustness across both FGSM
and PGD attacks. This indicates that ASC, which takes into account the unique properties
of adversarial examples, is better equipped to enhance the model’s resistance to these
specific types of attacks. This substantiates our initial claim that considering the adversarial
structure during clustering would yield models with improved robustness.

In conclusion, our experiments validate that integrating clustering algorithms in the
preprocessing stage of adversarial training can enhance the model’s robustness against
adversarial attacks. More importantly, the results show that our proposed ASC algo-
rithm outperforms traditional clustering algorithms, demonstrating its effectiveness in
this context.

5.3. The Effect of Dimensionality Reduction

To study the effect of dimensionality reduction, we show the clean and adversarial
accuracy on MNIST of three configurations: (1) None: no reduction applied where we
apply clustering on the initial dimensions of the data. (2) T-SNE: we apply t-SNE reduction
to two dimensions. (3) PCA: we apply PCA reduction to two dimensions.

From Table 3, it is evident that dimensionality reduction techniques, PCA and t-SNE,
have substantially enhanced both the clean and adversarial accuracy across all models
compared with when no dimensionality reduction was employed. This suggests that the
process of dimensionality reduction can help in condensing the information contained in
adversarial examples in a manner that facilitates better model performance.

Table 3. Comparison of model performance after dimensionality reduction.

Model
Clean Accuracy Adversarial Accuracy

None PCA t-SNE None PCA t-SNE

Original model (clean data only) 98.5 98.2 98.3 17.2 18.4 20.9
AT baseline 89.1 89.3 89.0 81.8 81.9 81.7

K-means + AT 93.7 93.6 93.8 88.3 88.9 89.0
K-means_ASC + AT 94.1 94.2 94.1 89.0 88.9 89.3

Agglomerative clustering + AT 92.5 92.54 92.6 87.9 88.0 88.1
Agglomerative clustering_ASC + AT 92.7 92.8 92.8 88.2 88.6 88.7

DBSCAN + AT 95.4 95.6 95.5 91.7 91.9 92.0
DBSCAN_ASC + AT 96.3 96.5 96.5 92.1 92.8 92.9

Moreover, it is interesting to observe that models preprocessed with t-SNE consistently
outperformed those preprocessed with PCA across all clustering methods. This may
suggest that t-SNE, with its nonlinear dimensionality reduction properties, is able to
capture the complex structure of adversarial examples more effectively than PCA, which is
a linear dimensionality reduction technique.
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Of all the models, the one using our proposed ASC algorithm with t-SNE preprocessing
exhibited the highest clean and adversarial accuracy. This reconfirms the superiority of
ASC in handling adversarial examples and highlights the synergistic effect of combining it
with appropriate dimensionality reduction techniques.

In conclusion, our results highlight the importance of considering the dimensionality
of data in adversarial training. They also underscore the effectiveness of combining our
proposed ASC algorithm with t-SNE dimensionality reduction for achieving high robust-
ness against adversarial attacks. The utilization of dimensionality reduction techniques
serves a dual purpose in our context. Specifically, it expedites the computational efficiency
of clustering algorithms while also improving both the clean and adversarial accuracies of
the model.

6. Conclusions

In this research, we conducted an exhaustive investigation into bolstering the ro-
bustness of neural network models by leveraging a cluster-based training paradigm in
an adversarial context. The distinctiveness of our methodology stems from its deviation
from conventional adversarial training schemes; we assert that adversarial instances can
be cohesively understood as structured distributions in the input domain. In pursuit of
capturing this inherent structure, we employed density-sensitive and boundary-aware
clustering techniques, a choice corroborated by rigorous empirical analyses.

Our empirical evaluations provide robust evidence for the efficacy of the proposed
framework. Notably, we observed marked improvements in both robust and standard
test accuracies, thereby effectively mitigating the adversarial clean accuracy trade-off—a
significant accomplishment that substantiates the relevance and validity of our approach.
This was further cemented through a comparative performance evaluation against existing
clustering-based and traditional adversarial training methods.

The architecture we propose is inherently flexible, permitting the incorporation of a di-
verse array of clustering algorithms. Such flexibility allows the framework to serve as a fer-
tile ground for future research endeavors, particularly in scrutinizing the trade-offs between
computational efficiency and clustering robustness in adversarial settings. Future avenues
of exploration could extend beyond the present scope to include applications in semisu-
pervised learning regimes or synergistic integrations with other robustness-enhancing
paradigms. Furthermore, the favorable outcomes gleaned from this research endeavor
substantively advocate for a continued scholarly investigation into refining and extending
the applicability of our proposed methodology, thereby contributing meaningfully to the
ongoing endeavors to fortify machine learning models against adversarial perturbations.
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Abbreviations
The following abbreviations are used in this manuscript:

AT adversarial training
DL deep learning
FGSM fast gradient sign method
PGD projected gradient descent
ASC adversarial structural clustering
DBSCAN density-based spatial clustering of applications with noise
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