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Abstract: In pursuit of widespread adoption of renewable energy and the realization of decar-
bonization objectives, this study investigates an innovative system known as a wind-solar-hydrogen
multi-energy supply (WSH-MES) system. This system seamlessly integrates a wind farm, photo-
voltaic power station, solar thermal power station, and hydrogen energy network at the power grid
level. Central to the study is the introduction of a bi-level collaborative optimization model—an
innovative algorithmic framework specifically tailored for complex multi-energy systems. This
model co-optimizes both the capacity planning of essential system components and their annual load
distribution, adeptly navigating the complexities of optimizing capacity and annual load distribution
under uncertain energy sources and load conditions. A layered methodology synergistically combines
linear programming with an advanced version of non-dominated sorting genetic algorithm-II. When
applied to a real-world case study in Zhangbei, China, this approach identifies an optimal system
capacity, leading to annual green power generation of 201.56 GW and a substantial reduction of over
173,703 tons of CO2 emissions. An economic analysis further reveals that each 1% reduction in CO2

emissions corresponds to a modest 1.7% increase in the system’s levelized cost of energy. Moreover, a
comprehensive exploration of the impacts of various capacity parameters on the WSH-MES system’s
performance is conducted. These insights offer invaluable guidance for the large-scale advancement
of efficient renewable energy utilization and the attainment of decarbonization targets.

Keywords: wind/photovoltaic/concentrating solar power/proton exchange membrane electrolysis/
proton exchange membrane fuel cell; multi-energy supply system; capacity-operation collaborative
optimization; multi-objective optimization; sensitivity analysis

1. Introduction

The widespread deployment and harnessing of renewable energy sources hold the
potential to diversify energy markets, secure long-term energy sustainability, and signifi-
cantly mitigate both local and global carbon dioxide emissions [1]. Yet, these renewable
sources are not without their challenges, including pronounced seasonal fluctuations in
wind and hydropower availability [2], as well as the lack of electricity generation during
night-time hours for photovoltaic (PV) and concentrated solar power (CSP) installations [3].
To surmount these limitations, the advancement of integrated multi-energy supply sys-
tems and their orchestrated operation emerges as a compelling strategy to enhance energy
efficiency, alleviate looming energy crises, and mitigate environmental degradation.

Currently, there is extensive research into distributed energy systems that rely on
complementary energy time scales of various energy sources. These systems have reached
the level of scaled-up applications to some extent [4,5]. New varieties of CSP-based
hybrid renewable energy systems, such as CSP-wind [6] and CSP-PV-wind [7] systems,
have been investigated. As wind and solar energy are renewable energy sources with

Appl. Sci. 2023, 13, 11011. https://doi.org/10.3390/app131911011 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app131911011
https://doi.org/10.3390/app131911011
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app131911011
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app131911011?type=check_update&version=1


Appl. Sci. 2023, 13, 11011 2 of 24

significant volatility [8], coupling CSP power generation with wind power (WP) and PV
power generation can achieve high-quality power output. This approach leverages the
inherent stability, continuity, and dispatchability of CSP to temper the fluctuations of WP
and PV [9], while also channeling excess wind and solar energy into thermal storage,
thereby minimizing waste [10]. Nevertheless, the finite capacity of thermal energy storage
(TES) systems still leaves a considerable amount of unutilized power. Therefore, when
excess energy is generated, the parallel production of clean fuels like hydrogen presents
an advantageous route. Utilizing renewable energy sources for hydrogen production not
only mitigates pollution by reducing dependence on fossil fuel combustion [11] but also
enhances system energy efficiency by providing an alternative use for excess wind and solar
energy [12]. Therefore, the integration of various subsystems into the hybrid renewable
energy configuration can significantly boost overall efficiency. For instance, hydrogen
production through proton exchange membrane electrolysis (PEME) [13,14] and power
generation using integrated proton exchange membrane fuel cells (PEMFC) [15,16] have
shown notable results. Specifically, Xu et al. [14] optimized a wind/PV/hydrogen system,
achieving a levelized cost of energy (LCOE) as low as 0.226 USD/kWh. Similarly, Tao
et al. [16] introduced an innovative combination of an organic flash cycle and PEMFC for
poly-generation purposes, attaining an energy efficiency of 25.47% after multi-objective
optimization.

Based on the new developed system, researchers have made significant progress in
analyzing the system from various perspectives such as energy, exergy, economy, and envi-
ronmental (4E) aspects. The 4E analysis has gained substantial attention from academics
as a promising analytical method for evaluating the performance of various energy sys-
tems [17–19]. For instance, Mohamed et al. [20] undertook a comprehensive 4E assessment
of a hybrid hydrogen system, revealing energy and exergy efficiencies of 16.42% and 12.76%,
respectively. Similarly, Kalinci et al. [21] probed into the feasibility of hydrogen generation
from electrolytic water within a hybrid energy system, reporting an average daily hydrogen
yield of 1.49 kg/h in the Turkey region. Further enriching the literature, Abbas Alpaslan
Kocer [22] executed rigorous thermodynamic scrutiny, environmental impact assessment,
and parametric studies on a solar- and wind-energy-integrated power and hydrogen pro-
duction system. Complementing these theoretical endeavors, field studies focusing on
renewable energy and hydrogen production have also been conducted, offering invaluable
insights for policy makers and investors to judiciously evaluate renewable energy adoption
and site selection strategies [23].

Optimizing and efficiently operating systems can significantly enhance their perfor-
mance [24–26]. Extensive research has been conducted on the optimization of multi-energy
systems (MES), focusing on objectives like energy, economy, and the environment. The
primary decision variable is often the equipment capacity. While the majority of studies
prioritize single-objective optimization centering on economic feasibility, other factors such
as efficiency, reliability, and environmental protection are equally vital in determining
system operability [27]. Multi-objective programming addresses these considerations,
especially in MES, where reducing pollution and improving reliability might mean com-
promising on economic feasibility to some extent [28]. Liu et al. [29] used the genetic-
algorithm–particle-swarm optimization to optimize the nominal PV, system power output
point, and thermal energy storage capacity of a thermal-storage PV-CSP system for various
scheduling strategies, aiming to achieve the most cost-effective electricity level. Fang [30]
developed an integrated energy system incorporating hydrogen storage and performed a
multi-objective optimization focusing on carbon emissions and operational costs. This study
revealed that multi-objective optimization outperformed its single-objective counterpart.
The system’s operating strategy also plays a pivotal role in the performance of MES [31].
Zhang et al. [32] introduced an enhanced operating strategy rooted in an electric heating
load following and optimized the system using the Artificial Bee Colony Algorithm. They
then compared optimization results across four variable operating strategies to identify
the most effective one. Meanwhile, Ding et al. [33] incorporated load scheduling into the
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multi-objective capacity optimization process, executing a capacity operation collaborative
optimization for a solar-assisted coal-fired cogeneration system. Their aim was to strike
the right balance between economic considerations and carbon emissions. Their method
provided insights into the primary capacity and the system’s annual load scheduling. A
comparative analysis between this study and the referenced research can be found in
Table 1.

Table 1. The method proposed in this paper is compared with other literature.

Reference

System Composition Optimization

Renewable
Energy

Storage
Units Economy Carbon

Emissions

Source and
Load

Uncertainty

Operation
Strategy

Collaborative
Optimization

Multi-
Objective

Multiple
Solving

Algorithms

[24] ×
√ √ √

× × ×
√

×
[25] ×

√ √ √ √
× ×

√ √

[26] ×
√ √

× ×
√

×
√

×
[28] ×

√ √ √
× × ×

√
×

[29]
√ √ √

× ×
√

× × ×
[30]

√
×

√ √
×

√
×

√
×

[31]
√

× × × × × ×
√ √

[32] × × ×
√ √ √

×
√

×
[33] ×

√ √ √
×

√ √ √
×

Proposed
√ √ √ √ √ √ √ √ √

In the table, “
√

” represents what has been studied in the relevant literature, “×” represents research gaps in the
literature.

From a literature review perspective, a limited number of researchers have delved into
the energy supply constraints of multi-source energy systems powered exclusively with
renewable energy. Notably, few proposed systems have been designed to use CSP-wind-
PV-PEMFC collectively for energy supply, while concurrently harnessing surplus energy
for green hydrogen production, ensuring a consistent electrical output. Existing research
primarily emphasizes integration methods and performance evaluations, often sidelining
capacity and operational optimization. Furthermore, previous endeavors typically focused
on the individual optimization of capacity and load scheduling for major components in
systems connected to renewable energy sources. However, for determining the optimal
capacity configuration, a combined approach to capacity operation is imperative. This is
because load scheduling and capacity configuration are closely inter-related, influencing
one another.

Additionally, the wind-solar-hydrogen multi-energy supply (WSH-MES) system ex-
hibits a sophisticated architecture. It encompasses diverse energy conversion pathways
and mechanisms within its core processes, encompassing both photovoltaic–thermal and
established thermal cycle energy conversion methods. Notably, the system is subject to the
influence of meteorological conditions and user load requirements [24,33,34]. Remarkably,
the factor of uncertainty stemming from this intricate interplay between energy source and
load demand has been notably absent in prior system optimization investigations. This is
particularly relevant for systems that are exclusively reliant on renewable energy sources.

To fill the gaps in the previous studies, a capacity-operating co-optimization model
that considers source-load uncertainty in the optimization process is proposed. The model
utilizes multi-objective optimization with carbon emissions and economic objectives and
optimizes the annual load plan and system’s main component capacity. This is mentioned
in the outlook of many studies [24,33], but it has not been resolved. The present study is a
further extension of previous studies [35–37] and the new contributions are as follows:

(1) A novel WSH-MES system combining electricity, hydrogen, heating, and storage is
constructed, which is fully driven with renewable energy and optimizes its capacity
in the face of source load uncertainty.

(2) A bi-level capacity-operation collaborative optimization model considering the un-
certainty of source and load that integrates reliability, environmental protection, and
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economy is established. The model is solved using non-dominated sorting genetic
algorithm-II (NSGA-II) and linear programming (LP).

(3) A comprehensive analysis is conducted to reveal the effects of capacity parameters on
the performance of the WSH-MES system.

2. System Description
2.1. WSH-MES System

Figure 1 illustrates the sophisticated WSH-MES system, a composite of five unique
subsystems: PV, WP, CSP, PEME, and PEMFC.
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Figure 1. Diagram of WSH-MES system.

PV and WP Subsystems: These subsystems primarily supply electricity to consumers.
Surplus power is directed to the PEME subsystem for the conversion into hydrogen. Both
subsystems include inverters, with the PV subsystem consisting of solar panels and the
WP subsystem containing a wind turbine. The electrical outputs from the solar panels and
wind turbine are connected to the PEME subsystem and the users through their respective
inverters.

CSP and PEMFC Subsystems: Serving as peak power sources, they share the electrical
load with the PV and WP subsystems, ensuring a balanced energy distribution.

PEME Subsystem: Specialized in hydrogen production, the hydrogen generated here
is used in the PEMFC subsystem to create electricity.

CSP Subsystem Components: This subsystem encompasses a solar field (SF), electric
heater (EH), hot salt tank, superheater, steam generator, preheater, cold salt tank, high-
pressure cylinder, low-pressure cylinder, and steam turbine. The SF’s heat transfer end
connects to the hot salt tank, and the latter’s high-temperature molten salt output links to
the superheater, steam generator, preheater, and cold salt tank. Together, these elements



Appl. Sci. 2023, 13, 11011 5 of 24

heat the feed water, producing superheated steam for the high-pressure cylinder. The cold
salt tank’s chilled molten salt output feeds into the SF, and the steam from the high-pressure
cylinder flows to the low-pressure cylinder, driving the steam turbine and generator to
deliver electricity to the user.

2.2. Operation Strategy

A carefully orchestrated energy management strategy is vital for handling the inherent
fluctuations of renewable energy sources such as wind and solar and to adapt to changes
in user load demands effectively. The WSH-MES system is engineered to offer an encom-
passing solution to these complexities. In this framework, power generated with PV panels
and WP systems serves as the primary electricity source. Their output is directed to meet
immediate user demands, thus minimizing any need to rely on non-renewable sources, as
indicated in Figure 1.

When an excess of power is generated with these renewable sources, it triggers a set of
energy storage solutions. Initially, the surplus electricity is used for electrolysis to produce
hydrogen, which is then stored in the HST system. The HST serves as a robust chemical
energy storage solution, also highlighted in Figure 2. Should there still be excess power
after the HST system is at full capacity, this additional power is converted into thermal
energy for subsequent storage in the TES system. The TES system is designed to store
energy that can later be used for heating applications.
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When the PV and WP systems fall short in generating enough power to meet demand,
a PEMFC becomes operational, supplying rapid peak power by using stored hydrogen
from the hydrogen tank (HT). Further, if a deficit still exists after using the PEMFC, the
CSP system contributes to balancing the energy equation. Only when all these systems are
inadequate to meet the energy demands is power sourced from the governmental grid.

This operating strategy not only ensures that the renewable energy generated is used in
the most efficient manner but also offers layered energy storage solutions. It accommodates
storage limitations and provides a holistic response to the challenges of energy supply
and demand. All these components and their interactions are visually represented in
Figures 1 and 2 for a more intuitive understanding.

2.3. Model Construction and Validation

The mathematical model of PV, WP, CSP, PEME, HST, and PEMFC is introduced in
Table 2. Among them, the CSP model includes an SF, TES, and a turbine.

Table 2. The modeling formula of the subsystem (Symbols as shown in Nomenclature).

Subsystem Main Equations Auxiliary Notes

PV

PPV = GHI · nm · Am · ηPV · ηinv · fPV
Where effective area Am and the quantity of PV panels nm, the

inverter’s efficiency ηinv, and the derating factor fPV are specified.
Where Tc is the PV module’s actual operating temperature; Ta is
the surrounding air’s temperature; Tnoct is the nominal operating

cell temperature; GHInoct is the assumed level of global
irradiation; UL,noct and UL are heat transfer coefficients at the

nominal and actual conditions, respectively; γ is the temperature
coefficient, and Tc,ref is the operating cell temperature under

reference condition; ηPV is the actual PV efficiency; and τ · α is the
transmittance–absorptance coefficient.

ηPV = ηPV,NOM[1 + γ(Tc − Tc,ref)]

Tc = Ta + (Tnoct − Ta,noct)
GHI

GHInoct

UL,noct
UL

[1− ηPV
τ·α ]

WP
v70
v10

= ( h70
h10

)
k Where v1 is the surface wind speed, m/s; v2 is the wind speed at

h2 = 70 m from ground height, m/s; and k is the wind shear
coefficient, k = 0.14.vc is the fan starting wind speed, m/s; vr is

the rated wind speed of fan, m/s; and v f is the cut-off wind
speed of fan, m/s. Pe

R is the rated output power of fan, MW; PWP
is the actual output power of fan, MW.

Pw =


0 vt < vc

Pe
R(

vt−vc
vr−vc

) vc ≤ vt ≤ vr
Pe

R vr ≤ vt ≤ vf
0 vt > vf

CSP

QSF =
(
Qabsorb −Qloss −Qpipe

)
· A · 10−6 Where QSF is the heat gain power of heat-conducting oil in the SF,

MW; Qabsorb is the solar heat absorbed with the collector tube,
W/m2; Qloss is the heat loss of collector tube, W/m2; Qpipe is the

pipe heat loss, W/m2; and A is the area of SF, m2.
.

mHTF is the
mass flow of HTF; hin and hout are the specific enthalpies of the

HTF inlet and outlet of the receiver, respectively.
.

mact is the actual mass flow of steam,
.

mref is the reference mass
flow of steam in design condition, ηred is the deviation proportion
of steam turbine efficiency compared to that in design condition,

and ηref is the reference steam turbine efficiency in design
condition. More detailed data can be found in [33].

.
QHTF =

.
mHTF · (hout − hin)

ηred = 0.191− 0.409
.

mact.
mref

+ 0.218(
.

mact.
mref

)
2

ηturb = (1− ηred) · ηref

PEME H2O + electricity→ H2 +
1
2 O2

V = Vocv + Vact + Vdiff + Vohm

Where Vocv is the theoretical minimum electrolytic voltage at
which the electrolysis of water occurs; Vact is the open circuit

voltage. Vdiff is the equivalent overpotential due to diffusion, and
Vohm is the ohmic overpotential due to the proton exchange

membrane. More detailed data can be found in [33].
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Table 2. Cont.

Subsystem Main Equations Auxiliary Notes

HST

EHST(t) = EHST(t− 1)+(
PPEME-HST(t)− PHST-FC(t)

ηstorage

)
× ∆t

Where PHT-FC is the transferred power from the hydrogen
tank to the FC. ηstorage is the storage efficiency, and this

efficiency is assumed to be 95% due to the loss incurred in
transportation or storage.

Where the Higher Heating Value (HHV) of hydrogen HHVH2 is
equal to 39.7 kWh/kg.

mHST(t) =
QHST(t)
HHVH2

PEMFC H2 +
1
2 O2 → H2O + electricity

V = Vnernst −Vohm −Vact −Vcon

Where Vnernst is the Nernst voltage, Vohm is the ohmic
overvoltage, Vact is the activation overvoltage,

and Vcon is the concentration overvoltage.
More detailed data can be found in [33].

The WSH-MES system underwent rigorous simulation through Matlab/Simulink,
based on the SF model validated in earlier studies [35]. To corroborate the model’s pre-
cision, a comprehensive validation was undertaken, juxtaposing calculated and actual
collector outlet oil temperatures across six distinct operating points by comparing it with
experimental data from [38]. The detailed results are incorporated into Table 3, which
reveal a deviation of less than 1%, confirming that the model satisfies the requisite accuracy
benchmarks.

Table 3. Model validation of a solar field.

Test
Conditions DNI Wind

Speed
Ambient

Temperature Flow Inlet Oil
Temperature

Experimentally
Measured
Outlet Oil

Temperature

Calculation
Results Error

W/m2 m/s ◦C L/min ◦C ◦C ◦C %

1 933.7 2.6 21.2 47.7 102.2 124.0 123.39 0.49
2 968.2 3.7 22.4 47.8 151.0 173.3 172.24 0.61
3 982.3 2.5 24.3 49.1 197.5 219.5 217.41 0.95
4 909.5 3.3 26.2 54.7 250.7 269.4 266.92 0.92
5 937.9 1.0 28.8 55.5 297.8 316.9 314.08 0.89
6 880.6 2.9 27.5 55.8 299.0 317.2 314.17 0.96

3. Bi-Level Capacity-Operation Collaborative Optimization Method

This study outlines a dual-layered optimization model that collaboratively works
on both capacity and operation within the WSH-MES system, as shown in Figure 3. The
model’s higher level tackles a complex optimization issue, weighing both economic consid-
erations and carbon emission factors in determining capacity distribution. Conversely, the
model’s lower level is dedicated to enhancing renewable energy usage by fine-tuning the
scheduling of operational activities.

The general expression of the model is as follows:

min
Ri
{F1(Ri, f ), F2(Ri, f )} (1a)

max
Ht

i

f
(

Ri, Ht
i
)

(1b)

s.t. g0
(

Ri, Ht
i
)
≤ 0 (1c)

(1)

Equation (1) shows the two-level model consisting of capacity allocation optimization
in the upper layer (Equation (1a)) and operation scheduling optimization in the lower
layer (Equation (1b,c)). The upper-level optimization problem has two objective functions,
F1 and F2, and the lower-level optimization problem has Hi as decision variables, which
includes annual hourly energy generation for WP, PV, CSP, EH, TES charging/discharging,
PEME, HST charging/discharging, and PEMFC. The lower-level optimization problem
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g0 has constraints on system output and power balance, and the objective function is f to
maximize annual operation revenue.

To optimize the operation scheduling, a linearized full working condition model is
constructed due to the huge scale of decision variables and the hourly basis (8760 h) for
the system power output and charging/discharging power of heat and hydrogen storage
systems. The linear programming method is used for the operation scheduling optimization.
This section describes the objective function, lower-level constraints, and solution methods
of the bi-level optimization model. The relevant technical parameters, computational time,
and performance are shown in Table A1 in Appendix A.
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3.1. Source-Load Uncertainty Treatment

In order to fully take into account the source load uncertainty during the actual
operation of the WSH-MES system, meteorological data and user load data based on long-
and short-term memory network (LSTM) forecasts are used as inputs to the system. As
LSTM can solve the problem of medium- and long-term time series forecasting [39], it has
been widely used for time series forecasting, e.g., in the energy sector [40,41].

As shown in Figure 4, the connection of LSTM network modules is a chain structure,
where the state of the cell Ct is the key to LSTM. It consists of three gates (forgetting gate
ft, input gate it, and output gate ot) and internal memory state Ct. The main calculation
process can be found in reference [42].
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3.2. Objective Function
3.2.1. Lower-Level Objectives

The goal for the secondary level of optimization is to maximize the rate of renewable
energy consumption. This research defines the primary renewable energy rate (PRER) as
the target function for this lower-tier optimization model [36]. The intention is to minimize
wasted wind and solar energy by devising a suitable operational strategy (detailed in
Section 2.2). This approach aims to utilize as much renewable energy as feasible for either
power generation or energy storage.

PRER =
Euse f ul

Etot
=

8760
∑

t=1
(Puser

PV (t) + Puser
WP (t) + Puser

CSP (t) + Puser
PEMFC(t) + Quser

H2
(t)) + Qrest

HST(8760) + Qrest
TES(8760)

8760
∑

t=1
(Epower

wind (t) + Epower
solar (t))

(2)

PRER is defined as the output Euseful of the system to the renewable energy input Etot
to the system. Among them, Puser

WP (t), Puser
PV (t), Puser

CSP (t), and Puser
PEMFC(t) are the electricity

directly supplied to the user with WP, PV, CSP, and PEMFC, respectively. Quser
H2

(t) is the
hydrogen energy output. Qrest

HES(8760) and Qrest
TES(8760) are rest energy in HES and TES,

separately. Epower
wind (t) and Epower

solar (t) are the wind and solar radiation resources, respectively.
This research aims to plan the system’s yearly hourly power output, employing the LP

technique for the secondary model’s resolution. The final solution’s parameters encompass
LCOE and ECO2 . It is essential to establish boundaries for the secondary model, factoring
in the power, TES system, and other modules, to guarantee that the system’s scheduling
remains within a logical scope. A detailed constraint model can be found in reference [37].

3.2.2. Upper-Level Objectives

The top-tier optimization, focusing on capacity distribution, grapples with a multi-
objective challenge that seeks a balance between the financial aspects of the WSH-MES
system and CO2 emissions. The target function encompasses both the LCOE and CO2
emissions.

(1) LCOE

LCOE serves as a unique measure for assessing the overall expense of generating
electricity throughout the entire life cycle of a system.

LCOE =

IC +
N
∑

n=1

COM(n)
(1+i)n

N
∑

n=1

PWP(n)·(1−dWP)
n−1+PPV(n)·(1−dPV)

n−1+PCSP(n)·(1−dCSP)
n−1

(1+i)n

(3)

In the given expression for LCOE, the numerator primarily focuses on the computation
of investment and operation and maintenance (O&M) costs. Here, IC symbolizes the initial
investment costs for the system under study, COM stands for the system’s yearly O&M costs,
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and i signifies the discount rate, selected as 0.05 for this research. Additionally, n refers
to the operating cycle, N represents the system’s expected lifespan (set at 25 years in this
study), and d indicates the annual degradation factor for each subsystem. The denominator
mainly accounts for the system’s power generation, where PWP, PPV, and PCSP correspond
to the generation power of WP, PV, and CSP (in MWh), respectively. Further details on the
key economic parameters of the WSH-MES system can be found in reference [37].

(2) CO2 emissions

When the energy produced with the WSH-MES system falls short of meeting user
demand, additional power will be sourced from the grid. Notably, coal-powered generation
remains a dominant contributor to grid power. Given that this study incorporates the CO2
emissions from such sources, the optimization goal is to minimize the CO2 emissions
associated with power purchases. The computation for CO2 emissions is detailed as
follows, based on reference [33]:

ECO2 = Bs,sum · cef (4)

Bs,sum = Ppurchase · bs (5)

In the provided equation, ECO2 stands for the amount of CO2 emissions in tons (t).
Bs,sum represents the yearly consumption of standard coal (t). The term cef is used to denote
the CO2 emission coefficient, with a value of 2.78 as referenced in study [33]. The variable
Bs,sum is determined with the system’s yearly power acquisition Ppurchase (measured in
MWh) and the coal consumption for each unit of bs, kWh (t). In the context of this research,
it is assessed that generating 1 kWh of electricity consumes 302 g of standard coal.

3.3. Solving Algorithm

In this research, a composite algorithm is presented, integrating both NSGA-II and LP
methodologies, fortified with an elite strategy. This approach targets the bi-level capacity-
operation collaborative optimization framework. The NSGA-II technique is designated for
the primary multi-objective capacity arrangement optimization, while the LP approach
focuses on the subsequent operation scheduling optimization. The workings of this bi-level
optimization approach are graphically depicted in Figure 3. The methodology to navigate
through this bi-level optimization framework is as follows:

Step 1: Set the operational parameters for the NSGA-II algorithm. This includes
determining the population size, denoted as N, and the ceiling for iterations, termed
Genmax. In the context of this research, values of 300 for N and 80 for Genmax were chosen
to ensure a balance between the speed of convergence and the efficacy of the algorithm.

Step 2: Commence with an initial population setting of Gen = 1. Based on the site-
specific conditions (referenced in Table 4), the optimization boundaries for the primary
decision variables are set. These variables encompass loop count or SF size (x1), CSP
capacity (x2), TES capacity (x3), PV capacity (x4), WT count or WF capacity (x5), PEME
capacity (x6), HST capacity (x7), and PEMFC capacity (x8); N integer arrays Ri ([xi,1, xi,2,
xi,3, xi,4, xi,5, xi,6, xi,7, xi,8) (with i ranging from 1 to N) are randomly selected to form the
foundational population for the NSGA-II algorithm.

Step 3: Integrate the capacity distribution parameters Ri derived from the popula-
tion into the secondary optimization model. The application of the linear programming
methodology becomes pivotal in addressing this secondary model, seamlessly merging
time-sequenced meteorological data with load and wind energy statistical insights.

Step 4: The computation shifts towards determining both the LCOE and CO2
emissions for each individual within the population. This involves the utilization of
Equations (3) and (4). Subsequently, non-dominance ranking and crowding computations
are executed, harnessing the computed outcomes to establish rank values and crowding
extents for every member.
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Step 5: The current population count is scrutinized. Should this count align with
N, the progression moves to Step 6. However, in case of a mismatch, the advancement
transitions to Step 7.

Step 6: Generate an offspring population half the size of N. This population size is
halved from N and is realized through a combination of selection processes, crossover,
and mutation techniques. The amalgamation of this offspring cohort with the original
population gives rise to a merged assembly, boasting a total size of 1.5 N. At this point, the
loop is directed back to Step 3.

Step 7: N members are meticulously chosen based on their ranking and crowding
metrics. These selected individuals lay the foundation for the forthcoming generation. An
important conditional assessment takes place: if the generation count (Gen) surpasses a
predefined threshold (Genmax), the optimization procedure draws to a close, culminating
in the display of the Pareto front. Alternatively, if Gen remains within the prescribed limit,
its value is incremented by one, and the cycle reverts back to Step 6.

Table 4. Optimization interval of capacity parameters.

Parameter Unit Range

x1 - [0–776]
x2 MW [0–150]
x3 h [0–20]
x4 MW [0–150]
x5 - [0–66]
x6 MW [0–50]
x7 m3 [0–10]
x8 MW [0–50]

4. Case Study

This section uses a case study based on a WSH-MES system to apply the suggested
optimization approach and demonstrate the feasibility of the bi-level capacity-operation
collaborative optimization model.

4.1. Basic Parameters

The WSH-MES system, located in Zhangbei (41.2◦ N, 114.7◦ E), was subject to an
exhaustive analysis to optimize its key equipment capacity and its hourly operation across
the year. The optimization targeted a range of capacity parameters, encompassing the size
of the SF, and the capacities of CSP, TES, PV, WP, PEME, HST, and PEMFC.

The LSTM model adopts a single hidden layer structure, and the node number of the
hidden layer is 50. The Adam method is applied in training of the LSTM model, and the
batch size is set as 64. The dropout is set as 0.1 to avoid overfitting. The last year data
were used as the test set and the previous data were divided into training and validation
sets. The validation set was used to evaluate the generalization performance of the model.
The training set was used to train the LSTM model. The training curve of DNI is shown
in Figure 5. The trained LSTM model is predicted on the training set and validation set,
respectively. The training set and validation set errors are shown in Table 5. From the
results in the table, it can be seen that the validation set error of each parameter is slightly
lower than the training set error except for DHI, and the validation set error of DHI is also
close to the training set error. It indicates that the prediction model constructed by using
the LSTM algorithm has no overfitting phenomenon.
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Table 5. Training and validation set errors.

Dataset RMSE (Training Set) RMSE (Validation Set)

DNI (W/m2) 191.84 199.29
GHI (W/m2) 116.69 95.14

Wind speed (m/s) 1.55 1.38
Temperature (◦C) 1.50 1.41

Figures 6 and 7 present the original and predicted meteorological and load data,
respectively. For detailed equipment parameters and cost-related information, please refer
to reference [36].
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To reflect the prediction performance of the LSTM model, a Persistence model is used
for a comparative analysis. The results are shown in Table 6. The results show that the error
of the LSTM model is significantly lower than the Persistence model, indicating that the
prediction performance of the LSTM model for each parameter is significantly better than
the Persistence model.

Table 6. Prediction model performance evaluation.

Model
DNI (W/m2) GHI (W/m2) Wind Speed (m/s) Temperature (◦C)

RMSE MAE RMSE MAE RMSE MAE RMSE MAE

LSTM 178.22 82.78 97.07 49.39 1.39 0.98 0.88 0.61
Persistence 199.62 87.53 105.31 60.23 1.42 1.00 1.02 0.74

4.2. Pareto Front

The optimization method proposed in this study utilizes the predicted annual hourly
load and weather to optimize the capacity and operating schedule of the critical equipment
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in the WSH-MES system. The convergence stage of the optimization process is depicted in
Figure 8.
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As illustrated in Figure 8, the Pareto front curve for this optimization problem (repre-
sented with the orange curve in the figure) is achieved after 80 generations of optimization.
The rightmost point on this Pareto front curve is (3.26, 0.0059), which indicates the optimal
capacity allocation point that minimizes the CO2 emissions of the WSH-MES system.

The corresponding capacity configurations are 776 loops, 96 MW CSP capacity, 19 h
TES capacity, 150 MW PV capacity, 66 WT, 37 MW PEME capacity, 9.024 m3 HST capacity,
and 27 MW PEMFC capacity. All six capacity parameters fall within their corresponding
optimization interval, but three parameters (SF size, PV capacity, and WF capacity) are on
the boundary of the optimization interval. These three variables determine the amount of
energy input into the system, and in order to meet the user load as much as possible, it is
necessary to increase the energy input to the system as much as possible. Consequently,
to minimize the power purchase from the grid, the optimized installed capacity is larger
than the actual local installed capacity. Therefore, there exists a relative optimal capacity
allocation point within the optimization constraint interval for CO2 emissions.

Regarding the economic index, the corresponding optimal capacity allocation point
for the economic index is the leftmost point of the Pareto front curve, which is (0.1364,
2.6113). The corresponding capacity configurations for this point are 165 loops, 13 MW
CSP capacity, 13 h TES capacity, 13 MW PV capacity, 13 WT, 0 MW PEME capacity, 0 m3

HST capacity, and 0 MW PEMFC capacity. Four of these capacity allocations are located
on the boundary, while the installed capacity of PV and WP is also lower. This is because
the SF and hydrogen energy network (PEME, HST, and PEMFC) have high costs, and with
lower renewable energy generation, the average energy cost is lower. Therefore, there is no
corresponding optimal capacity configuration for economic indicators.

4.3. Best Compromise Solution Selection

Upon completing the optimization computations, several Pareto front solutions emerged,
each reflecting distinct system performance characteristics. To pinpoint the most practical
compromise solution, additional constraints were necessary. The most effective approach
typically involves employing decision-making techniques to extract the optimal solution. In
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this context, a novel evaluation method was crafted, leveraging a comprehensive evaluation
approach that combines the AHP-entropy assignment method and TOPSIS. The Pareto
optimal solution, derived through this method, was selected as the final best solution after
evaluating each index. The evaluation results under different weights are shown in Table 7.

Table 7. Pareto optimal scheme for LCOE and CO2 emission with different solutions.

Weight Nloops
(-)

CCSP
(MW) CTES (h) CPV

(MW)
NWT

(-)
CPEME
(MW)

VHST
(m3)

CPEMFC
(MW)

LCOE
(USD/kW)

CO2 Emission
(×104 t/y)

[0.32, 0.68] 424 44 20 88 36 5 2.914 2 0.251 0.245
[0.24, 0.76] 424 44 20 113 46 9 6.392 4 0.275 0.147
[0.19, 0.81] 424 45 20 122 45 9 6.016 4 0.2795 0.133
[0.16, 0.84] 456 48 20 121 48 11 7.05 5 0.2916 0.098
[0.10, 0.90] 456 55 20 133 51 10 7.144 5 0.3066 0.07

The optimal compromise results in an LCOE of 0.3096 USD/kW and CO2 emissions
of 630 t/y. The Nloops, CSP capacity, TES capacity, PV capacity, NWT, PEME capacity, HST
capacity, and PEMFC capacity for this treatment are 456, 55 MW, 20 h, 133 MW, 51, 10 MW,
7.144 m3, and 5 MW, respectively. The economic analysis demonstrates that a 1% reduction
in site CO2 emissions corresponds to a 1.7% increase in the system’s LCOE.

4.4. Analysis of Annual Operation Performance

The optimal point on the Pareto front is achieved through hourly heat and power load
dispatch and appropriate capacity configuration in the WSH-MES system. Figure 8 depicts
the daily output of the system for the best compromise solution.

As depicted in Figure 9, the optimized WSH-MES system is capable of meeting the
electrical load demands, with 98.6% of the electricity generated from renewable sources.
Furthermore, the system also provides access to hot water for users.
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5. Sensitivity Analysis

The analysis examines the impact of SF size, CSP capacity, TES capacity, PV capacity,
WP capacity, PEME capacity, HST capacity, and PEMFC capacity on the LCOE and CO2
emissions of the system, highlighting the significance of capacity parameters in affecting
these outcomes.

Figure 10 presents the variation of system LCOE and CO2 emission when the SF size
changes. As the figure shows, the LCOE decreases initially and then increases as the SF size
increases. This trend results from the low system investment associated with small SF sizes.
As the SF size grows, the system investment gradually increases, leading to a corresponding
rise in the LCOE. However, if the SF size is too small, the heat input to the CSP is also
too low, resulting in a reduction in the system output. Therefore, environmental impact
considerations should also be taken into account when selecting the SF size. In terms of
environmental benefits, CO2 emissions continue to decrease as the SF size increases, due to
the improved peaking ability of the system as more heat is collected with the SF, leading to
higher CSP output. However, because the TES capacity is fixed, the heat in TES cannot be
increased limitlessly with larger loops, ultimately resulting in CO2 emissions flattening out.

As shown in Figure 11, the LCOE of the system decreases and then increases as the
CSP increases. Because when the CSP capacity is less than 20 MW, the power generation
of CSP increases with the increase in CSP capacity. However, when the CSP capacity
exceeds 20 MW, the increase in system investment exceeds the increase in system power
generation, resulting in a gradual increase in the LCOE of the system. When the CSP
capacity reaches 77 MW, the LCOE of the system is the same as the initial LCOE, indicating
that the CSP capacity is suitable from 0 to 77 MW, and an appropriate increase in CSP
capacity can improve the peaking response capability of the system. Moreover, as the CSP
capacity increases, the CO2 emissions gradually decrease and eventually level off. This is
because the TES and SF sizes of the system are fixed, and increasing the CSP capacity does
not increase the CSP power generation. Therefore, the CO2 emissions will level off after
reaching the limit.
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As illustrated in Figure 12, the LCOE of the system initially decreases and then
increases with the increase in TES capacity. When the TES capacity exceeds 8 h, the
LCOE gradually increases due to the increased system investment, which surpasses the
increase in system power generation. On the other hand, the CO2 emissions of the system
gradually decrease with the rise in TES capacity. Although the system LCOE experiences
a slight increase after TES capacity exceeds 8 h, the system CO2 emissions continue to
decrease, indicating that increasing the TES capacity can enhance the system’s operational
performance. However, since the TES capacity has a limit, the TES capacity of 20 h is
optimal for the system capacity configuration.

Figure 13 indicates the effect of installed PV capacity on the system performance. As
depicted in the figure, the system LCOE decreases and then increases with the increase in
PV capacity. When the PV capacity is 50 MW, the system has the best economy at this time.
The CO2 emissions of the system gradually decrease as the PV capacity increases because
the system’s power generation also increases correspondingly. However, it should be noted
that excessive PV capacity can negatively impact the system economy, and the capacity of
the PEME is fixed. Therefore, an excessively large PV capacity can exacerbate the system’s
abandonment phenomenon, resulting in unnecessary waste.
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As shown in Figure 14, the system’s LCOE gradually increases as the number of WT
increases. Because the increase in the number of WT leads to a significant increase in system
investment. However, the CO2 emissions decrease as the number of WT increases, as the
power generation of the system increases to a certain extent. Combining Figure 13 with
Figure 14, it becomes evident that wind farms can reduce CO2 emissions by about 25%
compared to PV. Since the installed capacity of WP is approximately half that of PV capacity,
WP can complement PV by generating electricity at night. It plays the role of supplementing
PV power generation during the day and CSP and PEMFC power generation at night,
making it an effective power generation option.

As can be seen from Figure 15a, the LCOE of the WSH-MES system first decreases and
then increases as the PEME capacity increases. Meanwhile, CO2 emissions first decrease
and then level off, with an optimal solution found at a capacity of around 10 MW. Because
PEME plays a crucial role in consuming the electricity stored on an abandoned wind and
solar basis, producing hydrogen energy, and compensating for user load deficits through
PEMFC generation.
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In Figure 15b, the trend of LCOE and CO2 emissions variation with HST capacity is
similar to that of PEME. HST mainly functions as a hydrogen energy storage to complement
the PEME.

Figure 15c illustrates the change in system LCOE and CO2 emissions as the PEMFC
capacity varies. As shown in the figure, the LCOE first decreases and then increases with
the increase in PEMFC capacity. Because as the PEMFC capacity increases, it acts as a
peaking power source that can respond quickly, leading to an increase in power generation
that exceeds the increase in system investment costs. However, as the PEMFC capacity
continues to increase, the investment cost of the system will exceed the increase in power
generation, resulting in a gradual increase in LCOE. Regarding environmental benefits,
CO2 emissions first decrease and then flatten out as PEMFC capacity increases. When the
PEMFC capacity is small, the PEME can provide the hydrogen required by PEMFC, which
enables system power generation to increase, but it is limited with the capacities of PEME
and HST, which limits the hydrogen supplied to PEMFC. Beyond this range, the amount of
hydrogen no longer increases, and the system power generation remains constant, resulting
in no further change in CO2 emissions. Under the current operation strategy, the overall
trend in the change of PEME capacity, HST capacity, and PEMFC capacity is consistent,
with a proportion of approximately 1:2:1.4.

6. Conclusions

This research introduces a WSH-MES system, integrating a wind farm, PV power sta-
tion, CSP power station, and hydrogen energy network at the grid level for the co-generation
of hydrogen and thermal energy. A sophisticated bi-level-capacity co-optimization model
was formulated to concurrently optimize large-scale equipment capacity and annual load
dispatch. To tackle this intricate bi-level optimization challenge, a nested algorithmic
approach employing LP and the NSGA-II was deployed. The optimal compromise solution
is also found using a combination of TOPSIS and AHP-entropy allocation methods.

Focusing on a WSH-MES system in Zhangbei, China, and incorporating uncertain
weather data and electricity demand profiles, the proposed optimization strategy yielded
a Pareto-optimal solution. This solution features an LCOE of USD 0.31/kW and CO2
emissions of 630 t/y. Key parameters such as Nloops, CSP capacity, TES capacity, PV capacity,
number of WT, PEME capacity, HST capacity, and PEMFC capacity were optimized to
456, 55 MW, 20 h, 133 MW, 51, 10 MW, 7.144 m3, and 5 MW, respectively. The economic
analysis revealed that each 1% reduction in CO2 emissions led to a 1.7% increase in the
system’s LCOE, underscoring the economic trade-offs involved in carbon mitigation. The
optimized WSH-MES system demonstrated substantial reductions in annual WP and PV
curtailment, as well as CO2 emissions, compared to a reference system. The sensitivity
analysis indicated that the LCOE of the WSH-MES system exhibited a non-linear response
to changes in various capacities, with PV installed capacity emerging as the most significant
factor affecting maximum CO2 emissions.

In future endeavors, the model and framework delineated in this paper will undergo
refinements to incorporate dynamic energy flow characteristics, user behavior, stochastic
distributed power output, and the influence of heat and hydrogen storage on system
operation. These enhancements aim to bolster both the practical applicability and reliability
of the study’s conclusions.
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Nomenclature

Nomenclature Superscript
C capacity t t-th hour
COM operation and maintenance costs (USD) Abbreviations

Ehw
hot water heating produced with the
PEMFC (MWth) CSP concentrated solar thermal power

N number DNI direct normal irradiance

PCSP
electric power generated from concentrated
solar thermal power (MWe) EH electric heater

PPEME
the electric power that enters the proton
exchange membrane electrolyzer (MWe) GHI global horizontal irradiance

PPEMFC electric power generated from PEMFC (MWe) LSTM Long Short-Term Memory Network
Pgov purchased power (MWe) HST hydrogen storage and transportation
Pload power load of consumers (MWe) HT hydrogen tank

PPV
electric power generated from
photovoltaics (MWe) IC initial investment

Pqi_WP abandoned wind power (MWe) MES multi-energy system

PWP
electric power generated from
wind power (MWe) PEME proton exchange membrane electrolyzer

.
Qqi_solar

thermal power abandoned by solar
collector field (MWth) PEMFC proton exchange membrane fuel cell

.
QSF

heating power of heat conducting oil in solar
collector (MWth) PV photovoltaic

.
Qsolar

the solar thermal power output with the heat
storage system (MWth) SF solar field

Qstate the thermal power of heat storage system (MWth) TES thermal energy storage

QHST
the energy of hydrogen stored in the hydrogen
storage and transportation (MW) WF wind farm

Ta ambient temperature (◦C) WP wind power
V volume (m3) WSH-MES wind-solar-hydrogen multi-energy supply
ηPEME proton exchange membrane electrolyzer efficiency 4E energy, exergy, economy, and environmental
ηstorage storage efficiency
ηFC fuel cell efficiency

Appendix A

Table A1. Technical data and calculation time.

Parameter Value

Average computation time of NSGA-II 5.5 h
Total computation time of NSGA-II 250 h
Computation time for reference case of NSGA-II 4.8 h
CPU and memory resources Intel® I7-4790 4 Cores @3.60 GHz, 16 GB RAM
Operating system Microsoft Windows 11 Enterprise
MATLAB® version MATLAB® R2021a
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