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Abstract: Based on the theory of acoustic—solid coupling, the phase velocity-thickness product of
a double-layer liquid-filled pipeline is analyzed, and the dispersion relationship between angular
frequency and wavenumber-thickness product is analyzed, providing a theoretical basis for ultrasonic
guided wave detection. The wave number analytical expression of the double-layer liquid-filled
pipeline is constructed, and the dispersion relationship of the double-layer liquid-filled pipeline under
different frequency-thickness products and wavenumber-thickness products is calculated through
parameter scanning. The dispersion curves of the double-layer liquid-filled pipeline are numerically
analyzed in the domains of pressure acoustics, solid mechanics, and acoustic—solid coupling. The
numerically simulated dispersion curves show high consistency with the analytically calculated
dispersion curves. The analysis of the phase velocity frequency—thickness product indicates that
the axial mode dispersion curves of the pipe wall decrease with the increase in frequency-thickness
product in the coupling domain, and then tend to be flat and intersect with the radial mode dispersion
curves in the coupling domain; these intersection points cannot be used for ultrasonic guided wave
detection. The T(0,1) mode dispersion curve in the coupling domain of the pressure acoustics domain
remains smooth from low frequency to high frequency. It is found that the dispersion curves of the
phase velocity frequency-thickness product, angular frequency wavenumber-thickness product, and
the acoustic pressure distribution map of the double-layer liquid-filled pipeline based on acoustic—
solid coupling can provide theoretical support for ultrasonic guided wave detection of pipelines.

Keywords: acoustic—solid coupling; double-layer liquid-filled pipes; dispersion characteristics;
parameter analysis

1. Introduction

Pipeline transportation is one of the five major transportation methods in the world
and plays a crucial role in mechanical fields such as ships and offshore platforms [1,2]. The
use of pipeline transportation can improve the efficiency of large-scale fluid transportation
and reduce costs. However, as the usage of pipelines increases, the risk of pipeline failures
also increases [3]. Pipeline failures can cause serious safety accidents and huge economic
losses, making pipeline maintenance and monitoring imperative.

With the increasing attention to the environment, natural gas as a clean energy source
has been vigorously developed. The demand for urban gas has been increasing, and urban
underground gas pipeline networks are becoming more densely distributed. Many urban
gas pipelines have been experiencing high accident rates. Gas leakage accidents can be
divided into the following two categories: The first category is small hole leakage in gas
pipelines in the soil, which accumulates in enclosed spaces and can cause accidents such as
fires and explosions when encountering ignition sources. The second category is direct gas
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leakage to the ground space due to third-party damage to the pipelines, which can cause
accidents such as explosions in densely populated communities and streets [4,5].

Pipeline leaks can have a serious impact on the environment. For example, if the oil
pool and oil vapor cloud generated by pipeline leaks explode and burn in an open flame, it
can cause serious economic losses and casualties to companies. The explosion of oil vapor
clouds is a type of heavy gas diffusion that concentrates in the vicinity and has a significant
impact on the environment [6]. Another example is the leakage of sewage pipelines, which
can have a serious impact on soil and groundwater environments. The main manifestations
include changes in soil physical and chemical properties, soil pollution, eutrophication
of soil, resulting in groundwater pollution, reduction in freshwater resources, and soil
erosion [7]. Acoustic-solid coupling analysis can provide a theoretical basis for pipeline
leak detection, enabling timely detection of leaks and avoiding environmental pollution
and safety accidents caused by pipeline leaks.

Among the various methods for pipeline fault detection, guided wave-based pipeline
fault detection technology has become a popular solution for non-destructive testing of
pipelines due to its ability to propagate over long distances in waveguides and its sensitivity
to defects [8-10]. Guided wave-based detection technology using ultrasonic guided waves
is an important tool for pipeline fault monitoring, and accurately understanding the wave
dispersion characteristics in pipelines is a prerequisite for accurately identifying pipeline
faults [11].

Currently, widely used long-distance pipeline corrosion defect detection technologies
include magnetic crawler, ultrasonic crawler, and ultrasonic guided wave detection [12].
Whether it is leakage magnetic crawlers or ultrasonic crawlers, strictly speaking, they are
point-to-point measurement methods, and the detection efficiency is still relatively low.
They usually require the pipeline contact area to have a high surface quality, and pipelines
with coatings usually require the removal of the coating, which increases costs [13]. In
comparison, ultrasonic guided wave detection technology has many advantages, such
as long propagation distance and the ability to perform extensive testing using a fixed
pulse-echo array at one location. When detecting pipelines with coatings, this method only
requires the removal of a small part of the coating to test a significant length of the pipeline;
it allows coverage of the inspected structure in both cross-sectional and longitudinal
directions; due to the lack of relative motion between the probe and the pipe wall, the wear
on the probe is minimal, and there is no need for motion or rotation mechanisms or other
control facilities; and it can inspect pipelines in use (in water, with coatings or insulation
layers, etc.), making it particularly suitable for detecting dangerous defects such as internal
and external corrosion in pipelines in use, as well as dangerous defects in joints [14].

In real-world pipeline engineering projects, it is common to apply a coating layer
on the outer surface of the pipeline or to use double-layer pipes to achieve insulation,
corrosion protection, and extended service life [15]. Liu et al. conducted theoretical analysis
on the longitudinal modal propagation characteristics in viscoelastic-coated pipes and
found that the attenuation dispersion curve can serve as a theoretical basis for mode
selection in pipeline defect detection. Yu et al. proposed a new procedure to improve the
efficiency and accuracy of exploring longitudinal guided wave dispersion characteristics
in multi-layered pipes [16]. Ebrahiminejad et al. analyzed the dispersion curves of the
fundamental antisymmetric Lamb wave modes considering different thicknesses and
material attenuation of the substrate and coating [17].

The propagation of ultrasonic guided waves has been extensively studied worldwide,
and various models for different geometric shapes and materials have been proposed [18].
Maintenance issues caused by failure of composite structures due to low-velocity impact
damage are of significant concern as they may result in nearly invisible and undetectable
damage [19]. Su achieved damage localization imaging of composite materials through
simulation and experiments, providing an effective solution for damage localization in com-
posite materials [20]. Mardanshahi proposed a simulation-based Lamb wave propagation
method for non-destructive monitoring of layered composites by accurately estimating the
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damping coefficient [21]. Fathi accurately described the elastic properties of wood using
Lamb wave propagation [22]. Kijanka and Urban compared six selected methods for calcu-
lating dispersion curves in viscoelastic materials [23]. Viola proposed an algorithm and
code for solving the dispersion equation of cylindrical multilayered elastic structures [24].
Quintanilla developed a spectral matching method for calculating dispersion curves in
generally anisotropic viscoelastic media in both planar and cylindrical geometries [25].
Kirby et al. analyzed the effects of average uniform fluid flow with cylindrical geometry
on the vibration of the pipe wall driven by acoustic waves through analytical, numerical,
and experimental analysis [26]. Zheng provided reliable mathematical solutions for wave
propagation in anisotropic hollow cylindrical bodies [27]. Roy and Guddati analyzed
general prism waveguides [28]. Chiappa used mathematical physics and classical instru-
ments to deal with the two-dimensional problem of elastic wave propagation in rectangular
solids, resulting in a highly attractive analytical model [29]. Yu and Lefebvre improved the
traditional polynomial method for solving the propagation problem of guided waves in
multilayered hollow cylinders [30]. Gao derived the dispersion characteristic equation in
cylindrical coordinates by introducing the state vector form of displacement and stress com-
ponents, solving the wave propagation problem of partially complex anisotropic cylindrical
bodies [31].

In recent years, there has been increasing research on mode conversion. Yeung and Ng
proposed a computationally efficient time-domain spectral finite element method and crack
model to consider the propagation, scattering, and mode conversion of guided waves in
pipes [32]. In 2020, they studied the nonlinear characteristics induced by torsional guided
waves and material nonlinearity in the low-frequency range [33]. Fakih investigated the
propagation behavior of fundamental Lamb waves interacting with different materials in
welded joints [34]. Wang focused on the interaction between incident longitudinal modes
and pipeline defects, studying the mode conversion process of axisymmetric modes [35].

Contrary to intuition, defects in buried pipelines are easier to detect than those in
non-buried pipelines under certain conditions [36]. Jing found that water-filled waveg-
uides should be treated as elastic pipes, which have significantly different properties from
air-filled waveguides that are usually treated as rigid pipes [37]. Rouze found that the
geometric propagation of shear wave signals in the spatial domain can be corrected by
weighting, reducing computational deviations caused by material properties [38]. If the
pipeline is buried in an elastic solid or submerged in a liquid, the challenge is to capture the
acoustic field in the surrounding (nominal infinite) domain [39]. Brennan et al. discovered
that, in addition to the stiffness of pipe clamps, the shear stiffness of soil significantly
affects the wave velocity inside the pipe when studying the influence of soil properties
on the propagation of leakage noise in buried plastic water pipes [40]. Su conducted a
detailed quantitative analysis of longitudinal guided wave propagation in fluid-filled pipes
buried in saturated porous media, finding that phase velocity and displacement amplitude
gradually decrease with increasing porosity [41].

This study proposes a numerically simulated method based on acoustic-solid coupling
to solve the dispersion characteristics of sound waves in complex pipelines, such as double-
layer fluid-filled pipes (DLLFP), in the fields of pressure acoustics, solid mechanics, and
acoustic-solid coupling. The feasibility and correctness of applying the Timoshenko beam
model to solve the dispersion characteristics of multi-layer fluid-filled pipes are verified by
comparing numerical solutions with analytical solutions, providing a reference for selecting
guided wave modes in ultrasonic guided wave detection applied to DLLFP.

2. Basic Theory of Acoustic-Solid Coupling
2.1. Basic Assumptions for Establishing the Acoustic Wave Equation
In deriving the acoustic wave equation, several fundamental assumptions were in-

troduced in order to emphasize the main aspects of the problem while ignoring minor
factors [42].
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(1) It is assumed that the medium inside the pipe is an ideal fluid, neglecting viscosity
and losses in the propagation of sound waves within the pipe. The viscosity of most
acoustic media is small, and its influence on short-distance sound propagation is negligible;
thus, it can be ignored.

(2) When there is no acoustic disturbance, the medium in the pipeline is static on a
macro level; that is, the initial velocity is zero, and the medium is uniform; thus, the static
pressure and static density in the medium are constant.

(3) The entire process of sound wave propagation is adiabatic, where the compression
and expansion of sound pressure change the temperature of the medium before any heat
exchange occurs. The temperatures of different masses are different.

(4) The amplitude of the sound wave is extremely small. The acoustic theory consid-
ered in this paper is linear; therefore, the static pressure of the medium is much greater
than the sound pressure, the velocity of mass motion is much greater than the speed of
sound, the rate of density change of mass is much greater than the density of the medium,
and the displacement of mass is much greater than the wavelength.

2.2. Pressure-Acoustic Domain Control Equation

The acoustic equations are derived from the fluid equations, which are established
based on the law of conservation of mass, the law of conservation of momentum, and the
equation of matter of the medium that describes the relationship between the thermody-
namic variables [43].

g—‘t’+v-(pu):M (1)

a(gtu) +V-(ouu') =V -0 +F )

a§5)+v'(psu):%(_v'”I+q>+Q )
O=Vu:t

where the independent variables are time t (s) and spatial coordinates x (m); the dependent
variables are the density p (kg/m?); the velocity field u (m/s), and the entropy s (J/kg/K),
which is the entropy per unit mass. In addition, T is the temperature (K), ® is the viscous
dissipation function (W/ m?), o is the total stress tensor (N/m?), T is the viscous stress tensor
(N/m?), q is the local heat flux (W /m?), M denotes the possible mass source term (kg/m?),
Q denotes the possible heat source (W/ m?), and F is the possible volume force source term.
The conserved quantities here are density p, momentum pu, and total entropy ps.

Assuming that the flow is lossless and adiabatic, the viscous effects are neglected,
and the isentropic equation of state is used. Under these assumptions, the sound field is
described by a single variable, the pressure p, and the fluctuation equation is controlled as

2
TV (5(Tp =) = @
where Q,; is the monopole source (1/ s?), which corresponds to a mass source in Equation (1);
q4 is the dipole source (N/m?), which corresponds to a defining domain force source in
Equation (2).

Using the assumption of pressure field, the fluctuation equation is reduced to the
well-known Helmholtz equation as follows:

1 w?

V- pO(VP_%l))_pO?P:Qm 5)

A simple solution to Equation (5) is a plane wave in the homogeneous case where the
two source terms g4 and Qn, are zero.

p — Poei(wt—kx) (6)
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In Equation (6), Py is the wave amplitude, which moves along the k direction, where
the angular frequency is w and the wavenumber is x = | k1.

2.3. Structural Control Equations

The controlling equation for acoustic—solid coupling of a solid is determined by the
conservation of momentum equation [44], and the equation is as follows when the wall is a
hard acoustic field wall:

0=V -S+Fy (7)

where S denotes the type II Piola—Kirschhofer stress tensor, acting to link the spatially
oriented forces to the region in the original undeformed configuration, and Fv is the
volume force.

In the case of free boundary conditions without considering external stress, pre-stress,
thermal strain, etc., S can be expressed as follows:

S=C:e¢ 8)

where ¢ denotes the elastic strain, and its relationship with displacement can be expressed as

[(Vx)T + V] €)

N =

C is the fourth-order elastic tensor, which can be expressed as follows:
C = C(E,v) (10)

2.4. Acoustic-Structure Boundary Coupling

The acoustic-solid coupling boundary conditions include the fluid load acting on the
structure and the structural acceleration experienced by the fluid [45]. Mathematically, the
external boundary conditions are

—n- (=5 (Vpr—q4)) = —n-uy 1)
Fy = pmn

where uy; is the structural acceleration, # is the surface normal vector, o, is the density of
material, py is the total sound pressure, and F4 is the load acting on the structure (force per
unit area).

Acoustic—structure boundary coupling can be used with any structural component
to couple the pressure acoustic model. This includes acoustic interfaces based on the
finite element method (FEM) and the boundary element method (BEM). For thin internal
structures with fluids on both sides (e.g., shells and membranes), a slit is added to the
pressure variable to make it discontinuous and make sure that the top and bottom sides
can be connected. The conditions on the internal boundary are

—n- (= (Vpr — ‘Id))up = —n-uy
—n- (_é(VPt —44)) = —n-uy (12)

down
Fy= Ptdown 1 — Ptup 1

7

The acoustic load is determined by the pressure drop; the subscripts “up” and “down’
indicate the two sides of the inner boundary that are in contact with the structure and the
fluid, respectively.

When the tube wall is a hard sound field wall, the equation is expressed as follows:

1

n-( o

(Vpe—q,)) =0 (13)



Appl. Sci. 2023,13,11017

6 of 16

2.5. Cut-Off Frequency Equation

The non-simultaneous Helmholtz equation is used for the frequency domain equations.

1 K2 pt
——(Vp—qy) — —— =

V- (
Y Oc

Qm (14)

In the two-dimensional field the following equation is used:

w
koy = =z 2 (15)
Cc

By solving the eigenvalue problem for the sound pressure p in Equation (14), the

wavenumber and vibration pattern through the cross-section of the pipe can be obtained

as follows: (x.9) ) )
Vp(x,y w K5

V- (— — — E)p(x,y) =0 16

() (2 o pa) (16)

where p is the density, c is the speed of sound, «; is the out-of-plane wavenumber, k,; is
the radial wavenumber, and w = 27f is the angular frequency. Modes with a negative «,
cannot be propagated when the excitation frequency is known.

The cut-off frequency calculation formula for each mode can be derived from Equation (16),

which is derived as follows:

w? — ¢2K2

o (17)

fi=

2.6. Timoshenko Beam Model

The flow transport pipeline model is usually constructed as a beam model or a shell

model. Popular beam models include the Euler Bernoulli beam and the Timoshenko beam,
which have different conditions for application. The former does not consider the shear
effect of the pipe, while the DLLFP has a thick wall, and its shear deformation is not
negligible. The Timoshenko beam model, however, can be used to construct the model of
DLLFP and achieve calculation results in good alignment with reality. Therefore, in this
paper, the DLLFP is calculated using the Timoshenko beam model, and the solid elastic
waves are classified into shear, longitudinal, and bending waves based on the relative
position between the axial direction of the pipe and the direction of wave motion, as shown
in a study by [46].

In the Timoshenko theoretical model, the bending wavenumber analytic equation, the

longitudinal wavenumber analytic equation, and the shear wavenumber analytic equation
are expressed as follows [47].

The model of a Timoshenko beam subjected to transverse vibrations caused by trans-

verse loads in the x-y plane is shown in Figure 1, and the equations of motion are shown

below [48].
%y oty EI 02 0%y ol o2 0%y
a2) ~Plr T Aca a1 PA5e) T agrar 1 PA5R) =0 18)

where E is the modulus of elasticity, G is the shear modulus, y is the cross-sectional shape
factor, g indicates the external force, p is the density of the beam material, A is the cross-
sectional area of the beam, and I is the moment of inertia of the beam cross-section to the
neutral axis. Since the pipe has a circular cross-section, the shape factor y calculated from
shear is set at 0.9 based on the strain energy theory.
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Figure 1. Timoshenko’s theoretical model.

If it is assumed that the external force is 0, that is, g = 0; then, the basic solution of the
equation is y = Bel @) and the number of waves k = w/c; B is the wave amplitude, w is
the angular frequency, c is the wave speed. Substitution of these variables into Equation (18)
results in the following equation:

El., ,o, I E a0 Pl 44
pAk k“c A(1+Gy)kc +AGykc =0 (19)

The following equations are used to simplify calculation:

_JLtq By _ Jpel _ JEI
b= A(1+Gy)’ s = " y,a— oA

Equation (19) can be simplified into
skt — k2P — KA 4+ aPk =0 (20)

Let w = 27tf, where f is the frequency, and the bending wavenumber of the Timoshenko
beam model can be obtained as

o \/ 2(2nf)? & /B 2] — ) — ) on

24?2

The longitudinal vibration model of the pipe is shown in Figure 2, where u denotes
the longitudinal displacement at a point on the cross-section at x, S denotes the combined
axial stress at the cross-section at x, A is the cross-sectional area, and p is the mass density
of the material.

S—-— —-—-S+aa;3dx

Figure 2. Longitudinal vibration model of pipeline.

According to D’Alembert’s theorem, the axial force on each pipe section during
longitudinal vibration of the pipeline is derived, and then the longitudinal wavenumber
of the pipeline Timoshenko beam model is obtained from the relationship between wave
number and frequency combined with Hooke’s law as follows:

—w,/L
kL = w E (22)
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The pipe shear vibration model is shown in Figure 3. Let the longitudinal axis of
the pipe before deformation be along the x axis, the horizontal axis be the y axis, the
displacement of the center of the cross-section with coordinates x along the horizontal axis
be w(x, t), and the shear force F4 on the cross-section be proportional to the shear strain
Y = dw/0x [49], and then the following equation is obtained:

Jw
Fy = yGAg (23)

where y is the cross-sectional shape factor, G is the shear modulus, and A is the cross-
sectional area.

w(x, t)

OF———— —

—— x
X = —dx

F, [D[ Fat (9FA/x)dx
y

Figure 3. Shear vibration model of pipeline.

The kinetic equation is given as follows:

azw oF A
Adx—— = (Fa+ ==dx) — F 24
p X a tz ( A + a X x) A ( )
Substitute w = 27tf with Equation (23) into Equation (24), and the tangential wavenum-
ber of the pipeline Timoshenko beam model is obtained as

ks = 21tf /y% (25)

Finally, the analytical Equation (21) for the bending wave number, (22) for the lon-
gitudinal wavenumber and (25) for the shear wave number of the sandwich pipe are
solved.

3. Numerical Modeling

In order to observe the spatial distribution modes that can exist on a long-distance
waveguide at a given frequency, the DLLFP is simplified into a two-dimensional model,
and the infinitely long DLLFP is modeled into a two-dimensional model wizard. The
main consideration is the influence of the medium in the tube on the pipeline; thus, the
pipeline is placed in a vacuum environment. In the developed model, the two pipe walls
are specified as Layer 1 and Layer 2 from inside to outside. The inner diameter of Layer 1
is set at 0.0475 m and the outer diameter of Layer 1 at 0.05 m. The inner side of Layer 2
touches the outer side of Layer; thus, the inner diameter of Layer 2 is also set at 0.05 m,
and its outer diameter is set at 0.053 m. The liquid in the pipe is water, Layer 1 is made
of structural steel, and Layer 2 is made of Titanium beta-21S. The free triangular meshing
technique is used to delineate the mesh of the pressure acoustic domain, with the mesh
size selected from the hyperfine configuration. The outer layer of the pipe wall is divided
into grids using mapped distribution, and the number of distribution cells is set to 5. The
contact boundary between Layer 1 and Layer 2 is set as a continuous contact pair, and the
outer wall of Layer 2 is set as a free boundary condition. The two-dimensional model of the
DLLFP is shown in Figure 4, and the selected boundary is the continuous pair boundary.
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Figure 4. Model diagram of the DLLFP.

By parametric scanning, the excitation frequency is scanned from fy = 10 Hz to
fmax = 25 kHz, and the scan step is set to 249.9 Hz. The dispersion curve of the pipe
in this case is calculated, where the wall thickness of Layer 1 is 2.5 mm, the wall thickness
of Layer 2 is 3 mm, and the pipe is filled with water. Then, the excitation frequency is
scanned from f = 10 Hz to fmax = 25 kHz with parametric scanning, and the scan step is set
to 249.9 Hz; the Layer 1 wall thickness is scanned from 2 mm to 3.5 mm, with the scan step
set to 0.15 mm and the scan type set to the specified combination. The dispersion curve of
the pipe in this case is calculated, where the wall thickness of Layer 2 is 3 mm, and the pipe
is filled with water. The material parameters are shown in Table 1.

Table 1. Material parameters.

. Wall Thickness Density p Sound Velocity ¢ Young’s Modulus E . , .
Materials [mm] [kg/m’] [m/s] [pal Poisson’s Ratio u
Structural steel 2.5 7850 Disregard 205 x 10° 0.30
Titanium beta-21S1 3 4940 Disregard 105x 10° 0.33
Water Disregard 1000 1500 Disregard Disregard

4. Simulation and Analysis of the DLLFP
4.1. Comparison of Numerical and Analytical Solutions

Given that the dispersion curves vary as the physical fields differ, and to verify the
correctness of the calculation procedure, numerical simulations are performed on the
DLLFP shown in Figure 4 under different physical fields and the numerical solution is
compared with the analytical solution. The analytical solution is used to embed the wave
number formula derived in the paper into COMSOL Multiphysics are used for calculation
to obtain the analytical results of the dispersion curve. Through parametric scanning, the
excitation frequency is scanned from f = 10 Hz to fmax = 25 KHz, and the scan step is set to
249.9 Hz. The mode analysis frequency is given as f( = 10,000 Hz for the interior of the pipe,
the mode search method is set to the manual search method, the APPACK solver is selected
as the mode solver, and the mode search base ky = 271f(/co. The numerical simulation is
solved using the MUMPS direct solver, which requires higher memory usage compared to
iterative solvers, but is more robust. The free triangular meshing technique is chosen to
divide the mesh in the pressure acoustic domain. The solid mechanics domain is selected to
divide the mesh by mapping distribution, and the number of cells of the whole geometric
mesh is 6638. The physical fields are the pressure acoustic domain, solid mechanics domain,
and acoustic-structural coupling domain. The fluid inside the DLLFP is water, the x-axis is
the scanning frequency in Hz, and the y-axis is the phase velocity value in m/s. The black
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asterisk line indicates the dispersion curve obtained with analytical calculation, and the red
dot line indicates the dispersion curve obtained with numerical simulation. The dispersion
curves of different physical fields are shown in Figure 5.
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Figure 5. Comparison of numerical solutions and analytical solutions. (a) Pressure acoustic domain.
(b) Solid mechanics domain. (c) Acoustic-structural coupling domain.

From Figure 5, it can be seen that, except for slight deviations in the pressure acoustic
domain, the analytical and numerical solutions of the main guided wave modes are in
good agreement in the solid mechanics domain and the acoustic—solid coupling domain.
The difference between the numerical and analytical solutions in Figure 5b is also related
to the number of modes solved, increasing the number of modes solved for the numerical
solution results in more accurate results. Finite element calculations have good accuracy,
which validates the correctness of the simulation method and the multi-layer pipe model.
Figure 5a shows that the number of guided wave modes increases with the scanning
frequency. The phase velocities of the four guided wave modes decrease with increasing
frequency (except for the phase velocity of the straight-through mode, which does not
vary with scanning frequency), and tend to be similar to the phase velocity of the straight-
through mode, indicating significant dispersion characteristics. When the phase velocity
approaches the cut-off frequency of the guided wave [50], the phase velocity tends to
infinity. From Figure 5b,c, it can be observed that there are more propagating guided
wave modes in the acoustic—solid coupling domain than in the solid mechanics domain,
indicating that the additional modes are generated during coupling, and the propagation
of guided wave modes at the same frequency is more complex under the action of acoustic—
solid coupling. The dispersion curve of the T(0,1) mode in the coupling domain remains
relatively smooth from low frequency to high frequency, indicating that it basically has no
dispersion and can be considered as a candidate for detection.
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4.2. Dispersion Curves at Different Frequency—Thickness Products

Figure 6 shows the dispersion curves of phase velocity versus frequency—thickness
product for different guided wave modes in the acoustic—structural coupling domain. With
parametric scanning, the excitation frequency f is scanned from 10 Hz to f max = 25 kHz
with a scan step set to 249.9 Hz, and the wall thickness of Layer 1 is scanned from 2 mm to
3.5 mm, with a scan step set to 0.15 mm and the scan type set to the specified combination.
The mode analysis frequency is given as fo = 10,000 Hz for the interior of the pipe, the
mode search method is set to the manual search method, the APPACK solver is selected as
the mode solver, and the mode search base kg = 27tf/cg. Numerical simulation is solved
with the MUMPS direct solver, the free triangular meshing technique is chosen to divide
the mesh in the pressure acoustic domain, and the mapped distribution is chosen to divide
the mesh in the solid mechanics domain, with 6638 cells in the whole geometric mesh. The
x-axis is the frequency-thickness product fd (Hz-m), and the y-axis is the phase velocity
value ¢, (m/s). The black asterisk line indicates the dispersion curve obtained with the
analytic calculation, and the red dot line indicates the dispersion curve obtained with the
numerical simulation. The dispersion curve of the pipe in this case is calculated, where the
wall thickness of Layer 2 is 3 mm and the pipe is filled with water.

20,

S

0
0

o

T T T
« . *  Analytic solutions
¢ Numerical solutions

_ 15,000 . B

*
*
10,000 * * q
*

Phase velocity (m/s

Frequency thickness product (Hz-m)

Figure 6. Sound-structural coupling frequency dispersion diagram.

As Figure 6 shows, the number of propagating guided wave modes in the DLLFP
grows with the frequency-thickness product, which implies an increase in interference dur-
ing ultrasonic guided wave nondestructive fault detection. When the frequency-thickness
product fd = 0~18 Hz-m, the propagating guided wave in the DLLFP is dominated by
the straight-through mode, and the phase velocity hardly varies with changes in the
frequency-thickness product. When the frequency-thickness product fd = 18~67 Hz-m,
modes with a higher phase velocity of propagating guided waves start to appear. The
different propagating guided wave modes start to intersect. In ultrasonic guided wave non-
destructive testing, these intersections corresponding to the frequency—thickness product
are to be avoided because the guided wave modes excited by the thickness product at this
frequency have equal phase velocity, and the time domain display on the oscilloscope is the
simultaneous arrival of echoes, which will cause serious interference to the nondestructive
fault echo analysis. When the frequency-thickness product fd = 67~85 Hz-m, the phase
velocity of the excited propagating guided waves tends to be the same and the number
of propagating guided wave modes excited by the same frequency—thickness product is
high, which is not conducive to ultrasonic guided wave nondestructive testing; thus, this
frequency-thickness product excitation range should be avoided.

4.3. Wavenumber—Thickness Product Versus Angular Frequency Curve

Figure 7 shows the curves of relationship between the wavenumber-thickness product
and angular frequency for DLLFP in different physical fields. With the help of parametric
scanning, the excitation frequency f is scanned from 10 Hz to fmax = 25 kHz with a scan
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step set to 249.9 Hz, and the wall thickness of Layer 1 is scanned from 2 mm to 3.5 mm with
a scan step set to 0.15 mm and the scan type is set to the specified combination. The mode
analysis frequency is given as f( = 10,000 Hz for the interior of the pipe, the mode search
method is set to manual search, the APPACK solver is selected as the mode solver, and the
mode search base ky = 27tf(/cg. The numerical simulation is solved with the MUMPS direct
solver, the free triangular meshing technique is chosen to divide the mesh in the pressure
acoustic domain, and the mapped distribution is chosen to divide the mesh in the solid
mechanics domain, with 6638 cells in the whole geometric mesh. The physical fields are
the pressure acoustic domain, solid mechanics domain, and acoustic—structural coupling
domain. The fluid inside the DLLFP is water, the x-axis is the wavenumber—thickness
product kd, and the y-axis is the angular frequency w in rad/s. The relationship curve
between wavenumber-thickness product and angular frequency of the pipe in the case of
Layer 2 is calculated, with a wall thickness of 3 mm and the pipe filled with water.
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Figure 7. Relationship between wavenumber-thickness product and angular frequency of DLLFP.
(a) Pressure acoustic domain. (b) Solid mechanics domain. (c¢) Acoustic—structural coupling domain.

As Figure 7 shows, some propagation modes in the DLLFP already have large angular
frequencies w at a small wavenumber-thickness product kd. Since the group velocity
cg = wpk, this means that these propagating guided wave modes have a large group velocity
¢g. In ultrasonic guided wave nondestructive testing, the echoes of these propagation
modes of the guided wave when encountering flanges or damages will be more easily
extracted, which ensures the reliability of the judgments derived from the analysis of
the echoes.

4.4. DLLFP with Simple Positive Wave Distribution

In order to observe the internal sound field distribution of a DLLFP in the acoustic—
structural coupling domain, the corresponding numerical simulation analysis is also per-
formed in this paper. The excitation frequency fy is parametrically scanned from 10 Hz to
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fmax =25 kHz, with the scan step set to 249.9 Hz. The mode analysis frequency is given
as fo = 10,000 Hz for the interior of the pipe, the mode search method is set to the manual
search method, the APPACK solver is selected as the mode solver, and the mode search
base kg = 27tf9/co. Numerical simulations are solved using the MUMPS direct solver to
calculate the acoustic pressure stress distribution. The partial sound pressure distribution
clouds are given for the scanning frequencies of f = 5008 Hz and f = 20,002 Hz.

After the sound pressure distribution clouds are summarized, some of the sound pressure
distribution clouds under the coupled domain sound field are shown in Figure 8. The (2,0)
mode simple positive wave shown in Figure 8c is found to occur intensively in the high-
frequency phase of f = 17,503~25,000 Hz. The (1,0) mode simple positive wave shown in
Figure 8b appears intensively in the intermediate phase from f = 12,755~19,502 Hz. While
the sound pressure distribution is shown in Figure 8a for the through mode, the (2,1)
mode simple positive wave in Figure 8f is shown almost throughout. Figure 8 also shows
that the sound pressure distribution of the straight-through mode is plotted as a cloud
with a frequency f = 5008 Hz and a wavenumber k = 10.619. The straight-through mode
appears again in a frequency f = 20,002 Hz and a wavenumber k = 41.412, which proves
that the straight-through mode is present across the full spectrum of frequencies. A
comparison between Figure 8b,e reveals that the phase of the sound pressure distribution
cloud varies with frequency. Different propagation modes appear in different frequency
bands because of the difference in their respective cut-off frequencies. As the wavenumber
increases, the sound pressure increases along the radius; in the high-frequency part, the
overlap of different propagating guided wave modes makes the sound pressure distribution
more complex.
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5. Conclusions

In this study, numerical solutions were obtained for the dispersion characteristics of
a DLLFP in the following three different physical domains using software: the pressure
acoustic domain, the solid mechanics domain, and the acoustic-solid coupling domain.
By comparing the numerical solutions with the analytical solutions, the feasibility and
correctness of applying the Timoshenko beam model to solve the dispersion characteristics
of layered fluid-filled pipes were validated. The frequency-thickness product dispersion
curves and wavenumber-thickness product dispersion curves of the DLLFP were presented,
and the variation patterns of the dispersion curves of different propagating guided wave
modes with increasing frequency—-thickness product were analyzed. It was found that
the number of propagating guided wave modes in the DLLFP increases with increasing
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frequency-thickness product, and the guided wave dispersion curves vary with different
propagation modes. The T(0,1) mode in the phase velocity dispersion curve is found to
remain essentially smooth from low to high frequencies

The pressure distribution cloud map of the DLLFP at specific frequencies was obtained
through numerical simulation, and the characteristic of the intersection between the straight-
through mode and the dispersion curve of the guided wave propagation mode was verified.
The analysis of the characteristics of the dispersion curve and the pressure distribution of
the DLLFP can provide a reference for the selection of modes in guided wave detection, can
accurately identify pipeline damage, can reduce the possibility of misjudgment, and can
ensure the safe and stable operation of pipeline systems. This finding has good commercial
prospects in the field of non-destructive testing.

Nonetheless, our proposed model only considers water as the liquid medium filled
in the pipeline, and the fluids transported by the pipeline in actual engineering may also
be comprised of complex fluids such as non-Newtonian fluids [51]. In future work, it is
also necessary to verify the model with other types of liquids, or to carry out relevant
experimental verification to meet the requirements of actual production.
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