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Abstract: This work presents a remote control device designed to drive the arm gestures of an
assistant humanoid mobile robot. The remote control is a master device with two passive arms
configured to replicate the four degrees of freedom of each arm of the original assistant humanoid
robot and send this information to the robot. This configuration allows the mobile robot to directly
replicate the position of the arms on the remote controller. The objective of this proposal is to
provide the robot with enhanced non-verbal and pointing communication capabilities during human
interaction or assistance. The master device registers the angular position of each joint of its passive
arms and transmits this information to the mobile robot, which replicates it. The experimental
evaluation of the system has shown that the humanoid robot is able to successfully replicate any
gesture on the remote controller. The positions of the arms have been sampled at a frame rate of 20 ms,
and the average telecontrol delay obtained in the gesture experiments has been 549 ms, without
appreciable jumps or irregularities in the gestures. The conclusion is that the direct manipulation of
the passive arms of the remote control device provides the APR-02 humanoid robot with enhanced
non-verbal and pointing communication capabilities during human interaction or assistance.

Keywords: remote control device; arm gestures; humanoid robot; telecontrol

1. Introduction

The technological development of autonomous mobile robots is leading to increasingly
capable devices [1], but there are still many applications that require supervision or direct
operator guidance in unknown and unconstrained environments [2].

Teleoperation is the extension of sense and manipulation capacities to a distant lo-
cation [3]. Teleoperated robots are devices remotely controlled by operators in distant
environments [4–8] to collect information or carry out tasks. In this context, telepresence
provides people with the feeling of being present in a distant environment [9].

Teleoperation is a meaningful subject that is imperative in some critical robot applica-
tions [10]. Even fully autonomous mobile robots may require some degree of supervision,
teleoperation or telepresence to complete complex tasks [11], such as search and rescue mis-
sions [12], delicate maintenance labor [13] or elderly care [14]. Indeed, in situations where
human life depends on the action and precision of robot movements, a human operator con-
trolling the teleoperation device is indispensable [15]. Deploying activities by mimicking
human behavior is also useful in simple and repetitive chores [16] and imitation learning
allows a mobile robot to be trained to perform tasks from human demonstrations [17].

The development of cooperative tasks is naturally supported via gestures and non-
verbal communication because they ensure successful expression and task comprehen-
sion [18]. When using teleoperated robots in teleworking and collaboration over distance,
nonverbal communication also plays an important role if the robots are capable of express-
ing gestures [19].

Teleoperated systems can be classified according to the type and direction of the
information exchanged between the operator and the robot [20]. According to this criterion,
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the first teleoperated systems worked under unilateral control, in which there was a one-
way communication channel from the operator to the robot. The subsequent introduction
of feedback from the robot to the operator resulted in the bilateral control method, and
the combination of force feedback and variable feedback such as force, tactile, visual and
sound led to the multimodal feedback method.

Most commonly used teleoperation methods can be sorted according to the mode of
control into direct, supervisory and multimodal teleoperation [2,3]. Direct or master-slave
control mode requires the commands of the operator to drive the robot and make decisions.
It employs visual feedback from the remote vehicle and traditional controllers such as
joysticks for control input. In supervisory teleoperation, the operator monitors the robot
and provides assistance when making decisions. In this method, an autonomous control
loop provides continuous feedback from the robot, and the control of the system is shared
by the robot and the operator, who performs a higher level of overall monitoring [21].
Multimodal teleoperation systems collect information from several sensors, synthesize
it and provide a multimodal view of the world to the teleoperator. Multimodal sensor
feedback offers efficient control command generation tools and rich situational awareness
that help the operator make correct and timely control decisions in dynamic and complex
environments [22]. In all telecontrolled systems, the operator is primarily responsible for
instructing or monitoring robot tasks in a remote environment.

New teleoperation methods are continually researched, and the devices used vary
depending on the application [23,24]. More information can be found in the review on
robotic remote control methods based on human motion for realistic interaction in virtual
collaboration systems presented by Jung et al. [20]. In summary, robot control techniques
allow different degrees of operation intervention; the most widespread include collab-
orative control [25], mixed-initiative control [26], adjustable autonomy [27] and sliding
autonomy [28].

New Contribution

The exact reproduction of human motion by robots is usually a challenging task
because of the different proportions, degrees of freedom and joint ranges of humans and
robots. Considering the mechanical configuration of the robot joints as a limitation, the
new contribution of this work is the development of a low-cost remote control device that
replicates the proportions and degrees of freedom of the arms of a humanoid robot. The
advantage of this proposal is twofold: it simplifies the task of mapping the gestures for
robot replication, and the remote telecontrol is easier because a human operator intuitively
maps user input to output when controlling bioinspired devices [29,30].

The device allows a remote operator to define expressive and pointing arm ges-
tures [31], whereas the humanoid robot can replicate such gestures. The device is composed
of a mechanical structure with a static T-shaped configuration with two passive articulated
arms attached that replicate the shape and degrees of freedom of the telecontrolled robot.
The system registers the angular position of each joint using potentiometers and this infor-
mation is mapped and transmitted to the robot. Then, the robot arms mimic the angular
positions of the joints defined in the remote controller.

The paper is structured as follows. Section 2 describes some background on remote
robot control. Section 3 describes the humanoid mobile robot that is remotely controlled.
In Section 4, the remote controller is presented in a detailed manner. Section 5 presents
the experiments performed to validate the remote controller. Final remarks are given in
Section 6.

2. Background on Remote Robot Telecontrol

In the scientific literature, there are a variety of proposals focused on mobile robot
telecontrol. Some of these approaches are based on data gathered from the human body,
which are adapted offline to the kinematic structure and constraints of the telecontrolled
robot [32–38]. Other approaches are focused on imitating human motion [39] in real
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time [40]. In some of them, the lower body of the robot does not move [41,42] or is only
used for balancing [43–45], whereas some applications are focused on providing efficient
and stable locomotion [46].

Chen et al. [47] introduced a collaborative project to put assistive robot manipulators
into homes to help people with disabilities. Researchers identified and developed assistive
capabilities of the PR2 robot to develop a suite of open-source software tools that blend
the capabilities of the robot and the user. The system interface mode consists of a screen
with button-click inputs executed with a cursor on-screen controlled by users via a head
tracker. Koenemann et al. [48] proposed a real-time imitation of human body motions for
the Nao robot based on registering human motion with an MVN Suit by Xsens (Enschede,
The Netherlands). The system maps the motion to the robot end effectors while balancing
the center of mass of the robots. In this case, the joints of the operator and the Nao robot
are not equivalent, so the human motion had to be calibrated and mapped. Cerón et al. [49]
developed a multimodal teleoperated assistive robot with real-time motion mimic. The
system uses a NAO robot, a Kinect V2 sensor, a set of Meta Quest virtual reality glasses
and Nintendo Switch controllers to implement communication between devices. The robot
can operate under two configurations: using the Nintendo Switch controllers to drive the
robot in long-distance travel and using the Kinect sensor and the virtual reality glasses to
control the arm gestures and head orientation. In this case, the virtual reality glasses are
also used to give image feedback to the operator.

Balmik et al. [50] proposed a motion recognition framework based on a deep convolu-
tional neural network for a Kinect-based Nao teleoperation. They developed an adaptive
technique that dynamically balances the center of mass of the robot and allows whole-body
imitation. The robot recognizes human motions and imitates them with an accuracy of 95%,
which demonstrates that the scheme presented is robust and can be used in teleoperated
robots. Eirale et al. [51] presented Marvin, an omnidirectional robotic assistant for domestic
environments tailored to implement three target service functions: monitoring of elderly
and reduced mobility users, remote presence and connectivity and night assistance. The
platform can be controlled with a wireless gamepad and uses a lightweight deep-learning
solution for visual perception and vocal command processing.

Materna et al. [52] presented a user interface for a semiautonomous assistive robot
based on a mixed virtual 3D environment and sensor data. In this case, robot control is
achieved using low-cost commodity hardware, with the optional addition of a 3D mouse
and stereoscopic display. Moczulski [53] proposed the combination of autonomous and
virtual teleoperation technologies in robots to deal with complex situations in which the
control system is unable to find the right solution to solve the problem. In such cases,
the control to solve the problem is transferred to a remote operator that feels immersed
in the operating scene of the robotic system. Su et al. [54] proposed an approach for
intuitive and immersive teleoperation of a single robotic manipulator using a mixed reality
subspace for visualization. In a similar direction, Lim et al. [55] used six virtual reality
trackers to teleoperate the upper body of a humanoid robot. The advantage of input devices
implemented in virtual reality is that they are part of the virtual environment and no special
input device is required [47,56].

In contrast to the cited methods, the remote control device proposed in this work
is based on the use of two passive arms replicating the four degrees of freedom of each
arm of the humanoid robot telecontrolled. In general, remote control devices that are
geometrically similar and have the same degrees of freedom as human arms and hands
are easier to use because the operator intuitively maps user input to output [29,30]. This
intuitive configuration simplifies the task of mapping the gestures in the robot, increases
the efficiency of telecontrolled mobile robot, and increases teleoperator performance [29,57].
Additional information on input devices can be found in the review on human–machine
interfaces for systems with robotic manipulators presented by Young et al. [58].
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3. APR-02 Humanoid Robot

The humanoid mobile robot telecontrolled in this work was developed under the
Assistant Personal Robot (APR) concept described in [59,60]. The first prototype developed
under the APR concept was the APR-01 mobile robot, which was originally designed as
a teleoperated robot [59]. The next APR-02 mobile robot prototype was designed as an
autonomous robot with teleoperation capabilities [60]. The APR-02 mobile robot has been
applied as a walk-helper [61] and used as a tool for systematic odometry error correction [62,63].
In the walk-helper application, the height and weight of the robot provided physical
support and guidance to people walking, using the arms as a holding support.

The APR prototypes include communication features such as audio and video con-
nection between the local user and the remote operator combined with omnidirectional
mobility. The APR-02 mobile robot includes a set of improvements to increase the anthro-
pomorphism and affinity with the robot. The mobile robot includes a vertical tactile screen
to display an iconic face with an animated mouth and eyes that follow the user to enhance
the sense of attention from the robot [64]. The robot generates short characteristic sounds
to express salutations and provide acceptance or rejection feedback. It has two articulated
arms with four degrees of freedom each: three in the shoulder and one in the elbow. The
servomotors used in each joint of the arms are digital bus servos (Dynamixel AX-12) that
operate in a closed loop to manage arm motion robustly in terms of fault-tolerant con-
trol [65]. Figure 1a shows the APR-02 mobile robot used in this paper moving its hands to
knock at a door, and Figure 1b shows the same scene from the teleoperator perspective,
captured with a panoramic camera located on the head of the robot. Currently, the hands of
the APR-02 robot are figurative and fixed because the use of hands for object manipulation
is not usually required in social telepresence robots [19].
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Figure 1. APR-02 robot used in this paper moving its hands to knock at a door: (a) Side view of the
robot; (b) teleoperator view from the panoramic camera available on the head of the robot.

In a first stage, mobile robot gestures were controlled with an online imitation system
using a finite number of prerecorded gestures. This work expands gesture control options
by allowing a human operator to directly control the pose of the arms of the robot.
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4. Remote Control Device

The mechanical structure of the remote control device developed in this work is a
scaled reproduction of the upper part of the APR-02 robot. This mechanical structure
has a fixed T-shaped configuration with two mobile arms attached at the ends. Each arm
replicates the degrees of freedom of one robot arm and includes a gamepad at the end of
the forearm, providing direct access to some mobile robot functions. Figure 2 shows the
kinematic representation of the remote control device, which coincides with the kinematics
of the robot. This kinematics is a simplified interpretation of a human model. For example,
the robot elbow only has one degree of freedom and the wrist is fixed. Hence, the remote
control device and the mobile robot do not allow an exact imitation of human arm motions.
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Figure 2. Kinematic representation of the joints of the remote control device, which is a scaled-down
reproduction of the upper part of the APR-02 robot, with four degrees of freedom in each arm.

4.1. Electronic Control Board and Sensors

The electronic control board of the remote control device is based on a microcontroller
responsible for reading the sensors and sending the commands to the robot. Figure 3
shows the schematic diagram of the board and its connections with the sensors. The
microcontroller used is the STM32F407G microcontroller from ST Microelectronics (Geneva,
Switzerland). This microcontroller includes an ARM Cortex-M4 32-bit processor with a
clock frequency of 168 MHz. The chip also packages 1 MB of non-volatile flash memory
for user code and 196 kB of internal SRAM. The STM32F407G provides a wide variety
of hardware peripherals such as precision timers, USART, I2C, SPI, CAN, and USB OTG
communications, as well as three 12-bit Analog to Digital Converters (ADC) that can be
configured to sample different input pins, two Digital to Analog Converters (DAC), two
General Purpose Direct Memory Access (DMA) controllers and 80 General Purpose Inputs
and Outputs (GPIO) pins. The sensors used are one potentiometer at each arm joint and
multiple selection buttons on the auxiliary gamepads placed on the hands’ region.

The joints’ angular positions in the remote control device are measured using the 3547S
three-turn precision potentiometers manufactured by Bourns (Bourns, Inc., Riverside, CA,
USA), which have a total resistance of 1 kΩ ± 3%, and a maximum dissipated power of
1 W. The potentiometers are connected to a supply voltage of 3.3 V, resulting in a 3.3 mA of
current drawn. Each potentiometer actuation knob is coupled to the mechanical structure
of the arms so that any change in the angular position of the joints causes a change in
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its resistance. The resistance of each potentiometer is indirectly measured by reading its
output voltage using the internal ADCs, which return a value between 0 and 4095 that is
calibrated and mapped to an angular position. The auxiliary gamepads have 8 buttons
and a joystick with two additional potentiometers each. Each button is connected to
an individual GPIO pin, which reads them as digital inputs. The potentiometers of the
joysticks are also connected to ADC channels.
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Figure 3. Schematic diagram of the electronic control board: the position of the arm joints is measured
using potentiometers, and two gamepads including buttons and potentiometers provide direct access
to several mobile robot functions.

Table 1 shows the sensors and the sampling frequencies used to get their outputs. The
microcontroller samples the position of the joints every 20 ms and sends this information
to the mobile robot every 20 ms. Other information such as the state of the buttons of the
auxiliary gamepads is sampled every 100 ms, but it is only submitted to the robot in case of
changes, as it is only used to activate specific functionalities in the mobile robot. One of
the joysticks in the auxiliary gamepads is used to control the motion of the mobile robot
(forward, backward, left and right displacements) and is sampled every 100 ms. The other
joystick is used to control the gaze of the eyes of the robot which are updated at 20 ms
in order to synchronize the motion of the gaze and the arms. The submission rate can be
decreased if arm movement becomes discontinuous.

Table 1. Sensors, sampling frequencies and submission rates.

Sensor Sampling Frequency Submission Rate

Joint potentiometers 50 Hz 50 Hz
Gamepad buttons 10 Hz In case of changes

Gamepad joystick (for motion control) 10 Hz 10 Hz
Gamepad joystick (for eye-gaze control) 50 Hz 50 Hz

4.2. Humanoid Robot Joint Replication

Figure 4a shows the shoulder of the APR-02 robot, which has three degrees of freedom
(DOF), implemented with servomotors. Figure 4a shows a view partially oriented from one
side and below to highlight the disposition of the three servomotors in the left shoulder of
the robot. The three-DOF motion simulating a shoulder is achieved by concatenating the
three servomotors: a motor shaft is fixed to a 3D printed part, which in turn is attached to
the housing of another motor. Hence, the first motor is housed inside a part that is fixed to
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the central structure of the robot, the second motor is attached to the shaft of the first one,
and the third motor is attached to the shaft of the second one. The shaft of the third motor
is then connected to a 3D-printed part that represents the robot arm.
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Figure 4. Shoulder joints detail seen from below: (a) Robot shoulder; (b) CAD model of the remote
control device; (c) implementation of the remote control device.

The shoulder of the remote control device acquires three DOFs with the same method
as the aforementioned, but using potentiometers instead of motors. The casing of the first
potentiometer is fixed to a 3D-printed part that is statically joined to the main structure
of the device. The second potentiometer is fixed to the shaft of the first one, and the
third potentiometer is fixed to the shaft of the second one using 3D-printed parts. Finally,
a part simulating the arm of the remote control device is fixed to the shaft of the third
potentiometer. Figure 4b shows the CAD design of the shoulder of the remote control
device with the same view orientation as Figure 4a. Each independent 3D-printed part is
represented in a different color to enhance comprehension, potentiometers are represented
in green, and the main body of the structure is grey. Figure 4c shows the implementation of
the shoulder in the remote control device with the same view orientation as Figure 4a. In
this case, 3D-printed parts and potentiometers are black.

Figure 5a shows the elbow of the APR-02 robot, which has only one degree of freedom
implemented with one servomotor. Figure 5a shows the elbow in a slightly bent position.
The motion is achieved by fixing the servomotor casing to the robot arm with a 3D-printed
part and joining the motor shaft to the forearm with another 3D-printed part. The elbow
of the remote control device is assembled in the same way: fixing the potentiometer to
the arm and its shaft to the forearm. Figure 5b shows the CAD design of the elbow of the
remote control device, with the arm represented in yellow, the forearm in grey, and the
potentiometer in green. Figure 5c shows the final elbow implementation; the arm, forearm
and potentiometer are black.

4.3. Hand Gamepads

The arms of the mobile robot include figurative representations of human hands that
are not articulated. Instead of replicating the figurative hands, the remote control device
includes a gamepad at the end of each arm. Figure 6 shows the gamepads, which have
multiple buttons and one joystick each. The buttons provide access to some specific mobile
robot functionalities without releasing the arms from the device during robot telecontrol.
Figure 6a shows the functions associated with each button in the right hand and Figure 6b in
the left hand. For example, the gamepad corresponding to the robot’s right arm (Figure 6a)
allows telecontrolling the motion of the robot, and the gamepad corresponding to the
robot’s left arm (Figure 6b) allows controlling the eye movements, the facial expression and
the sounds emitted by the robot, as well as the activation and deactivation of the robot arms
and the on-screen camera. In both controllers, there is an emergency stop button and a
button to emit a warning sound in case of emergency. The inclusion of these two gamepads
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increases the versatility of the remote control device presented because it enables a direct
control of the main robot functionalities.
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4.4. Device Implementation

Figure 7 shows the CAD design and the final implementation of the remote control
device. The assembly is composed of a base that supports a central T-shaped mechanical
structure with two arms and an electronic control board attached. The fixed structure is
made of an aluminum structural profile with 3D-printed parts fastened to hold the arms.
The electronic control board is inside a casing that is joined to the top of the main structure.
The connections between the electronics, the potentiometers and the gamepads are made
via bus cables. The distance between both shoulders is 0.43 m, their height from the base is
0.52 m, and the total length of the arms is 0.42 m. These dimensions allow the teleoperator
to control the robot by standing behind the device and using its arms as an extension of
their own arms.
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4.5. Imitation Model

Motion-based remote control is an important technology for intuitive interaction with
remotely placed robots [20]. An imitation model needs to be defined to achieve a perceptive
system that successfully captures motion commands and translates them to the robot. The
imitation model implemented in the remote control device involves the reproduction of the
motion of the master device by the humanoid robot.

The sense of embodiment in teleoperation applications contributes to making the
operator feel present in the environment where the robot is [66]. Some embodiment com-
ponents include the sense of ownership, agency and self-location, which can be increased
through visual feedback [67]. The combination of the sense of embodiment, communication
quality, robustness of the robot control system and experience of the operator determine the
effectiveness of the control achieved [67]. In this work, the sense of embodiment is achieved
through visual and auditory feedback. To this end, the APR-02 mobile robot includes a
panoramic camera located on the top of the robot and its screen can be used to represent an
iconic face or the teleoperator’s face through an additional videoconference application.

Figure 8 shows the imitation model proposed to telecontrol the APR-02 mobile robot.
The teleoperator moves the arms of the remote control device and the mobile robot im-
itates the motion of the arms. The imitation model includes four stages: joint position
measurement at a frame rate of 20 ms, mapping, data transmission, and execution by
the robot. The positions of the four joints of each arm in the remote control device are
measured as a direct reference for the imitation process. The advantage of this remote
control device replicating the joints of the mobile robot is that it is not needed to compute
the inverse kinematics of the arms in order to properly map the position of the arms of
the mobile robot. There are several available communication systems: USB wire in case of
short distance telecontrol, Zigbee wireless personal area network (WPAN) in telecontrol
distance ranges from 10 to 100 m, internet WiFi wireless network protocol combined with
videoconference communication for telepresence, and 4G/5G wireless broadband cellular
network as internet access point [68,69] in case the remote controller, the robot or both
devices do not have access to a WiFi network. The use of a wireless communication system
includes a characteristic communication delay that affects the telecontrol of the arms and
the remote videoconference established between the mobile robot and the remote control
device. One future work pending is the implementation of direct 5G device-to-device
communication [70,71] between the remote control device and the mobile robot in order to
take advantage of its low communication delay.
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Figure 8. Structure of the imitation model: the operator moves the arms of the remote control device;
the positions of the joints are measured, mapped, and sent to the APR-02 mobile robot.

5. Experimental Evaluation

This section describes the experimental evaluation of the remote control device driving
the arm gestures of the APR-02 mobile robot. The proposed system is evaluated regarding
the joint position similarity between the remote control device and the humanoid robot.
The experimental evaluation is focused on the time delay of the imitation process, whereas
other factors also studied in legged humanoid robots such as standing stability are not
analyzed because the APR-02 is a wheeled robot.

5.1. Measurement of Target Joint Positions

Joint trajectories are the evolution of the angular values of each joint over time, and
they define the performance of the imitation [39]. The target joint positions established in
the remote control device have been monitored to assess the information submitted to the
mobile robot.

Figure 9 shows the evolution of the joint angles in the right and left arms measured
in the remote controller during a dynamic gesticulation example. The joint positions
have been sampled at a frequency of 50 Hz and do not show discontinuities. The joints
are numbered as in Figure 2: joints 1, 2 and 3 are in the shoulder, and joint 4 is in the
elbow. In the gesturing example represented, the arms of the remote control device made
three inward circles in the air, with the arms raised (almost parallel to the ground) and
the elbow slightly bent. This circular profile can be appreciated in Figure 9, where each
ascending curve corresponds to the start of a new turn. The comparison of the joints’ angle
profiles in the right and left arm registering the same symmetric gesture shows similarities
between both arms, but they are not equal because the operator is focused on performing a
natural gesticulation rather than generating a perfectly symmetric movement. The small
differences and irregularities between the movements of the two arms is what makes the
robot movement feel more natural and familiar.

5.2. Measurement of the Structural Delay of the Imitation Model

The structural delay is the time required by the mobile robot to replicate the position
of the joints submitted by the remote controller device. The structural delay depends on
the closed-loop control applied to drive the arms of the mobile robot and does not depend
on the communication network.
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Figure 9. Evolution of the joint angles measured by the remote control device when the arms perform
three circular inwards trajectories in the air: (a) right arm; (b) left arm.

Figures 10 and 11 show the evolution over time of the target joint angles of the right
and left arms of the mobile robot (solid lines) during a dynamic gesticulation, and also the
real evolution of the joint angles of the robot (dotted lines). The joints are numbered as
in Figure 2. In all experiments, the starting position of the arms of the remote controller
device and the humanoid robot corresponds to a resting position in which the arms are
extended and hanging. This initial position is called the neutral position in this work.
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Figure 10. Evolution of the joint angles when the arms of the mobile robot perform four circular
inwards trajectories in the air: (a) right arm; (b) left arm. Solid lines depict the joint position received
by the mobile robot, and dotted lines depict the real evolution of the joints of the robot.
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Figure 11. Evolution of the joint angles when the arms of the remote control device perform three
lateral trajectories in the air: starting from a neutral position, moving upwards-left, and then horizon-
tally to the right, returning to the left and repeating to the right: (a) right arm; (b) left arm. Solid lines
depict the joint position received by the mobile robot, and dotted lines depict the real evolution of the
joints of the robot.

In the gesturing example represented in Figure 10, the arms of the robot perform four
inward circles in the air, with the arms raised (almost parallel to the ground) and the elbow
slightly bent. The dynamic joint evolution generated by this circular gesture is difficult to
imitate because the circular profile is always accelerating and decelerating the motors of
the robot joints. Similarly, in the gesturing example represented in Figure 11, the arms of
the robot perform three lateral displacements in the air: starting from the neutral position,
moving upwards and diagonally to the left, and then horizontally to the right, returning to
the left and repeating to the right.

The analysis of the information displayed in Figures 10 and 11 shows that the joint
positions received by the robot are the same as those submitted by the remote control
device, without discontinuities or jumps. Additionally, the comparison of the evolution of
the target joint (solid lines) and the real robot joint (dotted lines) reveals that the structural
delay of the humanoid robot replicating arm gestures is from 120 to 540 ms, depending on
the joint and movement performed, with an average structural delay of 274 ms.

The arms of the robot are programmed to reach all target joint positions, but the
structural delay may reduce the amplitude of the motion in case of changing the direction
of the motion. In the case of the periodic gestures shown in Figures 10 and 11, this effect
reduces the amplitude of the joint evolution performed by the robot with respect to the
target joint evolution.

5.3. Measurement of the Telecontrol Delay

In networked communication, the communication delay or latency is the time delay
between sending a control command and obtaining an output response [2]. The com-
munication delay depends on the time required to pass via the communication channel
established between the remote control device and the mobile robot [72]. The total telecon-
trol delay during a robot telecontrol is twofold, caused by the communication delay (time
required to send target information from the remote control device to the robot) and the
structural delay (time required by the robot to imitate the joint positions received).
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In a previous study, the average latency measured in the WiFi network available in the
experimentation area was 266 ms [73], showing low variability. Therefore, the combination
of this communication latency (266 ms) and structural delay (274 ms) makes that an average
telecontrol delay of 540 ms must be expected during mobile robot telecontrol. In general, it
is assumed that a teleoperator remotely tracking a trajectory with a robotic manipulator
will show compromised performances if the cumulated latency exceeds 300 ms [74], a
threshold that decreases task efficiency when grasping objects [20]. However, this is not
the application case because the telecontrol of the humanoid robot is designed for arm
gesture imitation and pointing during human interaction instead of object tracking and
grasping. In such applications, latency variability can be more problematic than average
latency when using gestures for non-verbal communication [75].

The total average telecontrol delay has been measured by comparing the motion of an
operator moving the arms of the remote control device and the motion of the arms of the
humanoid robot. Some of the gestures assessed include upwards, downwards, lateral and
circular movements, waves and claps. In all experiments, the starting position of the arms
is the neutral position.

Table 2 shows a sequence of frames extracted from a video recording of an upwards
movement. The relative time-lapse between the frames displayed is approximately 0.42 s.
In each picture, a circle has been manually used to mark the position of the arms of the
human operator and the robot, and the trajectory between frames has been depicted with
a spline line. Blue color has been used to identify the right arms of the robot and the
user, while green color has been used for the left arms. The lines help to appreciate the
time delay between the remote control device commands and the robot’s accomplishment.
Although this gesture requires rapid joint acceleration and deceleration, the robot was able
to replicate this upwards gesture without any noticeable problem or difficulty, showing an
average telecontrol delay of 680 ms.

Table 2. Sequence of movements obtained when the remote operator performs an upwards gesture,
moving the arms from the neutral position to upwards.

(a) t = 0.00 s (b) t = 0.42 s (c) t = 0.83 s (d) t = 1.25 s (e) t = 1.67 s (f) t = 2.08 s (g) t = 2.50 s
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Similarly, Table 3 shows a sequence of frames extracted from a video recording of
an upwards and lateral movement, in which the arms start at the neutral position, move
diagonally slightly upwards and to the left, and then move to the right horizontally. The
relative time-lapse between frames is 0.42 s, circles are also superposed to the arms of both
devices and curved lines join the positions in each frame. Again, although this gesture
requires rapid joint acceleration and deceleration, the mobile robot was able to replicate
this gesture without any noticeable problem or difficulty, showing an average telecontrol
delay of 445 ms.
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Table 3. Sequence of movements obtained when the operator performs an upwards and lateral
gesture, moving the arms from the neutral position to upwards-left and then horizontally to the right.

(a) t = 0.00 s (b) t = 0.42 s (c) t = 0.83 s (d) t = 1.25 s (e) t = 1.67 s (f) t = 2.08 s (g) t = 2.50 s
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Finally, Table 4 summarizes the structural delay of the robot and the total telecontrol 
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Upwards Neutral (Table 2, (a))—Up (Table 2, (g)) 0.274 s 0.68 s 

Upwards and lateral 

Neutral (Table 3, (a))—Diagonal left (Table 3, (d)) 0.274 s 0.45 s 

Left (Table 3, (d))—Right (Table 3, (g)) 0.274 s 0.44 s 

Right (Table 3, (g))—Left 0.274 s 0.50 s 

Downwards Up (Table 2, (g))—Neutral 0.274 s 0.50 s 

Circular (inwards) Neutral—Neutral (both arms inwards, 4 turns) 0.274 s 0.90 s 
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Finally, Table 4 summarizes the structural delay of the robot and the total telecontrol
delay measured while performing nine arm gestures. The gestures analyzed are upwards,
upwards-lateral, downwards, circular-inwards, circular-clockwise, wave and clap. The
movement column of Table 4 provides a short description of the gesture performed. To
simplify the interpretation of the results, the structural delay (established in the experiment
described in Section 5.2) is assumed as a fixed value in all the gesture experiments. The
telecontrol delay shows the motion delay observed by visually comparing the gesture of
the human operator and the robot. The telecontrol delay is in a range from 340 ms to
900 ms with an average value of 549 ms, which is very similar to the value estimated from
the average structural delay and the average communication delay (540 ms). This delay
does not compromise the dynamic visual perception of the remote operator controlling the
humanoid robot or the user interacting with the robot. A video showing the telecontrol of
the APR-02 robot can be found in [76] and in the Supplementary Materials.

Table 4. Telecontrol performances of the imitation model.

Gesture Movement Structural Delay Total Telecontrol Delay

Upwards Neutral (Table 2, (a))—Up (Table 2, (g)) 0.274 s 0.68 s

Upwards and lateral
Neutral (Table 3, (a))—Diagonal left (Table 3, (d)) 0.274 s 0.45 s

Left (Table 3, (d))—Right (Table 3, (g)) 0.274 s 0.44 s
Right (Table 3, (g))—Left 0.274 s 0.50 s

Downwards Up (Table 2, (g))—Neutral 0.274 s 0.50 s
Circular (inwards) Neutral—Neutral (both arms inwards, 4 turns) 0.274 s 0.90 s

Circular (clockwise) Neutral—Neutral (both arms clockwise, 4 turns) 0.274 s 0.34 s
Wave Neutral—up—wave (right arm, 4 waves) 0.274 s 0.60 s
Clap Neutral—clap (4 claps) 0.274 s 0.53 s

6. Discussion and Conclusions

This work presents a remote control device designed to drive the arm gestures of an
assistant humanoid robot. The remote control is a master device that has been implemented
with two passive arms replicating the four degrees of freedom of each arm of the humanoid
robot. The electronic control board of the master device is based on a microcontroller
that senses the position of passive each joint by using potentiometers and then sends this
information to the humanoid robot for direct arm gesture replication. The remote control
device also includes two gamepads instead of hands in order to control the motion and
head of the mobile robot without releasing the arms of the device during telecontrol.
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The imitation model implemented includes four stages: joint position measurement,
mapping, data transmission and execution by the robot. The positions of the joints of
each arm in the remote control device are measured and submitted at a frame rate of
20 ms as a direct reference for the imitation process. The advantage of a remote control
replicating the joints of a humanoid robot is that there is no need to compute the inverse
kinematics of the arms to properly map the position of the arms of the robot. This exact
joint replication avoids the inverse kinematic problems reported by Koenenmann et al. [48]
when controlling the position of the end effector of a humanoid robot using a complete
human model as a reference. The imitation model is compatible with a half-duplex or
full-duplex videoconference call to fully develop a telepresence application. To this end,
the robot includes a high-resolution panoramic camera on its top and three RGB-D cameras
placed at different heights.

The experimental evaluation of the remote control device has been performed by
comparing the time-evolution of the joints’ angles of the arms of the device and of the APR-
02 humanoid robot. A first experiment was conducted to monitor the joint information
registered by the remote control device before submitting it to the mobile robot. This
monitoring showed no jumps or irregularities in the remote control device sampling and
submitting the position of the joints and other information at a general frame rate of 20 ms.

A second experiment was conducted to measure the average structural delay of the
mobile robot to replicate the position of the joints received from the remote controller device.
This structural delay only depends on the current closed-loop control applied to drive the
arms of the mobile robot and does not depend on the communication network. The results
show that the APR-02 mobile robot required from 120 to 540 ms to replicate the position
of the arms of the remote control device, which represents an average structural delay
of 274 ms. The evaluation of this structural delay has also shown that the use of a target
sampling time of 20 ms in the remote controller device does not generate discontinuities or
data loss during the replication of the gestures.

A third experiment was conducted to measure the total telecontrol delay, which
cumulatively includes the communication delay required to send the target information
from the remote control device and to receive it on the robot plus the structural delay
required by the robot to replicate the joint positions received. The total telecontrol delay has
been estimated by comparing the gesture established in the remote control device and the
gesture of the humanoid robot. Some of the gestures assessed include upwards, downwards,
lateral and circular movements, waves and claps. This experiment has shown that the
humanoid robot is able to replicate any target gesture successfully. The telecontrol delay
measured while performing these gestures was found in a range from 340 ms to 900 ms
with an average value of 549 ms. Although time delay and data missing during networked
communication are inevitable [20], the results showed no jumps, discontinuities or data loss
during the development of all the gesture experiments performed in this work. At this point,
it should be noted that the communication delay in a remote telecontrol application depends
on the quality and performance of the communication network [67,77]; for example, they
can be significantly enhanced by using a 5G device-to-device communication [70,71].

In this work, the teleoperator performing the gestures tried to perform all movements
using a normal (not too fast and not too slow) human speed. However, the highest
telecontrol delays have been achieved in the cases in which the operator moved the arms
upwards and circularly (inwards), which were the fastest gestures assessed. These results
agree with the imitation experiments conducted by Koenenmann et al. [48], who concluded
that gesture error is correlated with the velocity of the gesture. In any case, similarly to the
results obtained by Koenemann et al. [48] and Cerón et al. [49] controlling an NAO robot,
the communication delay did not compromise the dynamic visual perception of the remote
operator controlling the humanoid robot and the user perception while interacting with
the robot.

The development of the experiments has validated the importance of the gamepads
included in the remote control device as they provide direct access to some common robot



Appl. Sci. 2023, 13, 11115 16 of 19

functionalities without releasing the hands from the controller. These results agree with
Young et al. [58], who stated that the physical control of input devices plays an important
role in the link between the robot and the remote operator.

As a final conclusion, the direct manipulation of the passive arms of the remote control
device provides the APR-02 humanoid robot with enhanced non-verbal and pointing
communication capabilities during human interaction or assistance.

Limitations and Future Work

The main limitation of this proposal is the fact that the remote control device is
customized to match the mechanical structure of the APR-02 mobile robot. This limitation
can be avoided by using inverse kinematics to compute the joint angles of any specific
humanoid robot configuration. Another limitation is that this approach is not addressed to
control end effectors.

Future work will cover the application of the remote control device to optimize
the control and torque demands of each joint and the addition of end-effectors in the
hands [78,79]. Additional future works will focus on improving the spatial awareness of the
teleoperator [80] by using a virtual reality headset and a stereoscopic camera in the mobile
robot [81] and the implementation of direct 5G device-to-device communication [70,71].

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/app131911115/s1, Video S1: APR-02 Remote gesture control,
also available at https://youtu.be/EmjljtDh3YI (accessed on 27 June 2023).
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