
Citation: Qiao, R; Xu, G.; Wang, P.;

Cheng, Y.; Dong, W. An Accurate,

Efficient, and Stable

Perspective-n-Point Algorithm in 3D

Space. Appl. Sci. 2023, 13, 1111.

https://doi.org/10.3390/

app13021111

Academic Editors: Miguel Cazorla,

Félix Escalona Moncholí and

Francisco Gomez-Donoso

Received: 5 December 2022

Revised: 7 January 2023

Accepted: 11 January 2023

Published: 13 January 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied  
sciences

Article

An Accurate, Efficient, and Stable Perspective-n-Point
Algorithm in 3D Space
Rui Qiao 1, Guili Xu 1,*, Ping Wang 2, Yuehua Cheng 1 and Wende Dong 1

1 College of Automation, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
2 College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China
* Correspondence:guilixu2002@163.com

Abstract: The Perspective-n-Point problem is usually addressed by means of a projective imaging
model of 3D points, but the spatial distribution and quantity of 3D reference points vary, making it
difficult for the Perspective-n-Point algorithm to balance accuracy, robustness, and computational
efficiency. To address this issue, this paper introduces Hidden PnP, a hidden variable method.
Following the parameterization of the rotation matrix by CGR parameters, the method, unlike the
existing best matrix synthesis technique (Gröbner technology), does not require construction of a
larger matrix elimination template in the polynomial solution phase. Therefore, it is able to solve
CGR parameter rapidly, and achieve an accurate location of the solution using the Gauss–Newton
method. According to the synthetic data test, the PnP algorithm solution, based on hidden variables,
outperforms the existing best Perspective-n-Point method in accuracy and robustness, under cases of
Ordinary 3D, Planar Case, and Quasi-Singular. Furthermore, its computational efficiency can be up
to seven times that of existing excellent algorithms when the spatially redundant reference points
are increased to 500. In physical experiments on pose reprojection from monocular cameras, this
algorithm even showed higher accuracy than the best existing algorithm.

Keywords: Perspective-n-Point problem; CGR parameter matrix; Gröbner technology; hidden PnP

1. Introduction

In the field of computer vision, the Perspective-n-Point(PnP) problem refers to the
determination of the relative position and gesture relation between the target and the
camera by combining the image coordinates obtained from the camera with the coordinates
of n known feature points of the target in the world coordinate system [1]. With the boom
in robotics and space technology in recent years, the PnP problem has been widely studied
and applied among fields including autonomous robot navigation [2], robot positioning [3],
hand-eye calibration [4], spacecraft rendezvous and docking [5], target recognition and
tracking [6], augmented reality, and SLAM [7].

The PnP problem is solvable when n ≥ 3, and it cannot be solved when n ≤ 2. When
n = 3, P3P can be regarded as a minimal subset of the PnP problem. To be exact, when
n ≥ 4, it is called a general PnP problem, which exhibits higher pose estimation accuracy
than P3P because of the existence of more redundant information points. The ideal PnP
algorithm features accuracy, stability, high efficiency, and universality. Instead, due to the
difference of scenes,the PnP algorithm fails to achieve high-precision computational results
with high efficiency and stability in actual practice.

1.1. Pnp Problems Solved by Linear and Non-Linear Methods

Table 1 shows that PnP algorithms can be divided into two main categories. The
first is the linear method for the PnP problem, including the Tsai method [8], the HOMO
method [9], and the direct linear transformation method (DLT) [10], etc. The linear method
performs with fast solving speed, as the mapping relation between spatial reference points
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and images is adopted to establish the equation, and the linear method is used to solve the
equation directly. Nevertheless, such a method exhibits larger error and is prone to noise
interference when the number of spatial reference points n ≥ 4 and the spatial reference
points are not in the same plane, which can be mostly explained by the failure to consider
non-linear constraints in the imaging process. The corresponding P4P and P5P algorithms,
when n = 4 and n = 5, proposed by some scholars lack the universal feature of the PnP
algorithm. To avoid the defects of the linear method for the PnP problem, the non-linear
method is adopted for some other PnP algorithms, such as in the literature in [11–19].
Among the examples from the literature, refs. [11,12] employed the SoftPOSIT method
and the orthogonal iteration method, respectively. The results demonstrated that the LHM
algorithm outperformed the iterative methods for PnP problem. The LHM algorithm
reduces the number of unknowns by parameterizing the imaging model, takes the residual
sum of squares of the reference coordinates in the world coordinate system as the loss
function, and obtains the parameters of the rotation matrix and translation matrix by means
of iterative solution. Despite its better performance than the linear algorithm, in terms of
computational accuracy and stability, the iterative algorithm may increase the computation
burden, and even lead to non-convergence and local optimum of the calculation results if
its initial value is beyond a certain range of the real solution; thus, failing the algorithm.
In addition, the iterative method performs low computational accuracy and stability if
the distribution of spatial reference points is similar to Quasi Singular and there are few
redundant feature points in the distribution.

1.2. A Non-Iterative Approach to Optimally Solving PnP Problems

Table 1 shows that scholars have used non-iterative methods to optimally solve the PnP
problem in order to overcome the shortcomings of the iterative method. Firstly, the imaging
model undergoes parameterization, simplification, and deformation to construct non-linear
equations that can be used for optimization. Then, the Gröbner technique (Figure 1) is
adopted to solve the non-linear equations (see [20,21] in detailed steps of Gröbner tool),
and the required pose parameters are obtained. The first non-iterative PnP algorithm is
the EPnP algorithm [13], which takes four spatial virtual points as reference points and
uses these four points to represent the reference points in the rest of the space, and, finally,
obtains the pose information through optimization. The EPnP algorithm requires less
computational time, compared with the iterative method. However, the linear method it
uses leads to unsatisfactory computational accuracy and poor stability when there is noise
and to fewer spatial redundant points. The DLS algorithm [14], also a non-iterative method,
first introduces the CGR (Cayley–Gibbs–Rodriguez) parameterized rotation matrix, and
uses the matrix decomposition technique to process the rotation matrix. The processed
rotation matrix parameterizes the translation vector through the relation derivation of the
imaging model equation, leaving only three unknown parameters in the whole solution
process. Finally, the pose estimation problem is transformed into an unconstrained square
minimization problem by constructing a cost function. The introduction of the CGR
parameterized rotation matrix and the application of the matrix decomposition technique
in the solution process may incur singular value and complex computation, which greatly
affects the accuracy, speed, and stability of the final solution pose. Among the non-iterative
methods, the RPnP algorithm [15], which is different to the DLS algorithm, can be generally
regarded as a phased solution method. First, the PnP problem is transformed into the P3P
problem, that is, the spatial reference points are divided into groups of three, so as to obtain
polynomial sets with the highest order of fourth. Then, the fourth-order polynomial sets,
also non-linear equations, are transformed into linear equations through the linearization
technique. Finally, the required pose parameters are obtained by solving the polynomial
sets. The whole solution process of RPnP, though being a progressive and cohesive strategy,
introduces linearization technology and adopts the non-global optimization method, which
explains its fast computational speed, but less favorable stability and accuracy.
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Table 1. The development of each PnP algorithm. (Note: Y means adopted, N means not adopted, L means Low, M means Median, H means Hight, + means better
than this level, but worse than the next level.).

Algorithm
Name DLT HOMO Tsai LHM POSIT EPnP DLS RPnP ASPnP OPnP UPnP optDLS SRPnP RDLT WIEPnP

Time 1971 1981 1987 2000 2002 2009 2011 2012 2013 2013 2014 2015 2018 2020 2020
Linear

Method Y Y Y N N N N N N N N N N Y N

Optimization
method N N N Y Y Y Y Y Y Y Y Y Y N Y

Iterative
method N N N Y Y N N N N N N N Y N Y

Accuracy L L L H M+ M M+ H H+ H+ H H+ H+ H+ H+
Efficiency H+ H+ H L L H M H M M M+ M+ H H H
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Figure 1. Schematic diagram of Gröbner generation framework.

In addition, some PnP algorithms not only absorb the advantages of iterative methods,
but also overcome their proneness to local optimum, including the ASPnP algorithm [16]
and the OPnP [17] algorithm. Both of the aforementioned algorithms introduce the quater-
nion to represent the rotation matrix, express the translation matrix by the quaternion
parameters through the imaging model equation, and directly construct the objective
function for global optimization by means of such mathematical skills as rewriting the
matrix form and introducing new variables. What merits attention, is that the method
employs the Gröbner technique, instead of the Gauss–Newton method commonly used
in the iterative method, to avoid local optimum when solving the third-order polynomial
sets of the objective function. Nevertheless, the above two PnP algorithms construct a
large elimination template matrix when using the Gröbner technique, which increases
computational burden.

Some scholars have made continuous efforts to improve existing PnP algorithms. For
example, Kneip et al. proposed the UPnP in 2014 [18], and Nakano proposed the opt-
DLS [19] PnP algorithm in 2015, both of which improved the OPnP algorithm. Specifically,
the UPnP algorithm applies to PnP problems under the perspective imaging model and
those under the General Camera Model. The UPnP algorithm cannot match the OPnP
algorithm in the Planar Case and Quasi Singular of reference points. The optDLS algorithm
reduces the number of solutions and the running time of the algorithm by increasing the
constraints of the objective function in OPnP. In 2018, Wang et al. [22] proposed the SRPnP
algorithm, based on the RPnP algorithm. The algorithm only requires solving a univariate
polynomial set of the highest order of 7 and a univariate polynomial of the highest order of
4, and, finally, uses the Gauss–Newton method for one accurate positioning. This algorithm
divides the solution of PnP into three stages, each of which witnesses the formation of an
optimization problem, and utilizes the optimization value obtained in the previous stage
for computation. In this way, the SRPnP algorithm is more accurate and faster than the
RPnP in solution, elevating it into being one of the best algorithms for solving the PnP
problem. Wang also proposed the RDLT algorithm in 2020 [23]. This algorithm, while using
the linear method to solve the PnP problem, improves the DLT algorithm by considering
the imaging constraint relationship between points, which outperforms the traditional
linear method in stability and accuracy, rivals the existing non-linear optimization method,
and even exhibits far higher solving efficiency than the non-linear optimization method. In
2020, Wang et al. [24] proposed the WIEPnP algorithm, which adopted an iterative solution
by setting the weight coefficient of the spatial reference points. The algorithm is still on a
par with OPnP and SRPnP as to accuracy, without significant improvement.

1.3. Problems with Existing PnP Algorithms and Solutions

The above demonstrates that, among the PnP algorithms, except for the RDLT algo-
rithm, the linear solution method is not as efficient, accurate, and stable as the non-linear
solution method. The non-linear method, for solutions, adopts Gauss–Newton method, the
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Levenberg–Marquardt method for iteration, the orthogonal iteration method, and other iter-
ative algorithms to solve the PnP problem. However, the selection of the initial value affects
the accuracy, stability, and computational efficiency of the algorithms, which explains their
less favorable performance compared with the non-iterative method. Among non-iterative
methods, the PnP algorithm, with the best performance, introduces CGR (Cayley–Gibbs–
Rodriguez) to parameterize the rotation matrix, and utilizes the parametrization of the
imaging model equation to translate the vector. The Gröbner is employed to solve pose
parameters, which avoids lengthy computational duration and local optimum caused by
the unreasonable initial values of the iterative method. Instead, the polynomial sets formed
by the PnP problem, are generally rather complex, and the application of the Gröbner
technique to solve the polynomial sets requires the construction of a large elimination
template matrix, which enlarges the computational burden to solve the PnP problem, and
affects the real-time performance of the PnP algorithm in practical applications. In order
to make up for the shortcomings of the above methods, and to improve the robustness,
accuracy, efficiency, and universality of the PnP algorithm, this paper proposes the Hidden
PnP, a method to solve polynomial sets based on hidden variables, which guarantees higher
accuracy, stability, and efficiency in solving the PnP problem. The main contributions of
this paper are as follows:

(1) To prevent singularities in the rotation matrix parametrized by the CGR, a rotation
matrix, R1, is constructed, and the rotation matrix, R, parametrized by the CGR is
processed using R1.

(2) In this paper, accuracy experiments and noise immunity experiments of the hidden
variable method were carried out in three cases, i.e., Planar Case, Ordinary 3D and
Quasi-Singular. The performance of some new PnP algorithms in recent years were
compared and detailed experimental data given.

(3) In this paper, the hidden variable-based PnP algorithm, and other PnP algorithms,
were applied to the physical experiments with monocular vision cameras, and re-
projection experiments of the corner points of calibration plates were carried out. In
addition, detailed reprojection experimental error data for each PnP algorithm are
given.

In the second section, the basic mathematical description of the PnP problem is given
and the mathematical solution process of the hidden variables is described in detail. In
the third section, simulation experiments and results analysis are carried out on Matlab
software using synthetic data. In this section, the posited solution performance of the
proposed hidden PnP method is compared with our Hidden PnP method in three cases,
namely the Ordinary 3D case, the Planar Case and the Quasi-Singular case, as well as in
the case of noise under these three cases. In addition, the section gives experimental data
comparing the operational efficiency of various algorithms, and,finally, the algorithms
are applied to the physical experiment of the reprojection error. Section 4 presents the
conclusions and outlook.

2. Methods
2.1. Description of the PnP Mathematical Model

The imaging model of a camera projecting n 3D reference points under a 3D world
onto a 2D image plane through a lens can be represented by the model in Figure 2. The
equations of the projected imaging model from the world coordinate system to camera one
can be expressed in the following form:

λiPi = Rqi + t, (i = 1, 2, 3, . . . , n) (1)

where qi = [Xi, Yi, Zi]
T , (i = 1, 2, 3, . . . , n) are the coordinates of n 3D spatial reference points

in the world coordinate system, Pi = [ui, vi, 1]T , (i = 1, 2, 3, . . . , n) are the plane coordinates
of n points in the camera coordinate system, and t = [tx, ty, tz]T is the translation vector.
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Figure 2. Coordinate system diagram of camera imaging model.

2.2. Parametric Representation of Rotation Matrices and Translation Vectors, and the Elimination
of Depth Factors

Mathematically, the rotation matrix R is represented in more than one way, including
direction cosine algorithm, Euler angle representation, unit quaternion representation,
Cayley parameter representation (CGR), etc. This paper mainly employed the Cayley
parameter representation (CGR), which is directly derived from the quaternion method.
For example, the rotation matrix R, represented by the quaternion, is:

R =
1
s

 1 + b2 − c2 − d2 2bc− 2d 2bd + 2c
2bc + 2d 1− b2 + c2 − d2 2cd− 2b
2bd− 2c 2cd + 2b 1− b2 − c2 + d2

 =
1
s
U (2)

Among them, (s = 1 + b2 + c2 + d2). The rotation angle closing to 180◦ leads to an
extremely large rotation matrix, represented by CGR, leading to a singular value in the
R matrix and a large calculation error. In response, a rotation matrix R1 is constructed
in the process of code implementation, R1 is adopted to process the rotation matrix R,
parameterized by CGR, and R is restored to its original state after obtaining the final result.
In this way, the singularity caused by R parameterized by CGR is effectively avoided.

Equation (1) is rewritten into matrix form:

λi

 ui
vi
1

 = Rqi +

 tx
ty
tz

, (i = 1, 2, 3, . . . , n) (3)

Meanwhile, the U matrix in Equation (2) is set to be:

U =

 rT
1

rT
2

rT
3

 =

 1 + b2 − c2 − d2 2bc− 2d 2bd + 2c
2bc + 2d 1− b2 + c2 − d2 2cd− 2b
2bd− 2c 2cd + 2b 1− b2 − c2 + d2


Multiply both sides of Equation (3) by s to obtain:

λ̂iPi =

 rT
1

rT
2

rT
3

qi + t̂, (i = 1, 2, 3, . . . , n) (4)

where λ̂i = λis, Pi = [ui, vi, 1]T , t̂i = s[tx, ty, tz]T = [t̂1, t̂2, t̂3]
T .
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According to Equation (4), the depth factor satisfies:

λ̂i = rT
3 qi + t̂3, (i = 1, 2, 3, . . . , n) (5)

Therefore, Equation (5) is substituted into Equation (4) to eliminate all depth factors:

t̂1 − t̂3ui = rT
3 qiui − rT

1 qi (6)

t̂2 − t̂3vi = rT
3 qivi − rT

2 qi (7)

The new variable L = [1, b, c, d, b2, bc, bd, c2, cd, d2]Tis introduced, and Equations (6)
and (7) are rewritten into matrix forms:

Ai t̂ = N̂iL (8)

where Ai =

[
1 0 −ui
0 1 −vi

]
,

N̂i =
[ −Xi + Ziui 2Yiui −2Zi − 2Xiui 2Yi −Xi − Ziui −2Yi 2Xiui − 2Zi Xi − Ziui 2Yiui Xi + Ziui
−Yi + Zivi 2Zi + 2Yivi −2Xivi −2Xi Yi − Zivi −2Xi 2Xivi −Yi − Zivi 2Yivi − 2Zi Yi + Zivi

]
Since n spatial reference points all satisfy Equation (8), it can be obtained as follows:

A1
A2
A3
...

An

t̂ =


N1
N2
N3
...

Nn

v⇔ At̂ = NL (9)

In the case that L has been specified, the linear least square fitting is used to obtain:

t̂ = A+NL (10)

where A+ = (AT A)−1 AT is the inverse matrix of Moore-Penrose matrix.
Equation (10) is substituted into Equation (8) to obtain:

(Ai A+Ni − Ni)L = 0⇔


A1 A+N − N1
A2 A+N − N2
A3 A+N − N3

...
An A+N − Nn

L = 0 (11)

Let J =


A1 A+N − N1
A2 A+N − N2
A3 A+N − N3

...
An A+N − Nn

, Equation (11) is rewritten as:

JL = 0 (12)

In Equation (12), the J matrix of the following scale can be obtained through the above
calculation, based on the known parameters in Equation (1):
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J =


j11 j12 j13 j14 j15 j16 j17 j18 j19 j1,10
j21 j22 j23 j24 j25 j26 j27 j28 j29 j2,10
j31 j32 j33 j34 j35 j36 j37 j38 j39 j3,10

...
j2n,1 j2n,2 j2n,3 j2n,4 j2n,5 j2n,6 j2n,7 j2n,8 j2n,9 j2n,10


Some existing PnP methods adopt the obtained Equation (12) to construct the objective

function, and take the Gauss–Newton method, Levenberg–Marquardt iteration, orthogonal
iteration, and other iterative methods, to solve the pose parameters. According to Section 1,
the selection of the initial value and proneness to local optimum of the iterative methods
undermine their calculation accuracy and speed. In addition, some PnP methods also use
the Gröbner technique to solve the polynomial sets constructed here, which overcomes the
defects of the iterative methods. Instead, its operational process generally requires a huge
elimination template matrix, given the complexity of PnP problems, which seriously affects
the efficiency of the algorithm. Accordingly, Section 4 employs a hidden variable method
to solve the pose parameters of CGR in Equation (12).

2.3. The Application of Hidden Variable Method to Solve Pose Parameters

Due to the numerous polynomial manipulations, the simplification, and the deforma-
tion involved in this section, the application of a general calculation makes the derivation
process rather complicated. Therefore, the extensively used symbolic operation in matlab
software is adopted in this paper to simplify the mathematical description process of hidden
variables, so that readers can easily and intuitively understand the derivation process.

Among them, J(:i), i = 1, 2, 3, . . . , 10 denotes all elements of the ith column of the
J matrix. In the hidden variables, L = [1, b, c, d, b2, bc, bd, c2, cd, d2]T , the new variables
introduced in the previous section, are adopted, where b is set as a constant, and the
remaining parameters are taken as unknowns. Then, the unknowns in Equation (12) are
introduced as new variables to obtain the following equation in the form of a matrix:

Q

 c2

d2

cd

 = −T(b)

 c
d
1

 (13)

where Q = [J(:8), J(:10), J(:9)],

T(b) =


J13 + J16b J14 + J17b J11 + J12b + J15b2

J23 + J26b J24 + J27b J21 + J22b + J25b2

J33 + J36b J34 + J37b J31 + J32b + J35b2

...
...

...
J2n,3 + J2n,6b J2n,4 + J2n,7b J2n,1 + J2n,2b + J2n,5b2


According to Equation (13), c2, d2, and cd is solved through the following mathematical

calculation, exhibiting the following closed-form solution: c2

d2

cd

 = GT(b)

 c
d
1

⇔
 c2

d2

cd

 = W(b)

 c
d
1

 (14)

where G = −(QTQ)−1QT . The calculation results show that G is a 3 × 2n pure numerical
matrix, and W(b) is a 3 × 3 polynomial matrix containing b. At the same time,

G =

 g11 g12 g13 · · · g1,2n
g21 g22 g23 · · · g2,2n
g31 g32 g33 · · · g3,2n


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W(b) =

 w12 + w11b w14 + w13b w17 + w16b + w15b2

w22 + w21b w24 + w23b w27 + w26b + w25b2

w32 + w31b w34 + w33b w37 + w36b + w35b2

 =

 W11 W12 W13
W21 W22 W23
W31 W32 W33


where w11 = G(1 :)J(: 6), w21 = G(2 :)J(: 6), w31 = G(3 :)J(: 6),

w12 = G(1 :)J(: 3), w22 = G(2 :)J(: 3), w32 = G(3 :)J(: 3),
w13 = G(1 :)J(: 7), w23 = G(2 :)J(: 7), w33 = G(3 :)J(: 7),
w14 = G(1 :)J(: 4), w24 = G(2 :)J(: 4), w34 = G(3 :)J(: 4),
w15 = G(1 :)J(: 5), w25 = G(2 :)J(: 5), w35 = G(3 :)J(: 5),
w16 = G(1 :)J(: 2), w26 = G(2 :)J(: 2), w36 = G(3 :)J(: 2),
w17 = G(1 :)J(: 1), w27 = G(2 :)J(: 1), w37 = G(3 :)J(: 1).

Therefore, Equation (14) can be written as:
c2 = cW11 + dW12 + W13

d2 = cW21 + dW22 + W23

cd = cW31 + dW32 + W33

(15)

By observing the relationship between the unknowns c, d, c2, d2, and cd in Equation (14),
the following three identity constraint relations are established:

c2d = (cd)c
(cd)d = d2c
(cd)(cd) = (c2)(d2)

(16)

Equation (15) is substituted into Equation (16) to obtain:
(cW11 + dW12 + W13)d = (cW31 + dW32 + W33)c
(cW31 + dW32 + W33)d = (cW21 + dW22 + W23)c
(cW31 + dW32 + W33)

2 = (cW11 + dW12 + W13)(cW21 + dW22 + W23)

(17)

Equation (17) can be expanded as follows:
s11c2 + s12cd + s13c + s14d2 + s15d = 0
s21c2 + s22cd + s23c + s24d2 + s25d = 0
s31c2 + s32cd + s33c + s34d2 + s35d + s36 = 0

(18)

where s11 = −W31, s12 = W11 −W32, s13 = −W33, s14 = W12, s15 = W13,
s21 = −W21, s22 = W31 −W22, s23 = −W23, s24 = W32, s25 = W33,
s31 = W2

31 −W11W21, s32 = 2W31W32 −W12W21 −W11W22,
s33 = 2W31W33 −W13W21 −W11W23, s34 = W2

32 −W12W22,
s35 = 2W32W33 −W13W22 −W12W23, s36 = W2

33 −W13W23
Since Equation (18) still contains c2, d2, and cd coefficient, Equation (15) is substituted

into Equation (18) to obtain:

(s13 + s11W11 + s14W21 + s12W31)c + (s15 + s11W12 + s14W22 + s12W32)d + s11W13 + s14W23 + s12W33 = 0 (19)

(s23 + s21W11 + s24W21 + s22W31)c + (s25 + s21W12 + s24W22 + s22W32)d + s21W13 + s24W23 + s22W33 = 0 (20)

(s33 + s31W11 + s34W21 + s32W31)c + (s35 + s31W12 + s34W22 + s32W32)d + s36 + s31W13 + s34W23 + s32W33 = 0 (21)

At this time, Equations (19)–(21) are jointly written into a matrix form:
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 h11 h12 h13
h21 h22 h23
h31 h32 h33

 c
d
1

 = 0⇔ H(b)

 c
d
1

 = 0 (22)

where h11 = s13 + s11W11 + s14W21 + s12W31,
h12 = s15 + s11W12 + s14W22 + s12W32,
h13 = s11W13 + s14W23 + s12W33,
h21 = s23 + s21W11 + s24W21 + s22W31,
h22 = s25 + s21W12 + s24W22 + s22W32,
h23 = s21W13 + s24W23 + s22W33,
h31 = s33 + s31W11 + s34W21 + s32W31,
h32 = s35 + s31W12 + s34W22 + s32W32,
h33 = s36 + s31W13 + s34W23 + s32W33.

According to Equation (22),
det(H(b)) = 0 (23)

After the operation and arrangement of Equation (23) with Matlab software, a poly-
nomial equation, with the highest degree of 8 and only the unknown b, can, finally, be
obtained:

E8b8 + E7b7 + E6b6 + E5b5 + E4b4 + E3b3 + E2b2 + E1b = 0 (24)

where Ei (i = 0, 1, 2, 3, . . . , 8) is the known coefficient. The eigenvalue method is used to
calculate the root of b, which has at most 8 roots. The value of c and d can be obtained by
substituting b back into Equations (19)–(21), and, thus, clarifying the value of the rotation
matrix R and translation vector t.

2.4. Precise Positioning Based on Gauss–Newton Iterative Method

In the previous section, the solution x is obtained with the help of Equation (24), but
Equation (11) is not strictly satisfied, due to the presence of noise. As the solution, after
using the hidden variable method, is very close to the optimal solution, the solution x is
further accurately located thanks to the application of the Gauss–Newton method to solve
the least square method. The iteration times of the Gauss–Newton method are no more than
2, given the optimal initial solution. Therefore, the pose measurement problem is taken
as an optimization problem again, making the pose solution as close to the global optimal
value as possible through precise positioning. The following mathematical description is
given:

x′ = argmin(xT FT Fx)

The FTF is the constructed 10 × 10 symmetric matrix, and the iterative equation of x is
x = x + ∆x, where ∆x = −[(FJ)

T(FJ) + λI3×3]
−1(FJ)

T Fx, λ is the damping factor, and FJ
is the Jacobian matrix of F, having expression:

FT
J =

 0 1 0 0 2b c d 0 0 0
0 0 1 0 0 b 0 2c d 0
0 0 0 1 0 0 b 0 c 2d


3. Experiments and Analysis
3.1. Testbed and Test Synthesis Data Generation

This section describes the Matlab simulation experiments conducted on Hidden PnP
and the existing classical PnP algorithm, based on synthetic data, in terms of solving accu-
racy, anti-noise ability, and operational efficiency. The experimental results are compared
and analyzed. The PnP algorithms involved in the comparison were LHM, EPnP+GN,
RPnP, DLS, OPnP, SRPnP, RDLT, and ASPnP, etc. The simulation experiment was completed
on a 4-core CPU model i5-4200H notebook with the main frequency of 2.80 GHz and a
running memory of 8 G.
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A virtual camera, with an image size of 640× 480 pixels and a focal length of 800 pixels,
was constructed on the Matlab platform. When generating random 3D reference points,
the matrix composed of 3D reference points was set as Q = [qw

1 , qw
2 , qw

3 , · · · , qw
n , ]T , as the

solving accuracy of PnP algorithm was affected by the distribution of 3D spatial points, so
as to reasonably test the solving accuracy of each PnP algorithm. According to the different
rank of the matrix QTQ, the following three situations could be selected to randomly
generate 3D reference points:

(1) Ordinary 3D: rank(QTQ) = 3, in which 3D reference points were randomly gener-
ated within the range of [−2,2] × [−2,2] × [4,8]. In this case, the minimum eigenvalue was
almost close to 0.

(2) Planar Case: rank(QTQ) = 2 in which 3D reference points were randomly generated
within the range of [−2,2] × [−2,2] × [0,0]. In this case, all reference points were on the
same plane.

(3) Quasi-Singular: rank(QTQ) = 3, in which 3D reference points were randomly
generated within the range of [1,2] × [1,2] × [4,8], and the ratio of the minimum eigenvalue
to the maximum eigenvalue was less than 0.05.

After generating the above initial 3D spatial reference points, a rotation matrix and
a translation vector were first generated randomly as the truth values of the simulation
experiment, which were respectively Rture and Tture. Secondly, the generated 3D spatial
reference points were converted from the camera coordinate system to the world coordinate
system. Finally, different PnP algorithms were adopted to convert the reference points
in the world coordinate system, obtained in the previous step, to the image plane, and,
thus, obtaining the estimated rotation matrix Rest and translation vector Test. In order to be
consistent with the definition of evaluation error in existing literature, this paper adopted
the definition of error in [17]:

erot(degree) = max
k∈1,2,3

cos−1(rT
k,truer

T
k,est)× 180/π (25)

erot(%) =
‖ test − ttrue ‖
‖ ttrue ‖

× 100 (26)

The performance of PnP algorithm was certainly immune from the definitions adopted.

3.2. Comparative Simulation Test of the Calculation Accuracy of PnP Methods under
Different Circumstances

In this section, the method described in the previous section was adopted to gener-
ate 4 to 20 3D spatial reference points under the cases of Ordinary 3D, Planar Case, and
Quasi-Singular, respectively, which served as the experimental input data of the PnP
algorithm to be tested. At the same time, zero-mean Gauss noise, with a size of δ = 2 pix-
els, was added to the test image. In the test, each PnP algorithm was independently
tested 500 times under a fixed number of 3D reference points. Due to the large number
of algorithms and the data, the following graph could only be used for macroscopic
performance comparison, and readers can refer to Appendix A (Tables A1–A3) for the
specific test data. Figures 3–5 show the comparison of the mean errors (a,c) and median
errors (b,d) of the rotation matrix and the translation vector in the Ordinary 3D, Planar,
and Quasi-Singular cases, respectively, with spatial reference points n ranging from 4 to
20, and δ = 2. For all figure groups, the four sub-figures are: a. mean error of the rotation
matrix; b. median error of rotation matrix; c. mean error of translation vector; d. median
error of translation vector. To avoid repetitive expressions, only the different cases are
given in the title of the figure.
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Figure 3. Error comparison in the Ordinary 3D case.

Figure 4. Error comparison in the Planar Case.
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Figure 5. Error comparison in the Quasi-Singular case.

According to the above simulation tests, due to the iterative method used and the
sensitivity of the initial value problem, the LHM algorithm exhibited higher error and
rapid fluctuation of accuracy error in Ordinary 3D, Planar Case, and the Quasi-Singular
case, and especially so in the latter, compared with other PnP algorithms in the presence
of fewer spatial redundant points. The EPnP+GN algorithm, which was also a non-
iterative algorithm, also produced a large error when there was noise and few spatial
redundant points, which came down to the linear solution method adopted. Meanwhile,
it was found that, if the Gauss–Newton method was not introduced to optimize the solu-
tions of EPnP+GN, the performance of the EPnP algorithm alone was as unsatisfactory
as that of the LHM algorithm. Interested readers could conduct experiments to ascertain
the performance gap. The authors no longer tested the difference alone. In the above
three cases, the DLS algorithm fluctuated greatly, which could be explained by the lack
of proper treatment regarding the singularity of the CGR parameters, and, thus, the poor
accuracy error and stability of its solution. The RPnP algorithm used linearization to
transform non-linear equations into linear equations, and its optimization was still non-
global, which led to its less favorable solution error and stability, compared with OPnP,
SRPnP, RDLT, ASPnP, and Hidden PnP, etc. The OPnP, SRPnP, RDLT, and ASPnP, etc.
exhibited favorable stability, and the accuracy error and stability of the four algorithms
were similar.

Through a detailed comparison of the simulation data, it was easy to see that the best
performance among the above nine algorithms was the Hidden PnP, which had the smallest
error in solution accuracy. In addition, this algorithm provided the best stability in solving
the three cases, without large fluctuations. The reason for this was that the Hidden PnP
could quickly calculate the solution near the optimal solution. On this basis, the algorithm
used this solution as the initial value of the Gauss–Newton method to achieve the precise
location of the solution in one or two iterative steps. This process avoided the problem of
unreasonable choice of initial values when using the Gaussian–Newton method directly,
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and also avoided the operational instability and large computational burden caused by the
need to construct a large matrix elimination template using the Gröbner basis technique.
The Hidden PnP, therefore, had the high accuracy and universality sought by the PnP
algorithm.

3.3. Comparative Simulation Test of Anti-Noise Performance of the PnP Method

The above simulation tests demonstrated the smaller accuracy error and better sta-
bility of the Hidden PnP, compared with other PnP algorithms, in different cases. Due
to the interference of the environment and electronic equipment in practice, the collected
information contained noise, so it was necessary to compare the anti-noise performance
of the Hidden PnP algorithm and other PnP algorithms, which is a vital index of the
comprehensive performance of a PnP algorithm. Accordingly, the following anti-noise
performance simulation tests were conducted, in which the 3D spatial reference point n
was set to be 10, and 10 different noise zero-mean Gaussian noises were set in Ordinary
3D, Planar Case, and Quasi-Singular case, respectively. The pixel value distribution started
from δ = 0.5 pixels and increased to δ = 5 pixels by arithmetic sequence, with a tolerance of
0.5 pixels. In the above three cases, each PnP algorithm was independently tested 500 times
for each fixed noise pixel value. Due to the large number of algorithms, compared in the
simulation test, and the large amount of data, the following data curve could only be used
as a macroscopic performance comparison display. Refer to Appendix B (Tables A4–A6) for
the specific test data. Figures 6–8 shows the error comparison of zero-mean Gaussian image
noise from 0.5 to 5 pixels in ordinary 3D, coplanar, and quasi-singularity cases, respectively.
For all figure groups, the four sub-figures were: a. mean error of the rotation matrix; b.
median error of rotation matrix; c. mean error of translation vector; d. median error of
translation vector. The spatial reference point n = 10.

Figure 6. Error comparison in ordinary 3D case.
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Figure 7. Error comparison in Planar case.

Figure 8. Error comparison in Quasi-singularity case.
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The above simulation test curve and data revealed that the LHM algorithm exhibited
the worst anti-noise ability in the above three cases, and the solution accuracy error of
the DLS and EPnP+GN algorithms jumped with larger noise pixels. The anti-noise ability
of the RPnP algorithm was better than that of the DLS and EPnP+GN algorithms, but
worse than that of the OPnP, SRPnP, RDLT, and ASPnP algorithms. It was obvious that the
Hidden PnP algorithm had the best anti-noise ability among the above nine algorithms.

3.4. Comparative Simulation Test of Calculation Efficiency of Different PnP Methods

The above simulation tests demonstrated that the solution accuracy error of the Hidden
PnP algorithm was smaller than that of existing excellent PnP algorithms in Ordinary 3D,
Planar Case, and Quasi-Singular cases. The Hidden PnP outperformed in anti-noise ability,
which, however, was not enough. As mentioned in the introduction, an excellent PnP
algorithm should perform not only with stability, accuracy, and universality, etc., but also
with high computational efficiency. This section compares the computational efficiency
of algorithms, including LHM, EPnP+GN, RPnP, DLS, OPnP, SRPnP, RDLT, and ASPnP,
with Hidden PnP. In this simulation experiment, the pixel value δ of zero-mean Gaussian
noise was fixed to be 2, and the number of spatial reference points n in the PnP algorithms
involved increased from 4 to 500. Each PnP algorithm was independently tested 1000 times
with different numbesr of spatial reference points, and the average running time calculated.

As shown in Figure 9 and Table 2, the simulation results here were the same as
those mentioned in the introduction. The main factor affecting the efficiency of the LHM
algorithm was the iterative solution, the duration of which accelerated with increase of
spatial redundant point quantity. The DLS algorithm transformed the pose estimation
problem into an unconstrained least square minimization problem through the construction
of a cost function, which failed to avoid increase in its computational time with more spatial
redundant points. The computation time of the ASPnP and OPnP algorithms did not
increase much with the climbing spatial reference points. However, the Gröbner technique
required the construction of a large elimination template matrix, which was the main
burden that affected the operational efficiency of these algorithms. It is worth noting that
the phased solution of the RPnP algorithm had the fastest speed among all algorithms
when the spatial reference point was n≤ 200. Nevertheless, with the increase in the number
of points, the computational time gradually increased. The SRPnP, as an improved version,
also had the same problem. The RDLT algorithm adopted the traditional linear solution,
considering the constraints between points, the efficiency of which was better than that of
the ASPnP algorithm when the spatial reference point was n ≤ 100. To sum up, the runtime
simulation results from the various algorithms showed that, at 500 spatial reference points,
the hidden variable-based PnP algorithm had a computational efficiency 1.5 to 7 times
higher than those of the other algorithms that are considered excellent.

Figure 9. Comparison of the average running time of the PnP algorithm when the number of spatial
reference points n ranged from 4 to 500.
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Table 2. Comparison of the average running time of the PnP algorithm when the number of spatial reference points n ranged from 4 to 500 (unit: ms).

Algorithm 4 25 50 75 100 150 200 250 300 350 400 450 500

LHM 2.5509 7.7007 12.2105 16.8193 21.7186 30.4288 42.9690 53.1203 61.6848 71.1986 90.3208 99.2493 119.3778
EPnP+GN 1.6838 2.1403 2.2151 2.5364 2.9156 3.4627 6.3518 4.6227 5.6691 5.9800 6.6296 7.6668 8.3636

RPnP 0.6458 0.7559 0.6870 0.9943 1.0058 1.4853 1.7070 2.3842 2.5221 2.9366 4.9716 5.9435 6.7481
DLS 3.0037 4.8548 6.4148 8.8721 9.6642 17.0611 19.8981 21.0115 24.3279 28.3810 35.4492 39.2732 60.9486

OPnP 20.1334 20.5736 19.7894 21.6439 20.3364 19.8135 20.6554 20.0438 19.9601 21.1331 25.7936 20.9996 19.6722
SRPnP 1.6868 1.5887 1.6163 3.0589 2.4218 3.5239 4.5388 5.9875 6.3517 8.4796 13.12230 14.4261 15.3281
RDLT 1.6937 1.39685 1.66310 1.8911 2.3511 2.8533 3.3670 4.2310 4.8015 5.9169 9.9572 6.3648 6.6381

ASPnP 2.5683 2.3886 2.4077 2.3488 2.4894 2.5342 2.6157 2.6969 2.8046 3.1248 3.0530 3.4392 3.2354
Hidden PnP 1.4739 1.7446 1.6663 1.6259 1.4931 1.5347 2.0399 1.6966 1.7153 1.9807 2.1906 2.0242 2.2700



Appl. Sci. 2023, 13, 1111 18 of 27

3.5. Materials and Experimental Protocol for Physical Experiments

Based on synthetic data, the above section compared the performance of the Hidden
PnP algorithm with the other eight PnP algorithms, and the Hidden PnP algorithm proved
to have better accuracy, stability, anti-noise ability, and calculation speed. In this section,
the authors applied the Hidden PnP algorithm and the other eight algorithms to physical
objects, so as to reveal their actual performances.

The experimental materials employed included a high-resolution camera and high-
precision checkerboard calibration board. In addition, the experiment adopted a Rmon-
cam G180 camera, featuring a distortionless angle of 120 (Figure 10a), a resolution of
1920 × 1080, and a pixel size of 3.01 µm. Zhang’s camera calibration method [25] was also
employed to calibrate the internal parameters of the Rmoncam G180 camera. As to the
calibration board, a customized black and white checkerboard was utilized (Figure 10b), in
which the size of each checkerboard was 30 mm × 30 mm, and the machining accuracy
error was 0.01 mm. Table 3 depicts the internal parameters of the Rmoncam G180 camera’s
calibration.

Figure 10. (a) Rmoncam G180 camera. (b) High-precision checkerboard calibration board.

Table 3. Internal parameters of Rmoncam G180 camera.

Parameter Specific Data

Focal length fx = 735.725581, fy = 735.80416
Principal point (CCx , CCy) = (598.40811, 381.51785)

Radial distortion coefficient k1 = 0.06689, k2 = −0.08019
Tangential distortion coefficient p1 = −0.00088, p2 = −0.00196

Figure 11 illustrates the specific experimental process. The cyan circle ‘◦’ in Figure 12
refers to the position of all corner points within the extraction range of corner points on the
calibration plate. Figure 13 reveals the 10 images of the calibration plate under different
attitudes, where blue ‘◦’ stands for the sub-pixel corner point randomly extracted by
various PnP algorithms, while the red ‘+’ represents the reprojection corner point calculated
through the PnP algorithms. The loss function to evaluate the performance of the PnP
algorithms was constructed as:

δ̄ =
1

100

100

∑
i=1

(ui − ūi)
2 + (vi − v̄i)

2 (27)

The following can be observed from the reprojection error test data in Table 4: the DLS
algorithm had the largest error, followed by the LHM algorithm. Except for the Hidden
PnP algorithm, the error accuracy of the remaining six algorithms did not differ greatly. In
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general, the mean and median errors of reprojection coordinate points of the Hidden PnP
algorithm were basically equal to, or even slightly superior to, the optimized algorithms,
including OPnP, SRPnP, and ASPnP. Nonetheless, the solution method of the Hidden PnP
performed with the best efficiency. The experiment on physical objects in this section
also revealed that the Hidden PnP could match the best existing PnP method in solution
accuracy, which supported the cost performance of the algorithm in solving PnP problems.

Figure 11. Flow chart of physical objects reprojection experiment.

Figure 12. Extraction range of corner points on calibration board.
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Figure 13. Ten images of the calibration plate at different distances and attitudes and the reprojec-
tion effects.

Table 4. Mean error (meanerr) and median errors (mederr) of reprojection coordinate points in 10 im-
ages of the calibration plate at different distances and attitudes (unit: pixel).

Algorithm 1 2 3 4 5 6 7 8 9 10

LHM meanerr 45 136.1 25.2 134.5 53.3 29.1 51.1 34.1 30.3 22.3
mederr 42.4 123.6 22.4 137.1 51.9 20.2 51.0 34.6 29.7 20.9

EPnP+GN meanerr 14.8 10.6 10.2 19.7 8.7 19.4 6.1 9.5 18.6 15.1
mederr 15.1 10.5 10.4 19.7 8.9 19.5 6.1 9.6 18.8 15.1

RPnP meanerr 14.7 10.8 12.9 20.2 10.4 18.8 6.7 10.1 18.5 15.1
mederr 14.7 10.8 10.9 20.2 9.1 18.8 6.2 10.1 18.6 15.1

DLS meanerr 2541.7 2542.5 2606.1 1928.4 2156.4 2907.1 2470.4 2118.2 1889.5 2583.5
mederr 2534.5 2551.7 2602.6 1936.5 2160.8 2913.1 2468.3 2118.7 1901.1 2584.3

OPnP meanerr 14.7 10.5 10.4 20.1 8.7 18.9 6.6 9.9 32.5 14.9
mederr 14.9 10.5 10.4 19.8 8.8 18.9 6.1 9.8 22.8 15.1

SRPnP meanerr 14.8 10.5 10.2 19.8 8.6 18.9 5.8 9.6 18.5 14.8
mederr 14.9 10.4 10.5 19.9 8.8 18.9 5.8 9.6 18.8 15.0

RDLT meanerr 14.8 10.6 10.1 19.8 8.7 19.6 6.1 9.6 18.6 15.1
mederr 14.9 10.6 10.4 19.8 9.1 19.6 6.0 9.6 18.8 15.1

ASPnP meanerr 15.2 10.6 10.2 19.8 8.6 18.9 6.9 9.6 21.2 14.8
mederr 14.9 10.4 10.4 19.9 8.8 18.9 5.8 9.6 18.9 15.0

Hidden PnP meanerr 14.5 10.4 10.1 19.8 8.5 18.7 5.8 9.6 18.5 14.8
mederr 14.8 10.4 10.4 19.7 8.8 18.9 5.8 9.6 18.7 15.0

4. Conclusions and Prospects

The PnP solution, based on a projective imaging model of 3D points, fails to cover
accuracy, robustness, and efficiency simultaneously because of the diverse spatial distribu-
tion and quantity of 3D reference points, which prompted us to propose a new method for
solving the PnP problem, the Hidden PnP. The Hidden PnP employs the CGR parameter
to parameterize the rotation matrix. Differing from the best matrix synthesis technique,
the Gröbner technique, the method reduces computational burdens, as it does not require
construction of a large matrix elimination template in the polynomial solution phase. The
CGR parameter matrix was solved by the hidden variable method, and the Gauss–Newton
method was adopted for rapid and accurate location of a solution. The comparison test
demonstrated that the Hidden PnP outperformed eight other algorithms in solution ac-
curacy, stability, anti-noise ability, and calculation speed, in both synthetic data and real
experiments, which supported its application to high precision position measurement in
a common environment. Future work will, therefore, involve applying this algorithm
to vision-based navigation for intelligent vehicles and UAVs with real-time positional
measurement techniques.
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Abbreviations

P3P Perspective-3-Point
P4P Perspective-4-Point
P5P Perspective-5-Point
PnP Perspective-n-Point
GN Gauss-Newton iterative method
CGR Cayley-Gibbs-Rodriguez
SLAM Simultaneous Localization and Mapping
DLT Traditional direct liner transformation
ASPnP Accurate and Scalable Solution to the Perspective-n-Point problem
RPnP A Robust O(n)Solution to the Perspective-n-Point problem
OptDLS Optimal DLS Method
SRPnP A simple, robust and fast method for the Perspective-n-Point problem
Hidden PnP hidden variable-based PnP algorithm
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Appendix A

Table A1. Error comparison in the Ordinary 3D case.

Algorithm 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LHM

mean_r 13.0754 4.7251 2.5100 0.9473 0.7202 0.5688 0.4262 0.4057 0.3716 0.3542 0.3234 0.3122 0.3132 0.2850 0.2636 0.2737 0.2643
med_r 1.3771 0.7489 0.6150 0.4903 0.4502 0.4237 0.3813 0.3706 0.3314 0.3156 0.2954 0.2972 0.2882 0.2654 0.2538 0.2517 0.2489
mean_t 3.4679 1.7890 0.8695 0.5337 0.4541 0.3898 0.2853 0.27371 0.2519 0.2394 0.2355 0.2046 0.2067 0.2002 0.2034 0.1843 0.1840
med_t 0.8707 0.4374 0.3825 0.3066 0.2743 0.2652 0.2358 0.2189 0.2001 0.2064 0.1950 0.1676 0.1767 0.1658 0.1766 0.1564 0.1566

EPnP+GN

mean_r 76.8848 5.5589 0.7745 0.6151 0.5600 0.4898 0.4536 0.4390 0.3906 0.3853 0.3567 0.3488 0.3514 0.3139 0.3004 0.3021 0.2911
med_r 62.5052 0.7661 0.6297 0.5285 0.4979 0.4444 0.4094 0.4063 0.3570 0.3534 0.3334 0.3192 0.3262 0.2916 0.2832 0.2826 0.2719
mean_t 84.1045 6.1323 0.6279 0.4937 0.4539 0.4167 0.3812 0.3489 0.3252 0.3186 0.2913 0.2734 0.2659 0.2670 0.2615 0.2336 0.2373
med_t 25.3651 0.5623 0.4791 0.3882 0.3386 0.3342 0.2973 0.2833 0.2589 0.2645 0.2390 0.2256 0.2309 0.2189 0.2193 0.1891 0.1919

RPnP

mean_r 1.5839 0.9786 0.8274 0.6625 0.6047 0.5180 0.4834 0.4818 0.4288 0.4227 0.3963 0.3732 0.4069 0.3623 0.3341 0.3638 0.3328
med_r 0.9132 0.7124 0.6170 0.5334 0.5019 0.4501 0.4116 0.4353 0.3894 0.3754 0.3535 0.3477 0.3481 0.3203 0.3041 0.3362 0.3049
mean_t 0.8706 0.6730 0.5824 0.5043 0.4675 0.4435 0.4016 0.4142 0.3775 0.3491 0.3600 0.3207 0.3336 0.3090 0.3214 0.3014 0.2838
med_t 0.5658 0.4572 0.4337 0.3815 0.3532 0.3611 0.3164 0.3311 0.2869 0.2862 0.2854 0.2624 0.2562 0.2461 0.2673 0.2395 0.2384

DLS

mean_r 1.7126 1.0378 2.2025 0.5228 1.6235 1.0265 2.5497 0.9934 1.6183 0.9533 1.5333 1.7904 0.9160 1.9107 1.2365 0.2764 1.3690
med_r 0.8089 0.6307 0.5686 0.4656 0.4399 0.4049 0.3797 0.3693 0.3294 0.3125 0.3038 0.3002 0.2883 0.2771 0.2525 0.2564 0.2514
mean_t 0.7990 0.8944 2.0803 0.3606 1.2989 1.0579 1.9619 0.8520 1.4562 0.8537 1.2139 1.4712 0.9613 1.5552 1.1896 0.1840 1.3562
med_t 0.4904 0.3676 0.3281 0.2778 0.2626 0.2559 0.2386 0.2192 0.2005 0.2047 0.1934 0.1686 0.1746 0.1671 0.1767 0.1578 0.1561

OPnP

mean_r 1.0844 0.7366 0.6380 0.5188 0.4724 0.4259 0.3967 0.3817 0.3430 0.3402 0.3106 0.3106 0.3038 0.2821 0.2635 0.2722 0.2628
med_r 0.8024 0.6321 0.5611 0.4614 0.4329 0.4075 0.3691 0.3631 0.3291 0.3130 0.2956 0.2954 0.2889 0.2670 0.2532 0.2485 0.2502
mean_t 0.6626 0.4722 0.4035 0.3571 0.3119 0.2955 0.2754 0.2614 0.2404 0.2312 0.2277 0.2030 0.2008 0.1964 0.2019 0.1814 0.1818
med_t 0.4823 0.3676 0.3281 0.2832 0.2523 0.2513 0.2309 0.2177 0.1994 0.2006 0.1914 0.1653 0.1758 0.1661 0.1740 0.1546 0.1566

SRPnP

mean_r 1.0925 0.7302 0.6423 0.5126 0.4748 0.4264 0.4012 0.3848 0.3460 0.3400 0.3178 0.3156 0.3082 0.2865 0.2674 0.2720 0.2628
med_r 0.7914 0.6225 0.5551 0.4503 0.4308 0.4014 0.3762 0.3633 0.3278 0.3077 0.2996 0.3005 0.2884 0.2715 0.2510 0.2536 0.2472
mean_t 0.6262 0.4662 0.4039 0.3560 0.3123 0.2954 0.2753 0.2597 0.2402 0.2312 0.2284 0.2028 0.2004 0.1974 0.2015 0.1814 0.1818
med_t 0.4636 0.3688 0.3203 0.2795 0.2532 0.2500 0.2313 0.2132 0.1966 0.2014 0.1893 0.1674 0.1750 0.1631 0.1750 0.1543 0.1570

RDLT

mean_r 8.1381 1.3415 0.6382 0.5188 0.4724 0.4259 0.3967 0.3817 0.3430 0.3402 0.3106 0.3106 0.3038 0.2821 0.2635 0.2722 0.2628
med_r 0.8814 0.6333 0.5611 0.4614 0.4329 0.4075 0.3691 0.3631 0.3291 0.3130 0.2956 0.2954 0.2889 0.2670 0.2532 0.2485 0.2502
mean_t 1.6306 0.5207 0.4037 0.3571 0.3119 0.2955 0.2754 0.2614 0.2404 0.2312 0.2277 0.2030 0.2008 0.1964 0.2019 0.1814 0.1818
med_t 0.5407 0.3676 0.3281 0.2832 0.2523 0.2513 0.2309 0.2177 0.1994 0.2006 0.1914 0.1653 0.1758 0.1661 0.1740 0.1546 0.1566

ASPnP

mean_r 1.1801 0.7359 0.6940 0.5215 0.4792 0.4353 0.4332 0.3900 0.3592 0.3459 0.3203 0.3275 0.3121 0.3374 0.2844 0.2762 0.2698
med_r 0.8074 0.6254 0.5683 0.4651 0.4380 0.4105 0.3790 0.3686 0.3291 0.3114 0.3033 0.3026 0.2886 0.2740 0.2532 0.2549 0.2504
mean_t 0.6688 0.4709 0.4209 0.3591 0.3130 0.2977 0.2808 0.2620 0.2417 0.2335 0.2285 0.2044 0.2023 0.2106 0.2045 0.1817 0.1822
med_t 0.4869 0.3739 0.3250 0.2798 0.2567 0.2540 0.2324 0.2142 0.2012 0.2029 0.1896 0.1666 0.1757 0.1648 0.1751 0.1560 0.1570

Hidden PnP

mean_r 1.0096 0.6825 0.5921 0.4868 0.4374 0.3959 0.3746 0.3603 0.3213 0.3191 0.2911 0.2940 0.2840 0.2675 0.2452 0.2520 0.2432
med_r 0.7724 0.5711 0.5231 0.4308 0.4047 0.3669 0.3530 0.3350 0.3053 0.2922 0.2747 0.2774 0.2682 0.2532 0.2366 0.2293 0.2305
mean_t 0.6206 0.4472 0.3912 0.3457 0.3041 0.2911 0.2708 0.2575 0.2358 0.2283 0.2241 0.2006 0.1971 0.1963 0.2000 0.1805 0.1803
med_t 0.4614 0.3423 0.3102 0.2698 0.2452 0.2436 0.2198 0.2116 0.1963 0.1999 0.1850 0.1641 0.1685 0.1617 0.1743 0.1537 0.1546

Note: mean_r and med_r represent mean error and median error of rotation matrix, respectively. mean_t and med_t represent the mean error and median error of the translation
vector, respectively.



Appl. Sci. 2023, 13, 1111 23 of 27

Table A2. Error comparison in the Planar Case.

Algorithm 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LHM

mean_r 47.6084 41.1666 38.5179 29.1996 35.2541 35.3723 30.1953 32.5595 27.3411 32.6208 27.3603 26.6317 24.9990 30.0272 24.1386 29.0261 27.5716
med_r 17.3057 10.9226 6.0421 3.9639 4.3974 3.0146 2.5718 2.4091 1.5180 1.7360 1.2385 1.1547 1.6215 1.1610 1.0436 1.5580 1.2107
mean_t 11.8580 7.4881 6.6424 4.7441 4.3324 3.8645 3.5253 3.3329 2.9597 2.7985 2.6314 2.5928 2.6732 2.3425 2.2064 2.3023 2.2538
med_t 4.4363 2.9252 1.8759 1.3380 1.3540 1.0515 1.0270 0.9867 0.7359 0.8561 0.6310 0.6124 0.6781 0.6283 0.6173 0.6853 0.5652

EPnP+GN

mean_r 72.5487 52.7761 55.4373 43.6290 43.7338 47.6463 49.1237 54.2072 46.3542 53.3214 48.8542 49.0449 47.1507 44.5502 50.4445 45.7662 39.7199
med_r 38.6826 11.0440 7.6876 4.0413 3.5632 3.1551 3.0051 2.8045 2.4111 2.3700 2.0679 1.9320 1.8653 1.6525 1.6850 1.5760 1.4522
mean_t 31.1458 10.8352 8.6082 6.1455 5.3650 5.7193 4.8501 5.0141 4.0794 4.2141 3.8548 3.9762 3.2950 3.0837 3.3897 3.2871 2.6048
med_t 14.9291 5.0701 4.1344 2.4429 1.8784 2.2016 1.6147 1.6494 1.2980 1.3211 1.2384 1.2976 1.0184 1.0724 1.1601 0.8845 0.8339

RPnP

mean_r 13.7271 5.3508 3.0398 2.1776 1.6670 1.6599 1.5712 1.3900 1.5611 1.2574 1.3994 1.2204 1.2133 1.1129 1.1933 1.2165 1.1784
med_r 2.0487 1.6477 1.2644 1.1359 1.0954 0.9717 0.9196 0.8995 0.8759 0.7788 0.8219 0.7708 0.7830 0.7336 0.7049 0.6939 0.6917
mean_t 2.8646 1.7623 1.1446 1.0526 0.8943 0.8262 0.8689 0.7395 0.6782 0.6734 0.6490 0.6375 0.5383 0.5801 0.6324 0.5377 0.5457
med_t 1.1586 0.8932 0.6991 0.6915 0.6136 0.5845 0.5937 0.5173 0.4245 0.4576 0.4378 0.4487 0.3731 0.3838 0.3813 0.3563 0.3402

DLS

mean_r 3.5122 2.9464 2.4260 2.9221 2.5462 2.2454 3.9204 2.4494 2.1385 2.2930 2.3993 3.9147 1.8941 1.6100 2.3338 3.4797 2.4525
med_r 1.6132 1.2857 1.0201 0.8861 0.8174 0.7358 0.7703 0.6504 0.6189 0.5802 0.5604 0.5232 0.5141 0.5095 0.4659 0.4648 0.4623
mean_t 2.2829 2.2897 1.9681 2.4944 2.5019 2.1091 3.9274 2.2677 2.0180 1.9241 1.9448 4.1985 1.6631 1.4068 2.4417 2.6388 2.5014
med_t 0.9078 0.7168 0.5260 0.4702 0.4652 0.4426 0.4466 0.3633 0.3342 0.3431 0.3136 0.3265 0.2985 0.27037 0.2760 0.2716 0.2727

OPnP

mean_r 2.6390 1.8239 1.4753 1.4502 0.9841 0.9869 0.9514 0.8194 0.8034 0.7222 0.7024 0.6511 0.6700 0.5955 0.5721 0.5849 0.5535
med_r 1.5836 1.2897 1.0140 0.8749 0.8175 0.7151 0.7563 0.6384 0.6184 0.5748 0.5521 0.5167 0.5198 0.4965 0.4534 0.4605 0.4277
mean_t 1.4720 1.0224 0.8103 0.7082 0.6156 0.5724 0.5581 0.4732 0.4245 0.4209 0.3870 0.4075 0.3567 0.3551 0.3591 0.3239 0.3174
med_t 0.8802 0.6960 0.5277 0.4516 0.4592 0.4256 0.4336 0.3575 0.3224 0.3310 0.3013 0.3122 0.2780 0.2678 0.2755 0.2548 0.2520

SRPnP

mean_r 2.5963 1.8562 1.4161 1.3039 1.0142 0.9866 1.0194 0.8687 0.8384 0.7547 0.7466 0.6795 0.7001 0.6216 0.6201 0.6693 0.5857
med_r 1.5498 1.2400 1.0141 0.8707 0.8091 0.7389 0.7573 0.6399 0.6160 0.5681 0.5638 0.5175 0.5116 0.5056 0.4666 0.4644 0.4632
mean_t 1.5448 1.0200 0.7810 0.7041 0.6038 0.5649 0.5523 0.4861 0.4243 0.4291 0.3861 0.4115 0.3560 0.3546 0.3715 0.3407 0.3244
med_t 0.8369 0.6811 0.5081 0.4637 0.4508 0.4246 0.4108 0.3553 0.3303 0.3205 0.2974 0.3201 0.2780 0.2661 0.2684 0.2725 0.2561

RDLT

mean_r 27.8986 9.4104 2.7283 1.4517 0.9881 1.2952 0.9504 0.8201 0.8038 0.7227 0.7024 0.6497 0.6697 0.5952 0.5729 0.5849 0.5533
med_r 2.2386 1.3494 1.0219 0.8923 0.8128 0.7142 0.7561 0.6350 0.6150 0.5753 0.5503 0.5158 0.5194 0.4974 0.4538 0.4614 0.4273
mean_t 4.8601 1.7110 1.0066 0.7103 0.6165 0.6102 0.5581 0.4737 0.4247 0.4210 0.3870 0.4076 0.3565 0.3551 0.3592 0.3239 0.3174
med_t 1.2106 0.7245 0.5313 0.4519 0.4603 0.4208 0.4298 0.3598 0.3203 0.3308 0.3023 0.3114 0.2785 0.2670 0.2758 0.2578 0.2511

ASPnP

mean_r 12.1086 4.2874 2.4447 1.8109 1.3761 1.3070 1.4086 1.370 0.8622 0.9546 1.1412 0.8169 0.8210 1.0147 0.8163 1.0789 0.6431
med_r 1.7827 1.3545 1.0436 0.8918 0.8152 0.7375 0.7723 0.6578 0.6234 0.5817 0.5566 0.5267 0.5232 0.5115 0.4662 0.4700 0.4596
mean_t 2.5704 1.3143 1.0646 0.7800 0.6510 0.6491 0.7230 0.5723 0.4506 0.5207 0.4291 0.4430 0.4074 0.4873 0.4124 0.3526 0.3315
med_t 1.0066 0.7218 0.5315 0.4708 0.4523 0.4363 0.4371 0.3590 0.3337 0.3415 0.3095 0.3237 0.2970 0.2714 0.2753 0.2722 0.2650

Hidden PnP

mean_r 2.2123 1.6286 1.2707 1.1090 0.8888 0.8777 0.8582 0.7365 0.7161 0.6461 0.6473 0.5736 0.5986 0.5464 0.5263 0.5372 0.5011
med_r 1.4838 1.1802 0.9272 0.8069 0.7313 0.6661 0.6751 0.5891 0.5510 0.5312 0.5015 0.4680 0.4720 .4566 0.4164 0.4103 0.4130
mean_t 1.2603 0.9613 0.7147 0.6370 0.5701 0.5297 0.5259 0.4406 0.3996 0.4007 0.3696 0.3785 0.3381 0.3392 0.3358 0.3143 0.2988
med_t 0.8210 0.6414 0.4654 0.4213 0.4139 0.3986 0.3955 0.3136 0.3009 0.3048 0.2779 0.2851 0.2651 0.2613 0.2545 0.2551 0.2284

Note: mean_r and med_r represent mean error and median error of rotation matrix, respectively. mean_t and med_t represent the mean error and median error of the translation
vector, respectively.
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Table A3. Error comparison in the Quasi-Singular case.

Algorithm 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

LHM

mean_r 88.5363 83.4160 76.3662 64.9129 59.4713 57.7804 53.2612 52.2715 45.9908 46.9352 44.3802 34.8269 34.8904 32.9860 41.7693 29.6207 27.1142
med_r 114.8179 113.0583 107.2753 7.5616 2.5322 1.4896 1.4404 1.3385 0.9689 0.9629 0.8284 0.7423 0.7579 0.7313 0.7587 0.6166 0.5740
mean_t 22.4275 23.5323 23.1096 21.5192 21.9526 22.1201 22.4902 23.9994 20.6341 22.2973 21.0504 17.1425 16.9422 17.0355 21.4164 15.1585 14.5199
med_t 13.3753 14.3777 12.4502 6.3186 3.8556 2.4819 2.6239 1.8476 1.2448 1.2844 1.2337 0.9537 0.9284 0.9641 1.0083 0.8474 0.7319

EPnP+GN

mean_r 79.9803 22.0146 5.8036 3.0681 1.9169 0.9111 0.9253 0.8037 0.7383 0.7027 0.6857 0.6468 0.6426 0.6275 0.5920 0.5585 0.5544
med_r 109.5947 1.6905 1.1897 0.9748 0.8991 0.8050 0.8055 0.7131 0.6509 0.6197 0.5987 0.5823 0.5839 0.5351 0.5356 0.5121 0.4868
mean_t 85.9515 25.5783 7.5526 4.2305 2.8772 1.3890 1.4177 1.1768 1.1766 1.0031 1.0493 1.0488 0.8451 0.9353 0.8632 0.7929 0.8156
med_t 35.4233 2.8269 1.7718 1.4147 1.3241 1.1203 1.0722 0.8859 0.8969 0.7860 0.8629 0.8747 0.6522 0.8047 0.7056 0.6456 0.7045

RPnP

mean_r 2.4754 1.5292 1.2479 1.2740 0.9538 0.8581 0.8610 0.7846 0.7237 0.6890 0.6723 0.6504 0.6531 0.6340 0.6077 0.5630 0.5647
med_r 1.5216 1.3075 1.0744 0.9148 0.8316 0.7598 0.7967 0.6982 0.6437 0.6188 0.6017 0.5832 0.5967 0.5710 0.5483 0.5105 0.5024
mean_t 3.4242 2.2408 1.8396 1.6556 1.5115 1.4216 1.3692 1.2521 1.2847 1.1356 1.1485 1.1397 1.1262 1.1622 1.1048 1.0447 1.0828
med_t 1.7536 1.7059 1.3482 1.1599 1.1854 1.1057 1.0153 0.9726 1.0366 0.8878 0.8960 0.8505 0.8917 0.9717 0.8575 0.8454 0.8771

DLS

mean_r 2.5075 3.1715 1.8212 2.8081 2.4542 2.6568 2.3554 1.6720 1.9985 1.2962 2.1792 2.3421 2.4598 2.8239 2.2215 1.8087 2.1475
med_r 1.4606 1.2713 1.0437 0.8794 0.8034 0.7300 0.7588 0.6885 0.6164 0.5861 0.5736 0.5553 0.5542 0.5652 0.5016 0.4737 0.4619
mean_t 2.7870 3.7659 1.9955 2.2902 2.0288 2.4368 2.3009 1.6533 1.8906 1.4351 2.1246 2.1229 2.2386 2.2340 1.9413 1.6419 1.5749
med_t 1.6199 1.4788 1.1536 1.0144 0.9694 0.8427 0.8076 0.7584 0.6547 0.6283 0.6716 0.6193 0.5669 0.6438 0.5678 0.5472 0.5149

OPnP

mean_r 1.8925 1.4384 1.1989 0.9776 0.8968 0.7994 0.8120 0.7318 0.6629 0.6380 0.6243 0.5995 0.5982 0.5796 0.5481 0.5083 0.5075
med_r 1.4476 1.2364 1.0059 0.8574 0.7972 0.7071 0.7454 0.6477 0.5837 0.5659 0.5527 0.5386 0.5349 0.5124 0.4729 0.4529 0.4495
mean_t 2.2792 1.8178 1.4381 1.1628 1.0862 0.9894 0.9710 0.8649 0.7913 0.7451 0.7172 0.7368 0.6374 0.7012 0.6420 0.5993 0.5948
med_t 1.5295 1.4414 1.1241 0.9778 0.9097 0.8119 0.7907 0.7238 0.6383 0.6219 0.6100 0.5837 0.5189 0.5980 0.5455 0.5032 0.5020

SRPnP

mean_r 1.8680 1.4407 1.2095 0.9957 0.9167 0.8362 0.8345 0.7667 0.6981 0.6511 0.6477 0.6310 0.6316 0.6297 0.5794 0.5305 0.5305
med_r 1.4332 1.2343 1.0021 0.8286 0.7998 0.7363 0.7563 0.6882 0.6060 0.5668 0.5754 0.5547 0.5512 0.5604 0.4914 0.4698 0.4664
mean_t 2.1290 1.6188 1.3144 1.0451 1.0025 0.8758 0.8434 0.7850 0.7204 0.6581 0.6624 0.6706 0.5687 0.6117 0.5999 0.5411 0.5357
med_t 1.3096 1.2755 0.9757 0.8524 0.7920 0.7056 0.6701 0.6034 0.5649 0.5526 0.5305 0.5035 0.4311 0.5232 0.4754 0.4588 0.4310

RDLT

mean_r 20.2851 6.0432 3.6167 0.9776 0.8968 0.7994 0.8120 0.7318 0.6629 0.6380 0.6243 0.5995 0.5982 0.5796 0.5481 0.5083 0.5075
med_r 1.7325 1.2456 1.0085 0.8574 0.7972 0.7071 0.7454 0.6477 0.5837 0.5659 0.5527 0.5386 0.5349 0.5124 0.4729 0.4529 0.4495
mean_t 9.4143 4.4118 2.1033 1.1628 1.0862 0.9894 0.9710 0.8649 0.7913 0.7451 0.7172 0.7368 0.6374 0.7012 0.6420 0.5993 0.5948
med_t 1.9552 1.5340 1.1465 0.9777 0.9097 0.8119 0.7907 0.7238 0.6383 0.6219 0.6100 0.5837 0.5189 0.5980 0.5455 0.5032 0.5020

ASPnP

mean_r 2.1409 1.4813 1.2524 1.0484 0.9350 0.8538 0.8421 0.7811 0.7125 0.6732 0.6523 0.6527 0.6495 0.6667 0.6085 0.5666 0.5510
med_r 1.4528 1.2572 1.0228 0.8752 0.8030 0.7273 0.7610 0.6730 0.6129 0.5828 0.5709 0.5532 0.5449 0.5585 0.4912 0.4720 0.4606
mean_t 2.3347 1.8393 1.4414 1.2182 1.1339 1.0286 0.9771 0.9011 0.8075 0.7681 0.7632 0.7650 0.6796 0.7252 0.6649 0.6198 0.6496
med_t 1.6315 1.4785 1.0954 0.9817 0.9123 0.8301 0.7925 0.7412 0.6462 0.6247 0.6375 0.5944 0.5658 0.6386 0.5677 0.5323 0.4971

Hidden PnP

mean_r 1.8136 1.3940 1.1402 0.9256 0.8505 0.7569 0.7456 0.7023 0.6240 0.6154 0.6022 0.5694 0.5685 0.5423 0.5196 0.4836 0.4949
med_r 1.4174 1.1641 0.9662 0.8011 0.7392 0.6673 0.6530 0.6256 0.5491 0.5306 0.5213 0.4951 0.4992 0.4905 0.4379 0.4194 0.4173
mean_t 1.9815 1.5816 1.2749 1.0220 0.9419 0.8908 0.8221 0.7688 0.6978 0.6459 0.6452 0.6546 0.5755 0.5923 0.5489 0.5231 0.5183
med_t 1.3354 1.1969 0.9179 0.7979 0.7418 0.7017 0.6140 0.5704 0.5393 0.5293 0.4917 0.4822 0.4424 0.4928 0.4494 0.3941 0.3843

Note: mean_r and med_r represent mean error and median error of rotation matrix, respectively. mean_t and med_t represent the mean error and median error of the translation
vector, respectively.
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Appendix B

Table A4. Error comparison in ordinary 3D case.

Algorithm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

LHM

mean_r 0.1807 0.1807 0.3220 0.4175 0.5393 0.6030 0.7031 0.8386 0.9343 1.0227
med_r 0.0972 0.1952 0.2646 0.3605 0.4667 0.5371 0.6364 0.7646 0.8217 0.9407
mean_t 0.1086 0.1537 0.2190 0.2947 0.3502 0.4461 0.4919 0.5568 0.6207 0.6865
med_t 0.0606 0.1140 0.1821 0.2359 0.2818 0.3645 0.4172 0.4595 0.5096 0.5810

EPnP+GN

mean_r 0.1141 0.2300 0.3324 0.4371 0.5675 0.6753 0.7855 0.9213 1.0472 1.1810
med_r 0.1037 0.2047 0.2890 0.4032 0.5246 0.5990 0.7160 0.8451 0.9160 1.1029
mean_t 0.0925 0.1924 0.2730 0.3683 0.4562 0.5988 0.6400 0.7036 0.8448 0.9137
med_t 0.0736 0.1540 0.2159 0.3060 0.3794 0.4819 0.5323 0.5700 0.7159 0.7540

RPnP

mean_r 0.1275 0.2334 0.3549 0.4771 0.5938 0.7643 0.8491 0.9958 1.1019 1.2677
med_r 0.1130 0.2050 0.3083 0.4229 0.5323 0.6433 0.7452 0.9071 0.9775 1.1195
mean_t 0.1075 0.1907 0.3073 0.4024 0.5064 0.6449 0.7000 0.8506 0.9345 0.9841
med_t 0.0813 0.1584 0.2391 0.3259 0.4066 0.5156 0.5525 0.6650 0.7564 0.8090

DLS

mean_r 0.4475 1.1487 1.1147 1.2296 1.1524 2.1032 2.5493 1.4194 2.5500 3.1087
med_r 0.0915 0.1875 0.2599 0.3599 0.4670 0.5328 0.6348 0.7746 0.8233 0.9797
mean_t 0.3853 0.9546 1.0905 0.8749 0.8964 1.8509 2.0846 1.2460 2.2659 2.0337
med_t 0.0558 0.1086 0.1755 0.2320 0.2803 0.3647 0.4179 0.4737 0.5178 0.5843

OPnP

mean_r 0.1001 0.2037 0.2863 0.3836 0.4968 0.5846 0.6813 0.8209 0.8924 1.0151
med_r 0.0905 0.1842 0.2625 0.3545 0.4642 0.5344 0.6272 0.7651 0.8177 0.9449
mean_t 0.0677 0.1334 0.2054 0.2747 0.3345 0.4335 0.4747 0.5492 0.6042 0.6784
med_t 0.0554 0.1084 0.1705 0.2353 0.2764 0.3592 0.4207 0.4682 0.4982 0.5691

SRPnP

mean_r 0.1002 0.2052 0.2914 0.3892 0.4973 0.5841 0.6909 0.8270 0.8988 1.0289
med_r 0.0908 0.1855 0.2616 0.3586 0.4651 0.5233 0.6299 0.7614 0.8114 0.9360
mean_t 0.0678 0.1331 0.2063 0.2744 0.3335 0.4323 0.4706 0.5472 0.5991 0.6751
med_t 0.0554 0.1096 0.1698 0.2280 0.2730 0.3604 0.4165 0.4625 0.4893 0.5630

RDLT

mean_r 0.1001 0.2037 0.2863 0.3836 0.4968 0.5846 0.6813 0.8209 0.8924 1.0151
med_r 0.0905 0.1842 0.2625 0.3545 0.4642 0.5344 0.6272 0.7651 0.8177 0.9449
mean_t 0.0677 0.1334 10.2054 0.2747 0.3345 0.4335 0.4747 0.5492 0.6042 50.6784
med_t 0.0554 0.1084 0.1705 0.2353 0.2764 0.3592 0.4207 0.4682 0.4982 0.5691

ASPnP

mean_r 0.1010 0.2082 0.2973 0.3996 0.5100 0.8267 0.7203 1.0774 0.9347 1.0732
med_r 0.0913 0.1865 0.2621 0.3614 0.4719 0.5322 0.6358 0.7774 0.8271 0.9787
mean_t 0.0679 0.1341 0.2070 0.2735 0.3373 0.5553 0.4797 0.6491 0.6145 0.6926
med_t 0.0555 0.1091 0.1696 0.2272 0.2754 0.3629 0.4221 0.4652 0.5154 0.5753

Hidden PnP

mean_r 0.0964 0.1958 0.2689 0.3588 0.4567 0.5347 0.6182 0.7606 0.8220 0.9265
med_r 0.0889 0.1773 0.2432 0.3353 0.4169 0.4913 0.5580 0.6941 0.7393 0.8596
mean_t 0.0673 0.1317 0.2033 0.2689 0.3304 0.4242 0.4647 0.5345 0.5866 0.6613
med_t 0.0555 0.1084 0.1681 0.2315 0.2703 0.3452 0.4085 0.4526 0.4962 0.5577

Table A5. Error comparison in Planar case.

Algorithm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

LHM

mean_r 29.9013 31.7417 34.0830 30.4676 34.8833 34.1832 33.9616 34.6558 31.7799 31.9322
med_r 2.8468 3.2152 2.7973 2.0785 3.6989 3.1051 3.1786 2.9233 3.2985 4.2504
mean_t 3.3637 3.5275 3.9004 3.4480 4.0174 4.0321 3.5296 3.4999 4.0043 4.3222
med_t 0.6659 0.8165 0.8331 0.9665 1.2537 1.3488 1.2499 1.4956 1.5673 1.7776

EPnP+GN

mean_r 46.8393 42.6777 51.0806 48.3854 46.9577 45.8880 52.0428 52.9036 45.1681 50.2341
med_r 0.7138 1.4216 2.1556 3.1449 3.7999 4.4034 5.2400 6.0751 6.2405 7.4797
mean_t 3.7485 3.5632 5.0009 4.7705 5.3529 5.6749 6.0509 6.7726 6.8051 7.6502
med_t 0.3575 0.7303 1.2746 1.8901 2.2481 2.4254 3.0487 3.5236 3.4720 3.7619

RPnP

mean_r 0.4261 0.8353 1.1778 1.5130 1.9098 2.3771 3.0138 2.9731 4.1376 4.6917
med_r 0.2416 0.4758 0.6824 0.8861 1.2338 1.3706 1.7477 1.8044 1.9868 2.4974
mean_t 0.1888 0.3862 0.5620 0.7651 0.9524 1.1376 1.2889 1.4823 1.7577 2.3301
med_t 0.1271 0.2688 0.4004 0.5474 0.6886 0.7919 0.8837 1.0852 1.1113 1.3150

DLS

mean_r 0.4276 1.2854 2.6917 0.9575 5.0002 4.2490 3.4537 5.8777 5.0284 5.3160
med_r 0.1648 0.3662 0.5233 0.6719 0.9063 1.0596 1.2445 1.4611 1.5596 1.8049
mean_t 0.2401 1.0773 2.0854 0.5296 4.8974 4.1841 2.2231 5.1008 4.3977 4.4116
med_t 0.0898 0.1885 0.2912 0.3745 0.5265 0.5984 0.6815 0.9106 0.8918 1.0721

OPnP

mean_r 0.2326 0.4586 0.7364 0.8815 1.0890 1.3746 1.7562 1.8247 2.6162 2.3749
med_r 0.1652 0.3593 0.5107 0.6574 0.8389 1.0283 1.1975 1.4204 1.4475 1.7539
mean_t 0.1240 0.2519 0.3974 0.5193 0.6545 0.7879 0.9072 1.0739 1.2102 1.3622
med_t 0.0873 0.1902 0.2806 0.3760 0.4851 0.5923 0.6681 0.8576 0.9000 1.0170

SRPnP

mean_r 0.2357 0.4629 0.7205 0.9008 1.2179 1.4794 1.6644 1.9671 2.2805 2.3890
med_r 0.1658 0.3579 0.5173 0.6685 0.8743 1.0466 1.2245 1.4397 1.5172 1.7760
mean_t 0.1258 0.2518 0.3946 0.5234 0.6682 0.7730 0.9051 1.0956 1.1898 1.3577
med_t 0.0898 0.1874 0.2788 0.3717 0.4793 0.5806 0.6398 0.8341 0.8424 1.0107
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Table A5. Cont.

Algorithm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

RDLT

mean_r 0.2327 0.4588 0.7368 0.8807 1.0852 1.3764 1.7521 1.8329 2.5784 2.8207
med_r 0.1652 0.3607 0.5124 0.6550 0.8386 1.0291 1.1959 1.4296 1.4404 1.7471
mean_t 0.1240 0.2521 0.3974 0.5191 0.6542 0.7879 0.9071 1.0746 1.2163 1.3757
med_t 0.0875 0.1910 0.2816 0.3782 0.4846 0.5868 0.6647 0.8616 0.8947 1.0055

ASPnP

mean_r 0.4148 0.9866 1.1999 0.9221 1.3332 1.8575 2.2183 2.3400 2.7756 2.8859
med_r 0.1671 0.3639 0.5251 0.6741 0.9168 1.0721 1.2483 1.4691 1.5937 1.8008
mean_t 0.2600 0.4219 0.4155 0.5228 0.7140 0.8517 1.0662 1.2743 1.2471 1.5128
med_t 0.0899 0.1877 0.2916 0.3719 0.5261 0.5950 0.6790 0.8965 0.8823 1.0750

Hidden PnP

mean_r 0.2159 0.4265 0.6458 0.7841 0.9784 1.2362 1.3908 1.6459 1.7801 2.0570
med_r 0.1573 0.3359 0.4634 0.6046 0.7988 0.9436 1.1092 1.2575 1.2435 1.5755
mean_t 0.1197 0.2395 0.3678 0.4788 0.6268 0.7351 0.8315 0.9976 1.0773 1.2631
med_t 0.0847 0.1761 0.2568 0.3386 0.4384 0.5490 0.5939 0.7586 0.7682 0.9011

Table A6. Error comparison in Quasi-singularity case.

Algorithm 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

LHM

mean_r 54.0364 54.3921 49.1851 54.7541 55.5350 53.8090 61.1037 50.8340 59.5363 48.8130
med_r 0.5430 0.6938 0.9608 1.3668 1.9575 2.0970 2.7591 2.2852 3.1373 2.7422
mean_t 24.0074 22.4198 20.3533 23.1433 23.9086 24.4829 24.6227 21.8371 25.1056 21.9802
med_t 1.0878 1.1643 1.5035 2.2859 2.6978 3.3351 4.1897 3.2054 4.9388 3.9800

EPnP+GN

mean_r 0.2244 0.4413 0.6315 0.8488 1.7360 1.2971 2.6893 2.8364 3.2494 5.0486
med_r 0.1970 0.3855 0.5353 0.7729 0.9831 1.1117 1.2841 1.5965 1.8046 2.0050
mean_t 0.3342 0.6441 0.9640 1.2418 2.4658 1.9245 3.6031 3.7211 4.5948 6.5992
med_t 0.2598 0.5030 0.7724 0.9210 1.4354 1.5420 1.9140 2.0268 2.4701 2.7201

RPnP

mean_r 0.2154 0.4220 0.6192 0.8204 1.0657 1.2264 1.5655 1.8108 2.7098 2.9224
med_r 0.1904 0.3817 0.5750 0.7554 0.9199 1.1043 1.2703 1.5176 1.6604 1.8881
mean_t 0.3290 0.6677 0.9760 1.2976 1.7074 2.0699 2.6763 3.5394 5.9400 6.7567
med_t 00.2416 0.5224 0.7942 1.0313 1.3539 1.6545 1.8082 1.7970 2.3827 2.5840

DLS

mean_r 1.3246 0.9490 0.8534 2.3530 2.9240 4.3047 0.2423 4.3139 6.4904 7.9017
med_r 0.1814 0.3607 0.5110 0.7116 0.8884 1.0614 1.2847 1.4287 1.6488 1.8967
mean_t 1.3381 0.9327 1.1137 2.4278 2.9235 4.2191 3.2908 4.6732 5.9860 7.7954
med_t 0.1857 0.3956 0.6232 0.7111 1.0305 1.1656 1.5168 1.4978 2.0095 2.2148

OPnP

mean_r 0.2009 0.3935 0.5741 0.7661 0.9848 1.1401 1.3736 1.5609 1.7385 1.9173
med_r 0.1800 0.3576 0.5058 0.6969 0.8395 1.0358 1.1920 1.3928 1.5463 1.7345
mean_t 0.2305 0.4519 0.7225 0.8622 1.1681 1.3680 1.6463 1.8462 2.0557 2.1876
med_t 0.1890 0.3693 0.6191 0.6738 0.9407 1.2223 1.3506 1.4146 1.6998 1.7047

SRPnP

mean_r 0.2043 0.4002 0.5853 0.8017 1.0143 1.2321 1.4438 1.7237 2.3445 2.8959
med_r 0.1831 0.3637 0.5166 0.7146 0.8596 1.0442 1.3145 1.3997 1.6407 1.8299
mean_t 0.2170 0.4213 0.6510 0.7903 1.0547 1.2260 1.4596 1.6429 2.4650 2.9031
med_t 0.1674 0.3443 0.5555 0.6205 0.8075 0.9431 1.1241 1.2359 1.6262 1.6205

RDLT

mean_r 0.2009 0.3935 0.5741 0.7661 0.9848 1.1401 1.3736 1.5609 1.7385 1.9173
med_r 0.1800 0.3576 0.5058 0.6969 0.8395 1.0358 1.1920 1.3928 1.5463 1.7345
mean_t 0.2305 0.4519 0.7225 0.8622 1.1681 1.3680 1.6463 1.8462 2.0557 2.1876
med_t 0.1890 0.3693 0.6191 0.6738 0.9407 1.2223 1.3506 1.4146 1.6998 1.7047

ASPnP

mean_r 0.2086 0.4022 0.5988 0.8428 1.0503 1.3127 1.6188 1.7450 2.0989 2.6162
med_r 0.1831 0.3627 10.5136 0.7179 0.8674 1.0355 1.3072 1.4347 1.6401 1.8674
mean_t 0.2298 0.4605 0.7340 0.8666 1.2207 1.4245 1.7956 2.0231 2.5034 2.7405
med_t 0.1833 0.3788 0.6139 0.6991 1.0133 1.1224 1.4662 1.4969 1.8896 2.0720

Hidden PnP

mean_r 0.1951 0.3781 0.5507 0.7379 0.9307 1.1099 1.3035 1.4450 1.7213 1.8770
med_r 0.1693 0.3463 0.4822 0.6619 0.7891 0.9849 1.1354 1.2461 1.4599 1.6329
mean_t 0.2150 0.4134 0.6432 0.7656 1.0164 1.1514 1.3801 1.5349 1.8260 1.8857
med_t 0.1665 0.3278 0.5525 0.6121 0.8036 0.8853 1.0788 1.0622 1.4421 1.3561
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