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Abstract: Daily load forecasting is the basis of the economic and safe operation of a power grid.
Accurate prediction results can improve the matching of microgrid energy storage capacity allocation.
With the popularization of smart meters, the interaction between residential electricity demand and
sources and networks is increasing, and massive data are generated at the same time. Previous
forecasting methods suffer from poor targeting and high noise. They cannot make full use of the
important information of the load data. This paper proposes a new framework for daily load fore-
casting of group residents. Firstly, we use the singular value decomposition to address the problem
of high dimensions of residential electricity data. Meanwhile, we apply a K-Shape-based group
residential load clustering method to obtain the typical residential load data. Secondly, we introduce
an empirical mode decomposition method to address the problem of high noise of residential load
data. Finally, we propose a Bi-LSTM-Attention model for residential daily load forecasting. This
method can make full use of the contextual information and the important information of the daily
load of group residents. The experiments conducted on a real data set of a power grid show that our
method achieves excellent improvements on five prediction error indicators, such as MAPE, which
are significantly smaller than the compared baseline methods.

Keywords: daily load forecasting; group resident clustering; Bi-LSTM; self-attention mechanism

1. Introduction
1.1. Background

Stable, uninterrupted, and high-quality electricity helps to keep industry and society
running. Considering that electricity cannot be stored, accurate forecasting of electricity
load has a significant impact on the reliability of a power system and economic devel-
opment. In particular, daily load forecasting plays a vital role in the daily operational
management of power companies, such as energy transfer scheduling, unit combination,
and load dispatch [1,2]. As an integral part of the daily operation and management of
power companies, the accurate prediction of residents’ daily load is of great significance
to urban power grid planning and power market operation. Overestimation will increase
operating costs, and underestimation will lead to power shortages [3,4]. With more and
more interactive adjustments between residents’ electricity demand, power supply, and
power grid, the information interaction between large-scale users and a power grid gener-
ates massive data [5,6]. Residential load data have the characteristics of fine granularity,
strong volatility, significant difference, and large data volume. This brings new challenges
to grid load forecasting [7].

In traditional resident load forecasting, scholars at home and abroad have put forward
some methods, which can be divided into two types. One is the time series method, and
the other is the artificial intelligence method. Traditional time series methods include
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Autoregressive Integrated Moving Averages, Seasonal Autoregressive Integrated Moving
Averages, and Vector Autoregressive Moving Averages [8]. ARIMA and SARIMA are
suitable for univariate load forecasting [9,10]. VARMA is suitable for multivariate time
series forecasting, and it requires a high stability of the series [11]. Traditional time series
models are considered linear models, while the load forecasting problem is nonlinear.
Recently, more and more researchers prefer to use artificial intelligence methods on load
forecasting problems.

Artificial intelligence prediction methods include support vector machines, artificial
neural networks, etc. However, existing microgrid daily load forecasting research mainly
focuses on the power generation side, for example, on the prediction of thermal power and
solar lamp power generation equipment. There is insufficient research on short-term load
forecasting on the electricity side. Research on residential load forecasting often focuses on
residential load forecasting for individual households, and there is a lack of research on
group residential load forecasting. For example, one study [12] used wavelet transform
and support vector machines to predict the time series of residential loads. However, the
above methods are for load forecasting of individual residents. The authors did not take
into account the situation of the population of the group. Another study [13] proposed a
linear regression short-term load forecasting model considering the influence of working
time and meteorological factors, but its error is relatively large. The main reason is that
it lacks the ability to handle sharp fluctuations in the load profile, and noisy data have a
large negative impact on load forecasting. Another reason is that it lacks the treatment
of the strong fluctuation of the load curve. Undecomposed load noise is large, and the
direct prediction error is large. Reference [14] integrates empirical mode decomposition,
particle swarm optimization, and an adaptive network-based fuzzy inference system. This
method decomposes the load and reduces the noise to a certain extent, but it does not
introduce an attention mechanism based on the neural network. As a result, it obtains the
same prediction feature weights and can still be further improved.

To summarize, the previous methods have three problems in the daily load forecasting
of group residents. Firstly, the load data of group residents have the characteristics of high
dimensionality and large amount of data. Existing research tends to predict the load of
individual residents, and there is a lack of research on the data characteristics of group
residents’ load. Secondly, there is a lack of treatment for the fluctuation of the load curve.
The traditional method is fixed in the noise reduction time base function, and there is
no adaptive matching signal which leads to noisy forecast data. Thirdly, the time series
information is assigned the same weight, and the important information of the load data
is not fully utilized in the prediction. Therefore, to solve the above problems, we propose
a group resident daily load forecasting method. This method successfully reduces the
forecast error and realizes the different daily load forecasts of group residents.

The structure of this paper is as follows: Section 2 introduces the theoretical basis
of the daily load forecasting method. Section 3 introduces the experimental analysis and
experimental results, and Section 4 is the conclusion.

1.2. Related Works

Accurate load prediction is very important for the energy generation, energy dispatch-
ing, and smooth operation of a power grid. It can also promote the maximum utilization
of renewable resources and reduce the loss of primary energy in the power grid [15]. The
user-side power grid, with residential quarters and commercial residences as the main
components, is an effective carrier for local consumption and utilization of renewable
energy. It undertakes the function of coordinating distributed power and user load [16].
According to existing statistics, the urban user-side power grid load reached more than
60% of the total non-industrial load of a city, becoming an important part of the urban
power system [17]. In the power grid environment, due to the difference in consumption
patterns among residents, the load prediction of group residents is more challenging than
that of substations.
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Hippert et al. [18] classified electrical load based on forecast range into short-term
load forecast, medium-term load forecast, and long-term load forecast. Short-term load
forecasting models range from a few minutes to a few days. Daily load forecasts fall within
the scope of short-term load forecasting. Short-term load forecasting is often used in a
power grid to bridge the gap between energy generation and demand.

Different from traditional residential load forecasting, load forecasting methods for a
single building or a small number of buildings have challenges when dealing with the large
number of users collected by smart meters. For example, cluster-based load forecasting
methods have attracted more and more attention. In Ref. [19], a K-Means algorithm is
applied to specific features of the load profile. They used the average consumption over
a day, the average consumption for each day of the week, and the location of the peak
over the year as feature clusters. The final sum of predictions is derived from the deep
learning model. They improved the predictive accuracy of Irish datasets and smart meters
in New York by 11%. In Ref. [20], a load prediction model based on improved fuzzy c-mean
clustering is proposed. It filters out the weakly correlated features from adjacent load
values and uses similar local daily data as input features. The above methods did not study
th load forecasting of the group residents. The problems of large dimension of load data
and obvious difference in load curve are not taken into account.

Although clustering is a good solution, it can be optimized before making predictions.
Because of the nonlinearity and nonstationarity in residential load data, it is difficult to
describe the moving tendency of electric load and to improve the forecast accuracy. To
establish a suitable and effective forecasting model, the original data features of the resi-
dential short-term electric load need to be fully considered and analyzed. In Refs. [21,22],
both papers propose a method for short-term electrical load prediction combining wavelet
transforms and neural networks. The authors combine the wavelet transforms with neural
networks for short-term electrical load forecasting. Despite the wavelet transforms becom-
ing a standard for the analysis of nonlinear and nonstationary signals, there is still the
problem of high prediction noise for computing and failure.

In terms of predictive models, cutting-edge artificial intelligence methods represented
by deep learning are developing rapidly. For example, one study [23] proposes an im-
proved deep learning method that improves the accuracy and generalization ability of an
infrared small object detection problem. In contrast to shallow learning, deep learning
generally refers to stacking multiple layers of neural networks and relying on stochastic
optimization to perform learning tasks. Among these methods, the convolutional neu-
ral network (CNN) is a type of feedforward neural network that includes convolutional
calculations and has a deep structure [24,25]. A recurrent neural network (RNN) is an
artificial neural network in which nodes are directed to form a ring. The internal state
of such a network can exhibit dynamic timing behavior. In theory, it can use historical
information of any length, so it can model time series more completely [26]. However, RNN
has the problem of gradient disappearance and gradient explosion during training. There-
fore, researchers have improved it and proposed the Long Short-Term Memory (LSTM)
network [27]. One study [28] proposes a deep Long Short-Term Memory (LSTM)-based
ultra-short-term prediction method for regional-level loads based on big data resources.
It visually demonstrates the extraction of abstract features from the load data by using a
deep learning algorithm and confirms its good feature learning capability. Reference [29]
predicted daily peak load based on Bi-directional Long Short-Term Memory (Bi-LSTM)
and feature correlation analysis. Another study [30] proposes an LSTM-based ultra-short-
term prediction method for regional-level loads based on big data resources. It visually
demonstrates the extraction of abstract features from the load data by using a deep learning
algorithm and confirms its good feature learning capability. However, the authors did
not take into account the issue of the weighting of adjacent individual load values on the
prediction results. This results in the hidden layer missing such critical information, which
ultimately reduces the prediction accuracy.



Appl. Sci. 2023, 13, 1165 4 of 21

This paper addresses the method of daily load forecasting for groups of residents by
first clustering similar load curves. The prediction models in each cluster are then fitted.
Finally, the predictions from each cluster are summed to obtain the final predicted value.

2. Methodology

This paper comprehensively considers the problems of residents’ load differentiation,
high noise, and the same weight. We propose a group resident daily load forecasting
method fusing a self-attention mechanism based on load clustering.

In the first step of the method in this paper, the missing values are first filled in
the original residential electricity data set, and then the time granularity is set. In the
second step, this paper proposes to use the singular value decomposition (SVD) method
to reduce the dimensionality of the residential load data to solve the problem of slow
processing of massive power consumption data. Then, we use the K-Shape method to
cluster the residential electricity consumption data and conduct differential analysis to
solve the difference in residential electricity consumption. In the third step, the clustered
typical resident load is decomposed by using the superior signal decomposition ability of
the modal decomposition method to obtain the IMF component data set. This overcomes
the problem of strong data volatility and reduces noise. In the fourth step, the mixed
forecasting method is selected, and a Bi-LSTM-Attention (BLA) load forecasting model
considering the time series feature weight is constructed to obtain accurate forecasting
results. The Bi-LSTM model has the advantage of obtaining contextual information about
the time series data, and it can take into account the influence of different time dimensions
in the input sequence on the load. The introduction of the attention mechanism enables
different weights to be assigned to the load features at different times, which can make full
use of the key information of the hidden layer. In the fifth step, the component predictions
are summed to obtain the final prediction. The overall research idea of this method is
shown in Figure 1.

Appl. Sci. 2023, 13, 1165 5 of 21 
 

 
Figure 1. The framework of the daily load forecasting method. 

2.1. Clustering Method Based on Dimensionality Reduction 
The model proposed in this paper is based on the Bi-LSTM recurrent neural network, 

which is highly robust for modeling time series data. On this basis, we introduce the at-
tention mechanism to assign different weights to the temporal features and the external 
features at the same time. This highlights the key features within the input data that play 
a key role in the residential electricity usage forecasting process. It helps to improve the 
accuracy of short-term load forecasting. 

2.1.1. Dimensionality Reduction Method Based on SVD 
Singular value decomposition (SVD) is an important matrix decomposition in linear 

algebra, it is based on the generalization of arbitrary matrices [31]. Singular value decom-
position is similar in some respects to eigenvector-based diagonalization of symmetric or 
Hermite matrices [32].  

Given a matrix 𝐴 of size m × m, it is decomposed diagonally, such as in Equation 
(1):  𝐴 = 𝑈𝛬𝑈  (1)

In this equation, each column of 𝑈 is an eigenvector, and the elements on the 𝛬 di-
agonal are the eigenvalues arranged from large to small. If 𝑈  is recorded as 𝑈 =(�⃗� , �⃗� , . . . , �⃗� ), then the results are calculated as shown in Equation (2):  

Figure 1. The framework of the daily load forecasting method.



Appl. Sci. 2023, 13, 1165 5 of 21

2.1. Clustering Method Based on Dimensionality Reduction

The model proposed in this paper is based on the Bi-LSTM recurrent neural network,
which is highly robust for modeling time series data. On this basis, we introduce the
attention mechanism to assign different weights to the temporal features and the external
features at the same time. This highlights the key features within the input data that play
a key role in the residential electricity usage forecasting process. It helps to improve the
accuracy of short-term load forecasting.

2.1.1. Dimensionality Reduction Method Based on SVD

Singular value decomposition (SVD) is an important matrix decomposition in linear
algebra, it is based on the generalization of arbitrary matrices [31]. Singular value decom-
position is similar in some respects to eigenvector-based diagonalization of symmetric or
Hermite matrices [32].

Given a matrix A of size m×m, it is decomposed diagonally, such as in Equation (1):

A = UΛU−1 (1)

In this equation, each column of U is an eigenvector, and the elements on the Λ diagonal
are the eigenvalues arranged from large to small. If U is recorded as U =

(→
u 1,
→
u 2, . . . ,

→
u m

)
,

then the results are calculated as shown in Equation (2):

AU = A
(→

u 1,
→
u 2, . . . ,

→
u m

)
=
(

λ1
→
u 1, λ2

→
u 2, . . . , λm

→
u m

)
=
(→

u 1,
→
u 2, . . . ,

→
u m

)λ1 · · · 0
...

. . .
...

0 · · · λm


⇒ AU = UΛ⇒ A = UΛU−1

(2)

when matrix A is a symmetric matrix, and it is decomposed symmetrically and diagonally,
as shown in Equation (3):

A = QΛQT (3)

In this equation, each column of Q is a mutually orthogonal eigenvector and is a unit
vector, and the elements on the Λ diagonal are eigenvalues arranged from large to small.

When the matrix Q is written as Q =
(→

q 1,
→
q 2, . . . ,

→
q m

)
, then the matrix A can also be

written as shown in Equation (4):

A = λ1
→
q 1
→
q

T
1 + λ2

→
q 2
→
q

T
2 + . . . λm

→
q

T
m (4)

The goal of the singular value decomposition method is to find a mapping matrix, and
then multiply it with the original data A, to achieve the effect of dimensionality reduction,
which is suitable for the massive residential electricity numerical data collected by smart
meters. Dimensionality reduction of data through singular value decomposition not only
reduces the data dimension and accelerates model training, but it also effectively filters
noise data and improves model generalization.

2.1.2. Clustering Method Based on K-Shape

Clustering is an unsupervised method that can divide data sets into several groups
based on the similarity and distance between the data without prior information [33].
We divide the residents into different clusters according to the annual load curve and
established a separate model for each cluster. Existing clustering algorithms mainly include
hierarchical clustering, partition-based clustering, density-based clustering, grid-based
clustering, and model-based clustering.

K-Shape is one of the most advanced time series clustering algorithms based on K-
Means [34]. To cope with time series, K-Shape uses shape-based distance to evaluate the
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similarity between two curves. In addition, shape-based distance uses cross-correlation
distance to identify the minimum distance between two curves, even if they are not properly
aligned. Specifically, the K-Shape method is shown in the following steps:

Step 1: K-Shape calculates the distance between two-time series by using the cross-
correlation method. We suppose there are two-time series X and Y, both of length m. To
achieve translational invariance, Y is set as the constant, and we delimit X step by step and
calculate the difference between X and Y at each step. This is shown in the formula below:

→
xi(s) =



 |s|︷ ︸︸ ︷
0, . . . , 0, x1, x2, . . . , xm−s

, s ≥ 0

x1−s, . . . , xm−1, xm, 0, . . . , 0︸ ︷︷ ︸
|s|

, s < 0

(5)

Step 2: The difference depends on the number of cross-relations, which represents the num-
ber of K-Shape cross-relations CCω

(→
x ,
→
y
)
= Rω−m

(→
x ,
→
y
)

, including ω ∈ {1, 2, . . . , 2m− 1}.

Rω−m

(→
x ,
→
y
)

can be divided into two cases, as shown in Equation (6):

Rω−m

(→
x ,
→
y
)
=


m−k
∑

l=1
xl + k·yl , ω−m ≥ 0

Rω−m

(→
y ,
→
x
)

, ω−m < 0
(6)

Rω−m is used to calculate the similarity between X and Y at each step. The dot product
is calculated at the positions present in both X and Y. The final R is the sum of the dot
products of the valid regions. It can be said that the larger R is, the more similar the two
sequences are.

Step 3: K-Shape defines the shape-based distance (SBD). The more the blocks overlap,
the bigger the shape is like CC. To compare the similarity values of all possible positions,
we take the most similar Max (CC) and then use 1−max(CC) to obtain SBD, as shown in
Equation (7):

SBD
(→

x ,
→
y
)
= 1−max

ω
(

CCω

(→
x ,
→
y
)

√
R0

(→
x ,
→
x
)
·R0

(→
y ,
→
y
) ) (7)

Step 4: The more similar the shape, the smaller the distance SBD is. The normalized
NCC value is between [−1, 1] and, therefore, the SBD value is between [0, 2]. The NCC is
calculated as shown in Equation (8):

NCCq

(→
x ,
→
y
)
=



CCω

(→
x ,
→
y
)

m , q = “b”(NCCb)

CCω

(→
x ,
→
y
)

m−|ω| , q = “u”(NCCu)

CCω

(→
x ,
→
y
)

√
R0

(→
x ,
→
x
)
·R0

(→
y ,
→
y
) , q = “c”(NCCc)

(8)
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Step 5: Once the distance is defined, you need to adjust the centroid algorithm based
on the distance logic. By looking for

→
µk
∗
, K-Shape makes the similarity between

→
µk
∗

and
each sequence xi of Pk as large as possible.

→
µk
∗

is calculated as shown in Equation (9):

→
µk
∗
= argmax

→
µk

∑
→
xi∈Pk

NCCc

(→
xi,
→
µk

)2

= argmax
→
µk

∑
→
xi∈Pk

( maxωCCω(
→
xi ,
→
µk)

2√
R0

(→
xi ,
→
xi

)
·R0

(→
µk ,
→
µk

) )2 (9)

The final clustering method is realized through iteration, and each iteration is divided
into two steps. The first step is to recalculate the centroid. The second step is to redistribute
each sequence to different clusters according to the distance between each sequence and
the new centroid. We keep iterating until the tag stops changing.

In the daily load prediction of power grid group residents, the K-Shape method is
used to deal with the load curve of group residents and cluster it. This method can balance
the large difference in electricity consumption habits among residents and reduce the heavy
workload of forecasting individual residents. K-Shape relies on an extensible iterative
refinement process that creates homogeneous and well-separated clusters. As its distance
measure, K-Shape uses a normalized version of the cross-correlation measure to consider
the shape of the time series when comparing them. K-Shape is a domain-independent,
highly accurate, and efficient clustering method, and it is very suitable for time series.

2.2. Noise Reduction Method Based on Empirical Mode Decomposition

After the differential analysis of residents, we can obtain the typical residential electric-
ity consumption data. However, the data for each type of residential electricity consumption
are strong and noisy. To reduce the noise and further improve the prediction accuracy,
we use the empirical mode decomposition method to decompose the complex original
signal. This method can decompose complex and unstable load signal into a relatively
stable Intrinsic Mode Function (IMF), which is reconstructed into a more stable time series.
By using the empirical mode decomposition method, the IMF component is selectively
input into the subsequent prediction model to reduce noise and further improve prediction
accuracy. The specific process is shown in Figure 2.

Empirical mode decomposition (EMD) is a time–frequency analytical method of signal
proposed in 1998, where the signal refers to a time series signal [35]. Common time series
signal processing methods can be divided into three categories: time domain, frequency do-
main, and time–frequency domain [36]. Time-domain analytical features include meaning,
variance, kurtosis, peak-to-peak value, etc. Frequency-domain features include frequency,
energy, etc. Time–frequency domain analysis includes wavelet transform, etc.

The EMD theory holds that all signals are composed of a finite number of Intrinsic
Mode Functions. The IMF component contains local characteristic signals of different time
scales of the original signal. The empirical mode decomposition method can make the
non-stationary data smooth, and then it performs the Hilbert transform to obtain the time
spectrum diagram and the frequency with physical meaning [37]. EMD decomposes the
input signal into several eigenmode functions and a residual, which is composed of the
following formula:

I(n) =
M

∑
m=1

IMFm(n) + ResM(n)I(n) (10)

where I(n) represents the input signal, IMFm(n) represents the intrinsic mode function of
Mth, and ResM (n) represents the residual. Where in the process of extracting IMF is called
screening, and the process of screening is as follows.
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First, we mark the local extreme points. Then, we connect the maximum points to
form the upper envelope through a cubic spline line and connect the minimum points to
form the lower envelope. After that, we find the mean value m1 of the upper and lower
envelope. Finally, we subtract the mean value m1 of the upper and lower envelopes from
the input signal X(t).

I(n)−m1 = h1 I(n)−m1 (11)

One iteration of the above process cannot guarantee that h1 is an IMF, and the above
process needs to be repeated until h1 is an IMF. The iterative stopping criterion produces the
number of executions of an intrinsic modulus function screening process, and the stopping
criterion standard deviation (SD) used in this method is shown in Equation (12):

SDk =
T

∑
n=0

∣∣hk−1(n)− hk(n)2
∣∣

h2
k−1(n)

(12)

In summary, EMD is atime–frequency domain signal processing method that can
decompose signals based on the time-scale characteristics of the data without presetting
any basic functions. EMD has obvious advantages in dealing with non-stationary and
nonlinear data. It is suitable for analyzing nonlinear and non-stationary signal sequences.

This is because the basis functions of EMD are derived from the signal itself. Therefore,
this analysis is adaptive compared to traditional methods where the basis functions are
fixed. EMD is based on the sequential extraction of energy associated with various intrinsic
time scales of the signal, starting from finer time scales (high-frequency modes) to coarser
time scales (low-frequency modes). The sum of IMFs is well-matched to the signal, thus
reducing noise while maintaining integrity.

2.3. Bi-LSTM-Attention Model for Residential Daily Load Forecasting

To identify the hidden information in the time series for subsequent prediction, this
paper introduces a self-attention mechanism based on Bi-LSTM to assign different weights
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to the time series data. The Bi-LSTM is used to capture the contextual information, and
the important information of the time series data can be fully used by using the self-
attention mechanism.

2.3.1. Bi-LSTM Method

LSTM is proposed by Hochreiter, and it is a special RNN that can solve the problem of
gradient explosion and gradient disappearance by adding a gate control mechanism [38].
To selectively update memory units, LSTM introduces the unit state ct to preserve the long-
term memory based on the hidden layer state ht. This reflects the dependencies of adjacent
times learned by the deep network at any time step and the institutional characteristics of
the input data long before.

Each LSTM calculation unit contains three control gates, an input gate it, an output
gate ot, and a forgetting gate ft. When the input sequence is {x1, x2, . . . , xT}, including
xt ∈

{
xt,1, xt,2, . . . , xt,k

}
,∈ Rk represents the k-dimensional real vector data under the t-time

step. The internal updating process of the unit is as follows:
The forgetting gate ft is proposed to forget the state of the upper memory cell ct−1

information. It can be expressed as shown in Equation (13):

ft = σ
(

W f xt + U f ht−1 + b f

)
(13)

The W f is the weight matrix of the forgetting gate. b f is the offset of the forgetting gate.
xt is the current sample input. ht−1 is the output of the previous sequence. σ, represent the
sigmod function. The input gate it and the memory cell candidate status c̃t are calculated
as shown in Equations (14) and (15):

c̃t = tanh(Wcxt + Ucht−1 + bc) (14)

it = σ(Wixt + Uiht−1 + bi) (15)

where Wi represents the weight matrix of the input gate; Wc represents the weight matrix
of the candidate state; and bi and bc are the corresponding offset. By combining the last-
moment memory state ct−1 and the current moment candidate’s memory state c̃t, it and ft
update the current moment memory unit state ct, as shown in Equation (16):

ct = ft·ct−1 + it·c̃t (16)

where · represents multiplication by element. The input gate ot is mainly used to control
the output of the memory unit state value. The calculation of ot is shown in Equation (17):

ot = σ(Woxt + Uoht−1 + b0) (17)

where Wo is the weight matrix of the output gate, and ot. b0 is the offset of the output gate.
The hidden layer output value ht is obtained by using nonlinear calculation, as shown in
Equation (14):

ht = ot·tanh(ct) (18)

The unit weight and bias of each control cell in the above formula are used to predict
the load in the time series through training and learning. Usually, the LSTM network
information is a one-way transmission, and it cannot use future information. To adapt to
the various characteristics of daily load amplitude, this paper selects Bi-LSTM to construct
the prediction model. Bi-LSTM is formed by the combination of forward and backward
LSTM, and the structure is shown in Figure 3.
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Forward LSTM can obtain the past data information of the input sequence. Backward
LSTM can obtain the future data information of the input sequence. The forward and
backward LSTM training of time series is realized to further improve the overall integrity
of feature extraction. In t time step, the output Ht of the hidden layer of Bi-LSTM consists

of the forward
→
ht and the backward

←
ht:

→
ht =

→
LSTM(ht−1, xt, ct−1), t ∈ [1, T] (19)

←
ht =

←
LSTM(ht+1, xt, ct+1), t ∈ [T, 1] (20)

Ht =

[→
ht,
←
ht

]
(21)

2.3.2. Self-Attention Mechanism

The attention mechanism is a probability-weighted mechanism that mimics the at-
tention of the human brain [39]. When the human brain observes things, it will focus on
specific places and ignore other places. There is an intrinsic correlation between hidden
features. Hidden features of different time steps have different effects on the prediction
results, which is unrecognizable by the Bi-LSTM network. Therefore, the self-attention
mechanism is well suited to load prediction methods involving LSTM networks. This
method highlights the more important factors by assigning different probability weights to
the inputs, ultimately further improving the prediction accuracy of the model.

The attention layer assigns the feature weight of the model learning to the input vector
of the next time step to highlight the impact of key features on the sequence. The final
data are entered into the fully connected layer. After the virtual function processing of the
fully connected layer, the predicted load value is obtained. The implementation process is
as follows:

Step 1 Calculate the correlation between each current input feature and the current
load.

Step 2 Use the Softmax formula to convert each correlation into a probabilistic form.
Step 3 Multiply each obtained probability by the implicit representation of the corre-

sponding input feature to represent the contribution of the feature to the predicted load.
The contributions of all the input features are then added together as the input parts to
predict the next load data.

The process can be expressed by Equations (22)~(24):

et = Vtanh(Wht + b) (22)

αt =
exp(et)

∑n
j=1 exp

(
ej
) (23)

Ct = ∑n
t=1 atht (24)
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where et and αt are, respectively, the weight score and the attention weight corresponding
to different features at the current time t; V and W is the weight of the multilayer perceptron
when calculating the attention weight; b is the bias parameter of the multilayer perceptron
when calculating the attention weight; N is the dimension of the input vector of the
prediction model; and Ct is the output of the attention mechanism at time t. This paper
introduces attention mechanisms based on past and future input characteristics. Thus, the
model can give different weights to the input features to highlight the influence of strong
correlates and reduce the shadow of weakly correlated factors.

As seen in Figure 4, after receiving the input for a time window, the model passes
the sequence data to the forward LSTM hidden layer and the reverse LSTM hidden layer,
and the two combine to output the processed vector. The attention layer takes the data
processed by the LSTM layer as input, calculates the weight vector, and then combines
the weight vector with the shallow output to obtain a new vector input into the linear
transformation layer. The green boxes in the figure indicate the resulting attention weight
parameters. Finally, the linear transformation layer calculates the predicted value.
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This paper combines the Bi-LSTM algorithm with an attention mechanism. This
method mines the contribution of the contextual information in the time series data, the
historical resident data in different time dimensions, and the external features to predict
the results. Thus, it highlights the effective features and further improves the accuracy of
residential electricity forecasting.
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3. Example Analysis
3.1. Data Sources

This paper is based on the British Grid’s residential electricity consumption data set
for London in 2014. The dataset contains partial consumption readings from November
2011 to February 2014 for a sample of 5567 London households, with readings taken every
half hour in kilowatt-hours. In this paper, the electricity consumption data of households
with relatively complete data from January to December 2012 are selected for research.
Each household has 1753 load data pieces, and there are 3533 households, with a total of
6,193,349 load data pieces.

3.2. Error Indicator

The missing data can be discussed in the following two situations: For a single missing
data, according to the characteristics of the smooth variation in the power load curve, the
average load of the two data points before and after the data point is taken to fill in the
missing data. For continuous multiple missing data, according to the characteristic that the
load curves of the power system have roughly the same trend, we use similar load curves
in adjacent dates to replace them.

We use five predictors to demonstrate the validity of the method proposed in this
paper. The formulae for the forecast error assessment indicators are shown below.

Mean Absolute Percentage Error (MAPE):

MAPE =
100%

N

N

∑
i=1

∣∣∣∣Pture − Pf ore

pture

∣∣∣∣ (25)

Mean Absolute Error (MAE):

MAE =
1
N

n

∑
i=1

∣∣∣Pture − Pf ore

∣∣∣ (26)

Mean Square Error (MSE):

MSE =
1
N

N

∑
i=1

(Pture − Pf ore)
2 (27)

Symmetric Mean Absolute Percentage Error (SMAPE):

SMAPE =
100%

N

N

∑
i=1

∣∣∣Pture − Pf ore

∣∣∣(
|Pture|+

∣∣∣Pf ore

∣∣∣) (28)

Root Mean Square Error (RMSE):

RMSE =

√√√√ 1
N

N

∑
t=1

(Ptrue − Pf ore)
2 (29)

In the above formulae, N is the predicted point; Pture is the actual value of the resident
load; and Pf ore is the predicted resident load.

3.3. Experimental Analysis and Verification
3.3.1. Clustering Visualization and Comparison Experiment

We used SVD to downscale the load data of the 3533 households from 17,500 to 2000.
The time required for clustering was significantly reduced from seven days to less than
one day. We used the K-Shape algorithm to cluster the 3533 real residential user load
curves into two categories. To display the data distribution after clustering more vividly,
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we used Principal Component Analysis to map the data from high-dimensional space to
two-dimensional space. The clustering visualization diagram is shown in Figure 5.
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two categories according to the difference in residential electricity consumption. The first 
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The x-axis and y-axis, respectively, represent the first dimension and the second
dimension after the data are reduced to two dimensions, and the difference between
different clusters is obvious after clustering. To further demonstrate the clustering effect,
the average daily load of residents in different clusters after clustering is shown in Figure 3.
The vertical axis represents the load in kW. The horizontal axis represents time, with a
minimum time unit of 30 min and a total of 48-time steps.

As can be seen in Figure 6, the K-Shape clustering algorithm can divide residents into
two categories according to the difference in residential electricity consumption. The first is
high-electricity residents, and the other is low-electricity residents. Among them, the peak
daily load of Class I residents is 0.33 kw/h, which is about 33% higher than that of Class II
residents at 0.22 kW/h. The daily load valley value of Class I residents is 0.18 kW/h and
that of Class II residents is 0.13 kW/h, while the daily trough value of Class I residents is
about 38% higher than that of Class II residents, with obvious differences.
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To further verify the effect of differentiated clustering on subsequent experiments,
ablation experiments were performed on the above results. In this project, residents are
divided into two categories, high-electricity residents and low-electricity residents, and
the daily load is forecasted on the same grid residential electricity consumption dataset.
In Table 1, ALL represents the results of the direct prediction without clustering, and
K-Shape_2 indicates the results of the prediction after clustering into two categories.

Table 1. Cluster ablation experimental results.

Algorithm MAPE MAE MSE RMSE SMAPE

ALL 2.16% 46.36 3177 56.36 3.29
K-Shape_2 1.49% 23.77 2994 59.67 2.84

As shown in Table 1, when the clustering is two classes, the MAPE is 1.49%, and the
MAE is 23.77, both of which are better than the unclustered results. This is because we
divide the load curves of group residents into two categories through clustering, which
are high power consumption curves and low power consumption curves. Predicting them
separately can ensure that the input vectors of the prediction model have a higher similarity
so that the prediction is more accurate.

As shown in Table 2, K-Shape has a significant improvement compared to K-means
and DBSAN. Compared to K-means and DBSAN, the method in this paper improves the
MAPE by 5.82% and 14.47%, respectively. Improvements of 47.22 and 107.52 are achieved
on the MAE, respectively. Compared to the other two methods, K-Shape significantly
improves the results of all the metrics. This is mainly due to the optimization of the
distance calculation method, the centroid calculation method, and the introduction of the
frequency-domain feature extraction method.

Table 2. Cluster comparison experimental results.

Algorithm MAPE MAE MSE RMSE SMAPE

Dbscan 16.24% 122.07 20,496 143.17 15.62
k-means 7.59% 61.77 10,699 103.44 10.16
K-Shape 1.49% 23.77 2994 59.67 2.84

Overall, the prediction performance after clustering is better than that without cluster-
ing. Through clustering, the load sequences with the highest similarity in the samples can
be screened out and grouped as subsequent prediction training samples. We selected the
historical load sequence with the highest similarity to the input vector. It can be guaranteed
that the output of the predictive model is closer to the true value, and the input space of
the predictive model can be mapped more reasonably.

3.3.2. Noise Reduction Visualization and Comparison Experiment

After preprocessing the input data used in the experiments in this paper, the EMD
method was performed on the typical residential electricity consumption data clustered
into two categories to obtain eight IMF components. Each component of the IMF represents
each frequency component in the original signal. The components are arranged in order
from high frequency to low frequency. Modal decomposition is a preprocessing method for
signal feature extraction, and each IMF component is used as the input of the subsequent
analysis, which is often used to remove noise. Thetime–frequency decomposition diagrams
and corresponding spectrum diagrams are shown in Figure 7.
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To verify the effectiveness of the modal decomposition, all components and the first
five components were used as the input data, and experiments were carried out on the
power grid residential electricity data set used in this project. The results are shown in
Table 3, where EMD_all means using the whole fraction as the input, and EMD_5 means
using the first five components as the input.

Table 3. Mode decomposition ablation experimental results.

Model MAPE MAE MSE RMSE SMAPE

EMD_all 3.01% 24.32 1862 43.15 3.82
EMD_5 2.50% 20.46 3130 55.95 6.06

By reducing the IMF component as the input, noise is reduced and the indicators, such
as MAPE, are reduced. MAPE decreases from 3.01% to 2.50%, which is a decrease of 0.51%.
MAE decreases from 24.32 to 20.46, which is a decrease of 3.86. This shows that the EMD
method can remove noise and reduce experimental errors.

3.3.3. Daily Load Forecasting Results from Visualization and Comparison Experiment

Based on clustering, this experiment builds a Bi-LSTM-Attention (BLA) residential
electricity consumption prediction model. This model use sliding windows and adds up
the electricity consumption of each category. each window size is one week (7 × 48). It
uses the window data to predict the next day’s 24 h (48 o’clock) residential electricity
consumption data. The ratio of the training set and the test set is 9:1, the training set has
1577 time points, and the test set has 175 time points. The training accuracy is 0.000001, the
maximum number of iterations is 1000, the learning rate is 0.1, and the maximum number
of failures is 10 times. The clustering results based on K-Shape clustering into two, three,
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five, and eight categories are predicted, and the daily load prediction results are shown in
Figure 8.
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It can be seen from Figure 4 that the BLA model performs well, and the error of
the daily load prediction results after clustering is very small. To verify the effectiveness
of the BLA model introduced by the attention mechanism established in this project, an
attention mechanism ablation experiment was carried out on the same British power grid
residential load data set. The BLA model proposed in this paper is compared with a
Bi-LSTM model [40] which does not introduce an attention mechanism. To make the
experimental results more convincing, this paper conducts experiments using different
cluster center numbers, and the experimental results are shown in Table 4.

Table 4. The load forecasting experimental results with different cluster center numbers.

Algorithm MAPE MAE MSE RMSE SMAPE

Bi-LSTM_2 1.88% 45.87 3560 59.67 2.84
BLA_2 1.49% 23.77 2994 55.66 1.84

Bi-LSTM_3 3.12% 34.75 1845 42.95 2.34
BLA_3 1.51% 23.75 3015 40.12 2.10

Bi-LSTM_5 2.78% 40.80 2561 50.61 2.82
BLA_5 2.33% 35.06 2503 48.16 2.62

Bi-LSTM_8 2.32% 34.75 1845 42.95 2.34
BLA_8 2.04% 28.56 1558 39.97 2.09

Bi-LSTM_10 2.31% 65.84 6918 83.18 4.10
BLA_10 1.86% 25.69 5360 72.50 3.53

The error percentages of the five clustering numbers of the proposed method and
the original Bi-LSTM method are shown in the table. The MAPE of the proposed method
in terms of two, three, five, eight, and ten clustering numbers is smaller than that of the
original Bi-LSTM method, and the average absolute percentage error is reduced by 0.39%,
1.61%, 0.45%, 0.28%, and 0.63%, respectively. The experiments prove that the proposed
model shows good performance in the prediction of this kind of data. The average MAPE
of the original Bi-LSTM model is 2.48%, and the average MAPE of the proposed method
is 1.85%.

To better illustrate the predictive efficiency of the BLA residential electricity consump-
tion prediction model in the above experiments, the relative error and the average error are
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used to test the accuracy of the model. The average absolute percentage error percentage
is expressed independently of scale and can be used to compare predictions at different
scales. Therefore, the average absolute percentage error is used as the evaluation criterion
for the predictive effectiveness of the model, and the confidence is high. A calculation of
the average absolute percentage error of the BLA prediction model and the prediction data
of the original Bi-LSTM was performed, and the results are shown in Figure 9.
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It can be seen that the Bi-LSTM errors are larger than the BLA residential electricity
prediction model proposed in this topic. To further verify the complexity of the method
in this paper, we calculated the parameter amount and the floating-point operations per
second (FLOPS) of the BLA model in this paper. After calculation, the number of parameters
of the BLA model is 88,148. The model proposed in this paper is mainly composed of
Bi-LSTM and self-attention. The input vector dimension of the Bi-LSTM is 7 × 48, the
hidden state dimension is 50, and the FLOPS is 80 K. The FLOPS of self-attention is 9.8 k.
The remaining fully connected layer FLOPS is 44.2. So, the FLOPS of BLA is only 134.
Since the model was very fast to train, we trained for 226 epochs in just 427 s on a single
V100 GPU.

To further verify the effect of the BLA residential electricity consumption prediction
model proposed in this paper, a horizontal comparison was performed. We chose the GRU,
RNN, and LSTM algorithms commonly used in time series prediction for comparison. By
introducing a self-attention mechanism, the BLA model we proposed improves the problem
that the above algorithms have for the same time series information weight. The prediction
results of the BLA, RNN, LSTM, and GRU models were compared and analyzed through
experiments to determine the relative performance of the model proposed in this paper. In
the second comparison experiment, to compare the superiority of the method in this paper,
we conducted experiments on the same data set and compared the GRU [41], RNN [42],
LSTM [43], and DB-LSTM [44] methods. Among them, the DB-LSTM method means that
DBSCAN is used for clustering first, and then LSTM is used for prediction. The results are
shown in Figure 10.

By observing Figure 10, it is not difficult to find that the model in this paper is more
accurate than the other four models when clustering is the second class. The MAPE is
3.70%, 1.17%, 4.99%, and 1.62% lower than that of the GRU, RNN, LSTM, and DB-LSTM
methods, and the prediction error is significantly reduced. There are two main reasons
for this. First, our proposed model is based on a bidirectional recurrent neural network,
which is highly robust for modeling time series data. Second, we introduce an attention
mechanism on top of this. It enables the model to assign different weights to temporal
features and extrinsic features simultaneously, thereby highlighting the key features of the
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input data that play a key role in the residents’ load forecasting process, which helps to
improve the accuracy of short-term load forecasting.
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4. Conclusions

This paper proposes a group resident daily load forecasting method fusing a self-
attention mechanism based on load clustering to achieve accurate daily load forecasting.
Firstly, a K-Shape-based clustering method is used for group resident loads. Because of
the characteristics of high dimensionality and obvious differences in residential electricity
consumption data, we use the K-shape algorithm to cluster the load data of group residents.
It is divided into two types of typical residential electricity consumption curves: the high
electricity consumption residential curve and the low electricity consumption residential
curve. Therefore, in the subsequent prediction, the input vector similarity of the model
is higher, and more accurate prediction results are obtained. Secondly, we use empirical
mode decomposition to adaptively extract the IMF components and the residuals from the
load data and reduce the noise by reducing the IMF component input. Finally, we propose
an attention-based bidirectional neural network to predict residents’ daily load. The self-
attention mechanism is used to assign different weights to the time series information
during prediction, which makes full use of the contextual information and the important
information about the daily load of group residents.

To summarize, the group resident daily load forecasting method proposed in this
paper has an average accuracy rate of over 98%. At the same time, we also compared
previous prediction methods using the same data set. The experimental results show that
the method we proposed performs better than the previous methods in five evaluation met-
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rics. Therefore, the group resident daily load forecasting method fusing the self-attention
mechanism based on load clustering proposed in this paper can accurately predict the daily
load of residents. This method can help power companies to accurately understand the
individualized and differentiated needs of users. It can improve the accuracy and efficiency
of electricity consumption forecasting. Meanwhile, it can assist power companies to expand
their business and provide data support for power demand management.

In future research, the method proposed in this paper can be used for short-term
electricity load forecasting for other data sets. Other factors, including social factors and
residential electricity consumption habits, can also be combined in the forecasting model.
Other powerful artificial intelligence techniques can also be introduced into the hybrid
model to further improve prediction accuracy.
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