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Abstract: As a special road-building material widely distributed in desert areas, critical state soil
mechanics is used to study the mechanical properties of sand and make up for the lack of research
on its engineering characteristics. A series of drained and undrained triaxial compression tests with
a loading rate of 0.12 mm/min medium-density aeolian sands taken from Tengger Desert in the
northwest of China was carried out to obtain the three-dimensional state boundary surface. The
test results reveal that the strength gained from drained and undrained tests increased, respectively,
linearly and non-linearly with the increase of the effective confining pressure. Affected by the
variation of pore pressure and shear rate, the undrained strength was higher than the drained
strength at low effective confining pressures, and the two types of strengths tend to be consistent
when the effective confining pressure becomes greater than 800 kPa. The volumetric changes of the
aeolian specimens transition from dilatation to contraction when the effective confining pressures
increase. The investigation of the strength, deformation and failure characteristics gives rise to the
shape parameters of its state boundary surface, which provides not only a basis for the constitutive
modelling of the aeolian sand, but also a reference for roadbed construction and other foundation
engineering in desert areas.
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1. Introduction

The state boundary surface is the unique physical state relationship formed by effective
stress paths of soil in a three-dimensional space composed of generalized normal stress,
shear stress and specific volume, and it provides an outer limit to the combinations of
effective stress and specific volume which the soil can reach [1]. In road building, it can
predict the limit state of aeolian sand subgrade failure. The state boundary surface is the
basis of critical state soil mechanics and is crucial in studies of the soil mechanical properties,
which have been widely used to study the mechanical behaviors of remodeled clay. Aeolian
sand is a special material for roadbed filling, which is widely distributed in desert areas,
while there are only a few basic experiments for engineering applications. Moreover, the
basic experimental results related to critical states are rather scarce. In recent years, much
infrastructure, such as highways, railways, transmission lines and other projects, has been
built in desert areas. In addition, the numerical simulation of the dynamic response of
multi-layer pavement under a moving load is gradually enriched [2,3]. However, the
lack of research on the mechanical properties of aeolian sand has seriously restricted the
geotechnical application in desert areas. Therefore, experimental characteristics of the
state boundary surface of aeolian sand is urgently required for a better understanding the
mechanical behaviour of this material.

Currently, most of the existing research on aeolian sands focuses on their engineering
aspects, such as particle-size distribution, compaction characteristics, bearing capacity,
shear resistance and proportioned concrete [4–6]. The particle-size distribution of aeolian
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sand in several regions was analysed by different researchers, for instance, Li et al. [7]
for the Tengger Desert, Liu et al. [8] for the Mu Us Desert, Ning et al. [9], Guo et al. [10]
for the Badain Jaran Desert, Zhang et al. [11] for the Qinghai Lake East Sandy Land, etc.
These studies provide rich references for the construction of a foundation treatment in
desert areas. Other researchers, e.g., Yuan et al. [12], Li et al. [13], Yin et al. [14], studied
the compaction characteristics of aeolian sand. Du et al. [15], Yu et al. [16], Yi et al. [17]
and Zheng et al. [18] studied the shear strength characteristics in different desert regions.
Yin et al. [19] and Li et al. [20] studied the bearing capacity characteristics of aeolian
sand foundations. Although the existing research has accumulated valuable engineering
experience for foundation construction in desert areas, a systematic and in-depth triaxial
test study is needed to better obtain the unique characteristics of its physical state.

So far aeolian sand has been rarely studied in triaxial tests. Some authors have studied
the dynamic properties of aeolian sand with dynamic triaxial tests, e.g., Deng [21], Song [22],
Liu [23], Song et al. [24], Liu et al. [25], Luo et al. [26] and Bao et al. [27]. Other authors focus
on the static strength of sand. For instance, Li et al. [28] studied the strength characteristics
of cement-improved aeolian sand; Badanagki [29] obtained the shear strength and stiffness
of aeolian sand in the Sahara Desert, Libya, by a series of drained and undrained triaxial
tests; Song [24] obtained the strength characteristics of the aeolian sand in the Mu Us
Desert, China, at different stress paths, densities and moisture contents; Qureshi et al. [30]
obtained the strength and softening resistance of aeolian sand treated by biopolymer in
Al-Sharqia desert; Souza et al. [31] determined the critical state parameters of aeolian sand
in Natal, Brazil by triaxial tests with different initial densities; Wei et al. [32] obtained the
mechanical properties of aeolian sand and fly ash at different proportions. In particular,
Li Xuefeng et al. [33–35] studied the characteristics of deformation, strength and failure
of aeolian sand in the Tengger Desert, China at different spatial stress states, different
densities and multiple confining pressures. All in all, the unique mechanical properties
of aeolian sand have attracted increasing popularity, but some other aspects, such as the
critical state, phase transformation and dilatancy of aeolian sand at different stress states
and stress paths, need to be studied further. In particular, the determination of its state
boundary surface is rarely reported.

In this paper, a series of triaxial drained and undrained tests on the medium-density
specimens were conducted to obtain the unique relationship of the state boundary surface
of the aeolian sand taken from the Tengger Desert in China. The mechanical responses are
measured at different confining pressures. The critical state lines, phase transformation
lines and dilatancy characteristics are determined. According to the unique relationship
between the stress state and the volume state, the state boundary surface in the p-q-e space
is established. The test results improve our understanding of the mechanical response and
helps to establish a reasonable constitutive relationship for aeolian sand.

2. Test Method
2.1. Test Apparatus

The triaxial apparatus used in the test was produced by Ningxi Soil Apparatus in
Nanjing, China, which can be controlled by stress or strain (Figure 1). The triaxial apparatus
is mainly composed of a host, a pressure controller, and a multi-channel communication
digital acquisition apparatus. The apparatus is controlled by a single chip computer, and
each part can work independently. Multi-channel communication can collect and process
data in real time. The apparatus can perform various stress path tests and drained or
undrained triaxial tests, in which the drained triaxial test can obtain the real strength of the
material, and the undrained triaxial test corresponding to the rapid construction can obtain
the pore pressure development. The size of the cylindrical specimen is Φ39.1 mm × 80 mm,
the axial load range is 0~30 kN, and its measurement accuracy is ±1%. The range of the
confining pressure controller is 0~1.99 MPa, the range of the back pressure controller is
0~0.99 MPa, and the control accuracy is ±0.5%FS (Full Scale).
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Figure 1. SLB-1 triaxial apparatus, Nanjing, China.

2.2. Test Material

The sand specimen is aeolian sand sampled from the Tengger Desert, China. The
Tengger Desert is a typical enrichment area of aeolian sand. Aeolian sand in this area is a
special granular material with heterogeneity, cohesionless, uniform particle size, strong
permeability and remarkable anisotropy characteristics. The compaction curve has bimodal
characteristics, which is also a type of collapsible soil [36]. Therefore, the sand tested in this
paper is widely representative. Figure 2 shows the microscopic image of the used sand.

The mass of the aeolian sand with a particle size larger than 0.075 mm exceeds 85%
of the total mass. The moisture content of natural aeolian sand is 0.14%; the maximum
dry density is 1.68 g/cm3; the minimum dry density is 1.40 g/cm3; the specific gravity of
sand is 2.67; the maximum void ratio is 0.907, and the minimum void ratio is 0.589. The
coefficient of nonuniformity Cu is 1.31, the coefficient of curvature Cc is 2.66, and the fine
particle content is less than 5%. According to the “Engineering Classification Standard
of Soil” (GB/T 50145-2007), the sand is classified as poorly graded sand. Table 1 shows
the particle-size distribution of aeolian sand measured by the sieving method (the data
in Table 1 are the average results of three sieving tests). In the table, the sieve mass with
a particle size of 0.1~0.25 mm is 750.8 g, accounting for 75.08% of the total mass of the
sample, which is the highest particle size of aeolian sand.

Table 1. Particle size gradation of aeolian sand in the Tengger Desert.

Mass of sample taken for fine sieve analysis = 1000 g
Sand mass on 2 mm sieve = 0 g The percentage of sand less than 0.075 mm in the total sand mass = 1.23%
Sand mass under 2 mm sieve = 1000 g The percentage of sand less than 2 mm in the total sand mass = 100%

Particle
Size/mm

Cumulative Sand
Mass on the

Sieve/g

Mass of Sand with
Particle Size Smaller
than the Aperture/g

The Mass Percentage of Sand with
a Particle Size Smaller than the

Aperture/%

The Mass Percentage of Total Sand
Whose Particle Size Is Smaller than

the Aperture /%

0 0 0 0 0
0.075 12.3 12.3 1.23 1.23

0.1 131.3 143.6 13.13 14.36
0.25 750.8 894.4 75.08 89.44
0.5 104.4 998.8 10.44 99.88
1 1.2 1000 0.12 100

2.3. Test Process and Scheme

The specimen preparation process was completed by using a split mould, a rubber
membrane and a vacuum pump. The vacuum was used to make the rubber membrane
close to the inner wall of the split mould. The multiple sieving pluviation method is
used for the specimen preparation. The process of specimen preparation and specimen
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installation is shown in Figure 3. The relative density Dr is controlled to be 0.5, the dry
density ρd = 1.53 g/cm3, and the initial void ratio e0 = 0.745 (medium density). After the
specimen was prepared, it was necessary to vacuum the specimen through an exhaust hole
on the top cap of the specimen to ensure the stability of the specimen size. To this end, a
negative pressure of 20 kPa inside the specimen was maintained to fix the shape of the
specimen. Afterwards, two steps of hydraulic saturation and back pressure saturation were
performed to saturate the specimens. After the saturation reaches higher than 95%, the
specimen consolidation and triaxial drained and undrained shear test were carried out
with reference to ASTM (D7181-11).
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Figure 3. Specimen preparation and specimen installation.

To obtain the state boundary surface of the aeolian sand in the three-dimensional
space, it is necessary to obtain the effective stress paths and strength and deformation at
different confining pressures. For this purpose, the drained and undrained triaxial tests at
the confining pressure σ3 of 50, 100, 200, 400 and 800 kPa were designed. The key control
parameters of the test scheme were detailed in Table 2.

Table 2. Triaxial test control parameters.

Material Type Saturability Effective Confining
Pressure σ3 (kPa)

Drained
Conditions

Strain
Loading Rate

(mm/min)

Aeolian sand More than 95%

50

I.Drained
II.Undrained

0.12
100
200
400
800
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3. Test Results
3.1. Stress-Strain Relationships

Figure 4a,b shows the variation of the generalized shear stress and volumetric strain
with axial strain under the drained conditions. Due to the complex and diverse in natural
particle shapes of the aeolian sand (Figure 1), the particle internal friction is strong, resulting
in obvious nonlinear characteristics in the stress-strain curves. At a low effective confining
pressure (σ3 ≤ 100 kPa), the specimens exhibit strain hardening behaviour, and at a high
effective confining pressure, they show strain-softening behaviours. The higher the effective
confining pressure, the more obvious the softening characteristic, the greater the elastic
modulus, the higher the peak strength, and the longer the elastic-plastic stage. At low
effective confining pressure, the aeolian sand first undergoes contraction deformation and
then dilates until failure is achieved. Meanwhile, the characteristics of contraction and
dilatation are affected significantly by the effective confining pressure. With the increase
of the effective confining pressure, the volumetric changes develop from dilatation to
contraction. While the effective confining pressure reaches 800 kPa, only the contraction
deformation occurs (compared to the initial volume of the specimen).
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Figure 4. Relationships between stress and volumetric strain with axial strain at drained condition.
(a) Stress-strain relationships. (b) Volumetric strain-strain relationships.

Figure 5a,b show the variation of generalized shear stress and pore pressure with axial
strain under undrained conditions. Figure 5a shows that the stress-strain relationships are
softened only at relatively low effective confining pressures (e.g., 50, 100 and 200 kPa), and
hardened at high effective confining pressures (>200 kPa). A greater effective confining
pressure gives rise to a greater elastic modulus and a higher peak strength. Compared
with the stress-strain relationships under the drained condition, the peak stress point of
the undrained test is higher and the elastic-plastic stage is longer under the same load
conditions. The results suggest that the undrained shear rate needs to be reduced to fully
dissipate the excess pore pressure. Figure 5b shows the variation of pore pressure, implying
that the dilatancy increases gradually with the increase of effective confining pressure. At
low effective confining pressure, the negative pore pressure generally increases, while at
high effective confining pressure, the pore pressure increases generally. It also shows that
only dilation occurs at low effective confining pressure, while only contraction occurs at
high effective confining pressure. This is consistent with the results obtained from drained
tests. However, pore pressure has a greater influence on the stress-strain relationships
under undrained conditions, and aeolian sand is more prone to dilatancy failure.
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Figure 5. Relationships between stress and pore pressure with axial strain under undrained condi-
tions. (a) Stress-strain relationships. (b) Pore pressure-strain relationships.

Figure 6 shows the variation of pore pressure coefficient A with axial strain. Skemp-
ton [37] reported that the specimen contracts for A > 0, and it dilates at A < 0. Therefore,
in Figure 6, the pore pressure and strain relationships above auxiliary line A = 0 are con-
traction, and below auxiliary line A = 0 is dilation. The test results of the pore pressure
coefficient A also show that the deformation and failure mode of the aeolian sand is dilata-
tion under undrained conditions, and the contraction part only occurs within 2% of the
axial strain.
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Figure 6. Relationships between pore pressure coefficient and axial strain.

Figure 7a,b shows the relationships between axial strain and radial strain under
drained and undrained conditions. The relationships between the axial strain and radial
strain change linearly under drained condition. As the effective confining pressure in-
creases, the slope of the linear relationship increases negatively, indicating that the aeolian
sand has an initial anisotropy, and the initial anisotropy decreases with the increase of the
effective confining pressure continuously. Figure 7b shows that the relationships between
the axial strain and radial strain change linearly under undrained conditions, which always
satisfies the equation ε1 = −2ε3. The anisotropy characteristic is not obvious, which may be
related to the loading rate of the test.
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Figure 7. Relationships between axial strain and radial strain. (a) Drained. (b) Undrained.

Figures 8a,b and 9a,b show the relationships between generalized stress ratio η and
generalized shear strain εs of aeolian sand and the relationships between εs/η and εs under
drained and undrained conditions, respectively. Comparing Figures 8a and 9a, it can
be concluded that the peak stress ratio decreases gradually with the increase of effective
confining pressure in both the drained and undrained tests, but the peak stress ratio of the
drained condition is slightly higher than that of the undrained condition. The shape of the
η-εs relationship for drained and undrained conditions are significantly different. Under
undrained conditions, the stress ratio has an obvious peak value, and the peak stress ratio
decreases slightly with the increase of εs. In Figures 8b and 9b, the εs/η-εs relationships
are linear under drained and undrained conditions. The slope of the straight line increases
with the increase of the effective confining pressure under the drained condition, but the
change of the slope is small under an undrained condition.

Wood et al. [38] used the peak generalized stress ratio to represent the characteristics
of the softening curve and proposed a hyperbolic model characterized by the stress ratio
and the shear strain, which reads:

η

ηmax
=

εs

B + εs
(1)

where B is the test constant and ηmax is the peak value of the generalized stress ratio. The
transformation form is as follows.

εs

η
=

B
ηmax

+
εs

ηmax
(2)

Our test results are consistent with the hyperbolic model proposed by Wood et al. [38].
The slope of the εs/η-εs curve increases gradually with the increase of effective confining
pressure under drained conditions, indicating that softening increases gradually. The slope
of the εs/η-εs curve under undrained conditions is significantly higher than that under
drained conditions, indicating that the softening phenomenon is more obvious.

Figure 10 shows the variation of peak shear stress and peak friction angle with effective
confining pressure under drained and undrained conditions. The black curve in the figure
increases linearly, indicating that the generalized peak shear stress increases linearly with
the increase of effective confining pressure under both drained and undrained conditions.
However, the undrained strength is greater than the drained strength at low effective
confining pressure, and the drained and undrained strength becomes the same as the
effective confining pressure increases. All the purple curves show a nonlinear decreasing
trend, indicating that the peak friction angle decreases nonlinearly with the increase of
effective confining pressure. At low effective confining pressure, the peak friction angles of
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the two test conditions are quite different, but at high effective confining pressure they are
close to the same.
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Figure 8. η-εs relationships and εs/η-εs relationships under drained condition. (a) η-εs relationships
under drained condition. (b) εs/η-εs relationships under drained condition.
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Figure 9. η-εs relationships and εs/η-εs relationships under undrained condition. (a) η-εs relationships
under undrained condition. (b) εs/η-εs relationships under undrained condition.
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Figure 10. The relationships between qmax~σ3 and ϕmax~σ3 under drained and undrained conditions.
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3.2. State Boundary Surface

Figure 11 plots the critical state line and phase transformation line in the p-q space un-
der drained and undrained conditions and gives the slopes of the two-state lines. The green
points in Figure 11a are the phase transformation points, which are the inflection points
where the void ratio changes from decrease to increase, and it is also the transformation
point of volumetric change from contraction to dilation. The phase transformation point is
determined according to the corresponding stress state point, as the void ratio increment is
0. Figure 11 shows that the critical state line and phase transformation line determined by
the undrained triaxial test are slightly lower than those determined by the drained triaxial
test, due to the change of pore pressure and shear rate, and the variation range is less than
5%. The test results show that the aeolian sand has a unified critical state line and phase
transformation line.

The critical state line and phase transformation line of aeolian sand in the p-q space
can be expressed linearly by the following equations:

q = MCSL1 p (3)

q = MPTL1 p (4)

where MCSL1 and MPTL1 are the slopes of the critical state line and the phase transformation
line in p-q space, respectively.
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Figure 11. Effective stress path for drained and undrained test. (a) Effective stress path for drained
test. (b) Effective stress path for undrained test.

The information in Figure 12 shows the critical state line, phase transformation line
and normal consolidation line under drained conditions, which can be represented by
linear relations. At the same effective confining pressure, with the increase of ln p, the
void ratio decreases first and then increases rapidly to the critical state (compared to the
consolidated void ratio). At different effective confining pressures, with the increase of
effective confining pressure and ln p, the decreased degree of void ratio increases gradually
compared with the consolidated void ratio. While the effective confining pressure is greater
than 800 kPa, the void ratio is always smaller than the consolidation void ratio, and the
aeolian sand undergoes only contractive deformation under this condition. The studies of
Verdugo and Ishihara [39], Riemer and Seed [40] show that the critical state characteristics
of cohesionless soil are significantly different from those of clay, and the critical state line
is no longer unique in the ln p-e space, due to the anisotropy of the soil. In this study, the
specimen adopts the same specimen preparation method and is sheared under triaxial
conditions, so the critical state lines, phase transformation lines and normal consolidation
lines of aeolian sand in e-ln p space can be expressed by linear equations as expressed by
Equations (5)–(7), respectively.
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Figure 12. e-ln p relationships under drained conditions.

eCSL = MCSL2 ln p + eC (5)

ePTL = MPTL2 ln p + eP (6)

eNCL = MNCL ln p + eN (7)

where eCSL2, ePTL2 and eNCL are the void ratios corresponding to the critical state line, the
phase transformation line and the normal consolidation line at any p, respectively. MCSL2,
MPTL2 and MNCL are the slopes of the critical state line, phase transformation line and
normal consolidation line in ln p-e space, respectively. eC,eP and eN are the void ratios
corresponding to the critical state line, phase transformation line and normal consolidation
line at p = 1 kPa, respectively.

Figure 13 shows the e-q relationships of aeolian sand under drained conditions. The
shape characteristics of the critical state line and the phase transformation line in the e-q
space are exponential. Moreover, as q increases, the void ratio decreases compared with
the consolidated void ratio, and the specimen contracts. At low and medium effective
confining pressure, the void ratio increases rapidly to a critical state after reaching the
phase transformation point. At high effective confining pressures, the void ratio increases
and q decreases, and the specimen show strain softening behaviours. At low effective
confining pressures, and the dilatation characteristics are significant. The higher the
effective confining pressure, the greater the peak shear stress. The critical state lines and
phase transformation lines in e-q space are nonlinear. The critical state line and phase
transformation line can be used to predict the development trend of voids under different
test conditions. According to Equations (3) and (5), the critical state line in e-q space can be
expressed as follows:

q = MCSL1 p = MCSL1 exp
eCSL − eC

MCSL2
(8)

Based on Equations (4) and (6), the phase transformation line in e-q space can be
expressed as follows:

q = MPTL1 p = MPTL1 exp
ePTL − eP

MPTL2
(9)

Figure 14 shows the critical state characteristic curve of aeolian sand in e-p-q space.
The three-dimensional surface composed of e, p and q is the state boundary surface or
Roscoe surface. The curve connected by the transformation points where the void ratio first
decreases and then increases at different stress states is defined as the phase transformation
state line, which reflects the state transformation from contraction to dilation. While the
granular material is sheared to failure, the curve composed of the effective stress path, void
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ratio and average effective stress is defined as the critical state line. The three-dimensional
critical state line can be expressed in Equations (5) and (7), and reads:{

eCSL = MCSL2 ln p + eC

q = MCSL1 exp eCSL−eC
MCSL2

(10)
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The three-dimensional phase transformation line can be expressed in Equations (6) and (8),
and reads: {

ePTL = MPTL2 ln p + eP

q = MPTL1 exp ePTL−eP
MPTL2

(11)

The test results take into account the dilatancy characteristics for the establishment
of the state boundary surface, so the state boundary surface is quite different from that of
remodelled clay proposed by Roscoe [1]. The state boundary surface describes the unique
relationship among the stress state, strength and void ratio of aeolian sand. The spatial
critical state line and phase transformation line shown in Figure 14 and their descriptive
Equations (9) and (10) can better describe and predict the quantitative relationship between
stress state characteristics and volume state characteristics in the three-dimensional space.
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4. Conclusions

In this paper, the state boundary surface and deformation and failure characteristics
of aeolian sand in the Tengger Desert, China are studied through a series of drained and
undrained triaxial tests. The following conclusions can be drawn from this study:

(1) The generalized peak shear stress of aeolian sand increases linearly with the increase of
effective confining pressure under drained and undrained conditions; the undrained
strength is greater than the drained strength at low effective confining pressure, and
the strength is close to the same with the increase of effective confining pressure.
The peak friction angle decreases nonlinearly with the increase of effective confining
pressure. The peak friction angle of the two test conditions is quite different at
low effective confining pressure and is close to the same at high effective confining
pressure.

(2) At low and medium effective confining pressures, the dilatancy is obvious. With the
increase of effective confining pressures, the dilatancy develops to contraction. At
high effective confining pressures, it only contracts. The development of pore pressure
under undrained conditions also reflects a similar law.

(3) The medium-density specimen of aeolian sand obtained by the multiple sieving plu-
viation method has strong initial anisotropy. With the increase of effective confining
pressure, the effect of initial anisotropy gradually weakens. While the effective confin-
ing pressure is 800 kPa, the initial anisotropy has almost no effect on the deformation
characteristics. The initial anisotropy characteristics of the undrained test are not
obvious, and the relationships between axial strain and radial strain always satisfy
the relationship ε1 = −2ε3.

(4) The three-dimensional state boundary surface of aeolian sand considering dilatancy
is quite different from that of remoulded clay. The study of the state boundary surface
and the determination of critical state line and phase transformation line equations
in three-dimensional space describe the unique state relationship formed by the
generalized normal stress, shear stress and void ratio accurately, which can predict
the quantitative relationship between stress state and volumetric state reasonably.
The state boundary parameters can provide the basis for the establishment of the
constitutive model of aeolian sand and provide basic test support for the geotech-
nical design, construction and maintenance of foundations, roadbeds and another
foundation engineering in desert areas.
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