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Abstract: This research highlights the importance of error-correcting codes in ensuring secure and
efficient data transmission over noisy channels. This paper aims to address the issue of limited
information regarding the factors that contribute to the effectiveness of the implementation of
Convolutional Codes in GPS systems. The research problem revolves around the insufficiency of
scholarly sources elucidating the rationale behind the utilization of convolutional codes, specifically
in GPS systems, rather than others. Through an in-depth analysis of these factors, this study strives
to achieve a comprehensive understanding of the application of Convolutional Codes in GPS. To
tackle this research problem, a novel methodology involving comparative analysis is employed. The
coding techniques commonly used in satellite communication systems (such as BCH, LDPC, and
turbo codes) are carefully examined and compared to the advantages and suitability of Convolutional
codes and the Viterbi algorithm for GPS systems. Each coding technique is evaluated based on factors
such as error detection and correction capabilities, bandwidth efficiency, computational complexity,
and resilience to noise. The key findings of this study shed light on the unique advantages offered
by Convolutional codes and the Viterbi algorithm for GPS systems. The analysis reveals that these
coding techniques exhibit superior error detection and correction capabilities, efficient bandwidth
utilization, and the ability to withstand noise in the GPS communication channel. The results also
highlight the computational complexity associated with these techniques, providing valuable insights
for the implementation of convolutional codes in GPS systems. Overall, this article contributes to
the existing knowledge by providing a comprehensive understanding of the reasons behind the
suitability of convolutional codes for GPS systems. The findings of this study serve as a resource
for researchers, engineers, and practitioners in the field of satellite communication, aiding in the
comprehensive understanding, advancement, and optimization of GPS system designs.

Keywords: global positioning system GPS; error-correcting codes; convolutional codes; Viterbi algorithm

1. Introduction

Global Positioning System (GPS) is a crucial technology for navigation and commu-
nication systems that rely on satellite communications. GPS has emerged as a valuable
tool in both military and civilian applications. From aircraft navigation and surveying
to automotive applications and recreational activities like hiking and camping, GPS has
proven its versatility and utility. GPS has been in use for providing positioning, navigation,
and timing (PNT) services in many parts of the world.

The demands on GPS receiver performance are as varied as the applications. For
example, the hiker is not interested in millimeter-level positioning, but a compact, low-
weight, long-battery-life unit is highly desirable. Surveying units may take advantage of
the increased accuracy which can be achieved by exploiting the low-level of dynamics of
the receiver. Although the specific requirements vary significantly, the most fundamental
aspects remain unchanged. Every GPS application ultimately involves the determination
of platform position, velocity, and/or time.
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However, the GPS signals are often susceptible to noise (Thermal Noise, Receiver
Noise), interference (Electromagnetic Interference, Multipath Interference, Atmospheric
Interference), attenuation, and errors during transmission, which can cause bit flip errors
at the binary level of the transmitted information. The impact of bit flip errors can range
from minor deviations to significant shifts or a complete loss of satellite lock, resulting in
unreliable navigation information.

In order to overcome these challenges, various coding techniques are used to improve
the reliability and robustness of GPS signals. Among these coding techniques, Convolu-
tional codes and the Viterbi algorithm have emerged as some of the most effective methods
for error correction in GPS systems [1,2]. These techniques use a systematic approach
to encoding and decoding data, based on the generation and evaluation of polynomials,
ensuring that errors are corrected with high precision and minimized signal distortion.

The biggest challenge (causing bit flip error) exists in the channels used in Global
Positioning System (GPS) and the Convolutional code and Viterbi algorithm can deal with
representing in multipath fading [3].

When a signal is transmitted from a satellite, it can travel to the receiver in multiple
paths, because of reflections off buildings, towers, and other objects. These paths can
have different delays and attenuation levels, causing the signal to interfere with previous
signals and distort itself at the receiver. This means that the receiver will receive one
message, but this message may be affected by Multipath fading, which can cause errors
and distortions in the signal, or, in other words, the receiver would receive only one
message affected by multipath fading, and the different signals paths would combine at
the receiver to create one composite signal that includes both the original message and
the effects of multipath fading [4].

Despite these limitations, Convolutional codes and the Viterbi algorithm are still
widely used in satellite communications today, particularly in Low-Earth-orbit (LEO)
satellite systems where communication delays are low and the channel conditions are
relatively stable.

Specifically, Viterbi decoding is used in LEO satellite systems to mitigate the effect of
multipath fading, which can cause severe errors in the received signal.

The main objective of the article is to assess and compare Convolutional codes and the
Viterbi algorithm to other coding techniques employed in satellite communication systems.
Focusing specifically on GPS systems, the article will evaluate their ability to correct errors,
the level of computational complexity involved, power consumption considerations, and
compatibility with existing hardware. Through this analysis, the article seeks to provide a
deeper understanding of why Convolutional codes and the Viterbi algorithm are especially
well-suited for GPS systems.

Other notable satellite communication systems that use Convolutional codes and the
Viterbi algorithm include the Integrated Services Digital Broadcasting-Satellite (ISDB-S) system
used in Japan, the Advanced Television Systems Committee (ATSC) standard used in North
America, and the European Space Agency’s (ESA) EUMETSAT Meteorological Satellites.

While prior investigations have examined the application of Convolutional codes
and the Viterbi algorithm in satellite communication systems, this study surpasses pre-
vious work by evaluating various performance metrics. These metrics encompass error
correction capabilities, computational complexity, and resilience to diverse forms of errors.
Furthermore, practical implementation factors, such as power consumption, computational
requirements, and compatibility with existing hardware, are taken into account. Through
shedding light on the strengths and weaknesses associated with each coding method, this
analysis delivers clear insights into the suitability of Convolutional codes and the Viterbi
algorithm for GPS systems.

The paper is structured as follows: In Section 2, a comprehensive review of existing
research pertaining to error detection and correction codes utilized in satellite communi-
cations is presented. This section not only focuses on the efficiency assessment of various
codes within communication systems but also includes comparisons between them. Addi-
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tionally, Section 3 offers a detailed functional description of Convolutional Codes and the
Viterbi algorithm employed for encoding and decoding information, as well as an explo-
ration of the potential error types encountered during signal transmission, such as single bit
errors, random bit errors, and burst bit errors. In Section 4, the advantages of Convolutional
Codes and the Viterbi algorithm are discussed in relation to other code types commonly
employed in satellite communication systems. Finally, Section 5 provide a concise summary
of the findings and draws general conclusions based on the research conducted.

2. Literature Review

This literature review aims to synthesize and critically examine previous research on the
efficacy of Convolutional Codes and the Viterbi Algorithm in GPS systems, in comparison to
other coding techniques. Despite a paucity of studies specifically addressing this topic, it is
important to note that much research has been conducted on the efficiency of error detection
and correction codes, including comparisons between various codes within the context of
communication systems. This study will draw upon these prior investigations to elucidate
the rationale for the selection of Convolutional Codes in GPS systems.

NASA has conducted a study that aims to achieve dependable communications at
lower signal-to-noise ratios [5]. The research demonstrates simulation outcomes outlining
the comparison between modified Convolutional codes with sequential decoding and
NRBO (Non-Return-to-Zero Bit-Level One) codes. Showing that the Convolutional codes
with sequential decoding achieve nearly the same performance as Turbo codes, but with
improved computational complexity, as well as other aspects such as free and open archi-
tectures. Nevertheless, they did need large block sizes and high computational complexity
to attain this performance. These advantages mentioned in the results of this paper il-
lustrate one of the reasons that makes Convolutional codes with sequential decoding a
promising option for GPS communications systems, which require reliable and efficient
communication over long distances.

Another study by Chopra, S.R., Kaur, J. and Monga, H. (2016) [6] provides a detailed
analysis of different types of channel coding techniques, including block coding and
Convolutional coding, and their performance in reducing bit error rates. The authors
compared the performance of the Hamming code, Reed Solomon code, and Convolution
codes using bit error rate (BER) versus Eb/No performance with Binary Phase Shift Keying
(BPSK) modulation. The simulation results showed that Convolution codes have better
error controlling and correction capabilities in comparison to block codes, and, among the
block codes, the performance of the Reed Solomon code is comparatively better.

Another study by Wang et al. (2021) [7] proposed a novel deep-learning-based ap-
proach for identifying Convolutional codes with high accuracy and robustness, particu-
larly in low signal-to-noise ratio (SNR) scenarios. The approach employs deep residual
networks, eliminating the need for manual feature extraction. The experimental results
indicate a recognition accuracy exceeding 88% for 17 distinct forms of Convolutional
codes. The approach is advantageous for applications such as cognitive radios and signal
interception, where low SNR is a prevalent issue. Further investigation is necessary to
ascertain its applicability to GPS systems.

In another study by Pandey and Pandey (2015) [8], a comparative analysis of three
types of error correction codes was conducted: BCH, Hamming, and convolution codes.
Their results showed that, for larger block sizes, Convolution codes outperformed both
the BCH and Hamming codes in terms of bit error rate (BER). However, for smaller block
sizes, the Hamming code performed better than both BCH and Convolution codes . The
results of this paper have highlighted a number of advantages that lend credence to the
viability of adopting Convolutional codes with sequential decoding as a viable solution
for GPS communications systems that demand dependable and efficient communication
across long distances.

In another study by Ayibapreye K. Benjamin and Collins E. Ouserigha (2020) [9], the
authors concluded that the implemented Convolutional codes with a Viterbi decoding
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scheme can effectively improve the BER performance in satellite communication systems.
The coding gain obtained for different coding rates demonstrates the effectiveness of
the design.

Overall, in comparative studies, Convolutional codes and the Viterbi algorithm con-
sistently outperform other coding methodologies like LDPC codes, turbo codes, and BCH
codes in terms of complexity, efficiency, resistance to burst errors, and stream decoding
capability. These advantages make them suitable for GPS communication systems with
high data rates and relatively low error probability.

This study aims to provide a comprehensive assessment of the advantages and disad-
vantages of each coding method employed in satellite communication systems. By doing
so, it offers valuable insights into why convolutional codes and the Viterbi algorithm are
suitable for GPS systems.

3. General Encoding and Decoding Algorithm

Convolutional codes are error-correcting codes where the data streams of indefinite
lengths are encoded before transmission over noisy channels. The message streams are
encoded by the sliding application of Boolean functions that generate a sequence of output bits.

Convolutional codes and block codes do differ, with Convolutional codes incorporat-
ing memory in the encoding process. An (n, k, K) Convolutional code can be implemented
with a k-input, n-output linear sequential circuit, and “constraint length” K which defined
is defined as (K = m + 1, 1 represents the input bit encoded along with the bits stored in
the m shift registers) [10], where m is the maximum number of stages (memory size) in
any shift register. The encoder of convolution code for a binary (2, l, 3) code is shown in
Figure 1. All Convolutional encoders can be implemented using a linear feed-forward shift
register of this type [11].

Figure 1. Convolution code for a binary (2, l, 3).

In practice, Convolutional codes are often designed based on a trade-off between code
performance and complexity. The choice of the specific number of bits or the length of
the shift registers depends on factors such as the desired coding efficiency, the available
hardware resources, and the complexity of the communication system being designed.

The code rate of a Convolutional code refers to the ratio of output bits to input
bits. Together, the constraint length and code rate of a Convolutional code determine its
error-correction capabilities. A longer constraint length and higher code rate generally
result in better error correction, at the expense of increased computational complexity and
bandwidth utilization [12]. The choice of the length of the shift registers determines the
number of bits to be stored, which, in turn, determines the number of bits used to compute
the output bits. Longer shift registers provide more memory and can result in better coding
performance, but they also increase the complexity of the encoding and decoding processes.
On the other hand, shorter shift registers provide less memory, and hence a lessened coding
performance, but they also simplify the encoding and decoding processes [13].

In the case of the GPS system’s Convolutional code, the constraint length is seven,
which means that the encoder uses seven previous input bits to generate the current output
bit [14,15]. For the GPS system’s Convolutional code, the code rate is 1/2, which means that
for every 2 input bits, the encoder generates 1 output bit. This results in a redundancy in
the transmitted signal that makes it less susceptible to errors. As an example of constraint
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length size utilized in Convolutional codes, which has been employed since the Voyager
program, possesses a constraint length of seven and a rate of 1/2. In the case of the Mars
Pathfinder, Mars Exploration Rover, and Cassini probe to Saturn, a code with a constraint
length of 15 and a rate of 1/6 is employed. In the context of GSM, an error correction
technique is utilized that employs a Convolutional code with a constraint length of two
and a rate of 1/2 [16].

The encoding in Convolutional codes can be represented in various equivalent ways,
namely the Generator, Tree Diagram, State Diagram, and Trellis Diagram representations.
However, our research will utilize the Trellis Diagram Representation.

• Trellis Diagram

A trellis diagram is a graphical representation of the code’s encoding process. The
trellis diagram is a directed, cyclic graph that displays all possible paths that the encoding
process can take for a given input sequence. The trellis diagram consists of a set of nodes or
state points that correspond to the internal state of the encoder and a set of branches that
connect the state points. The branches represent the encoder’s output bits as they change
from one state to another. Each state point in the trellis diagram represents a possible
encoder state, and the branches emanating from each state point represent the possible
output bits. The trellis diagram is arranged in such a way that the transitions between the
state points correspond to the sequence of input bits being encoded.

To demonstrate the process of encoding using Convolutional codes through the Trellis
Diagram, consider a scenario where the circuit is employed to encode the message (11011)
and (k = 1, n = 2 and K = 2). Figure 2 shows a Convolutional Trellis Diagram encoder with
k = 1, n = 2 and K = 2.

Figure 2. Convolutional Trellis Diagram encoder.

By utilizing the Convolutional Trellis Diagram encoder, the resulting codeword is
depicted in Figures 3 and 4. This example has been selected due to its ability to clearly
demonstrate the underlying principles of the aforementioned concept.
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Figure 3. Convolutional Trellis Encoder circuit and the state translation table.

Figure 4. Convolutional encoding message operation.

So, the codeword that the sender will send is equal to 11,01,01,00,01,01,11, and the
last zero bits are to flush the Flip flop shift registers and make their value equal to zero to
prepare the encoder circuit for the next encoding operation.

• Viterbi Algorithm

The trellis diagram is an essential tool for decoding Convolutional codes using the Viterbi
algorithm. In the Viterbi algorithm, the trellis diagram is also used to determine the most
likely sequence of input bits that produced a particular output sequence, based on the concept
of finding the path with the minimum Hamming distance. In this paper, definitions have
been established for two metrics, namely the branch metric (BM) and the path metric (PM).
The branch metrics are the Hamming distances/Euclidean distances/probabilities depending
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on the type of encoding. The path metric is a value associated with a state in the trellis. The
equation used to update the path metric in the Viterbi algorithm is as follows [17]:

PM[s, i + 1] = min(∀α, PM[α, i] + B[α, i]) (1)

It is used to calculate the new path metric for each state in the trellis diagram, based
on the previous path metrics and the branch metrics, where

• PM [s, i + 1] is the new path metric for state (s) at time i + 1. It represents the likelihood
of the most likely path through the trellis diagram that ends in state (s) at time i + 1.

• PM [α, i] is the previous path metric for state α at time i. It represents the likelihood of
the most likely path through the trellis diagram that ends in state α at time i.

• B [α, i] is the branch metric for transitioning from state α at time i to state (s) at time
i + 1. It represents the similarity between the received signal and the expected signal
for this state transition.

As mentioned, the equation calculates the new path metric for each state in the trellis
diagram, based on the previous path metrics and the branch metrics. This process is
repeated for each time step in the trellis diagram, until the final state is reached. The path
metric for the final state represents the likelihood of the most likely path through the trellis
diagram, and is used to determine the decoded sequence of bits.

The efficiency of this code is evaluated within the following conditions:

1. There is no error in the received codeword.
In this case, the decoding operation at the receiver point will be as shown in the
Figure 5.
The receiver, depending on Viterbi algorithm, found the correct code depending on
the survival path (the path with the minimum hamming distance value; here, it is
equal to 0).

Figure 5. Convolutional decoding operation through Viterbi algorithm.

2. There is one error in the received codeword.
Figure 6 shows that the receiver received a codeword with a one-bit error.
The receiver, depending on Viterbi algorithm, found the error bit and corrected the
code depending on the survival path (the path with the minimum hamming distance
value; here, it is 1).
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Figure 6. Received a codeword with one-bit error.

3. There are separated errors in the received codeword.
Figure 7 shows that the receiver received a codeword with a separated two-bit error.
The receiver, depending on Viterbi algorithm, found the error bit and corrected the
code depending on the survival path (the path with the minimum hamming distance
value; here, it is 2).

Figure 7. Received a codeword with two separated-bit error.

4. There are continuous (contiguous) errors in the received codeword.
Figure 8 show that the receiver received a codeword with continuous errors.
The receiver in this situation could not detect the errors and the receiver could correct
only 64.29% of the received codeword, and 35.71% of the received codeword could not be
corrected, and this shows the disadvantages of this type of coding and decoding method.
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Figure 8. Received codeword with two adjacent errors.

The provided examples merely serve an illustrative purpose of explaining the op-
erational mechanism of these codes and do not accurately depict the characteristics of
the noise encountered by GPS signal systems. The primary concern for GPS systems is
multi-path fading, which induces bit flipping due to the occurrence of Reflection Errors
and Attenuation or Signal Loss.

Convolutional codes are used in GPS systems to mitigate errors caused by multipath
fading, including reflection errors and attenuation or signal loss. Here is how convolutional
codes contribute to the robustness, accuracy, and stability of GPS signals:

1. Reflection Errors: Convolutional codes work by introducing redundancy into the
transmitted signal. By adding extra bits to the original data stream, the receiver can
detect and correct errors caused by reflection. When the reflected signal arrives at the
receiver, the redundancy introduced by convolutional coding enables the receiver to
differentiate between the original and reflected signals and correct any bit errors that
may have occurred due to reflections.

2. Attenuation or Signal Loss: When signals are weakened or lost due to attenuation
or signal loss, convolutional codes help in recovering the original data. By adding
redundancy in the form of additional bits, convolutional codes allow the receiver to
reconstruct the original signal, even if some bits are missing or corrupted. These codes
use mathematical techniques to reconstruct the most likely sequence of bits, ensuring
accurate and reliable data reception despite signal attenuation or loss.

Convolutional codes provide robustness, accuracy, and stability to GPS signals by
offering error detection and correction capabilities. By detecting and correcting bit errors
caused by reflection and compensating for attenuated or lost signals, convolutional codes
ensure that the received data is as close to the original transmission as possible. This
improves the reliability and accuracy of GPS positioning, allowing for more precise and
consistent location measurements.

4. Comparative Analysis Convolutional Codes with LDPC Codes, BCH Codes, and
Turbo Codes

The Viterbi decoding algorithm is designed to mitigate the errors caused by these
signal distortions. It works by estimating the most likely data sequence that the satellite
transmitted based on the observed received signal and the knowledge of the encoder. This
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involves searching a large number of possible data sequences and selecting the one that
has the highest likelihood of being the transmitted data.

In the case of multipath fading, the Viterbi decoding algorithm can track and compen-
sate for the different signal delays and interference levels caused by the multiple signal
paths. By comparing the decoded data sequence with the original data sequence, it can also
detect and correct any errors that may have occurred due to signal distortions.

There are other types of codes that are used in satellite communications in addition to
Convolutional codes [18,19], such as LDPC codes, BCH codes, and Turbo codes.

The question is as follows: why can we not use one of these codes instead of the
Convolutional Code and Viterbi algorithm in GPS Systems?

Satellite communication systems often face challenges such as limited bandwidth,
noise, and interference [20]. Convolutional codes and the Viterbi algorithm are well-suited
to address these challenges, and their use in GPS communication systems is based on
several requirements [21]:

• High data rate: Satellite communication systems typically need to transmit high
volumes of data over long distances. Convolutional codes are efficient error-correcting
codes that can operate at high data rates. They can be implemented in hardware or
software and enable the reliable transmission of large amounts of data.

• Channel characteristics: Satellite communication channels often suffer from fading
and interference, which can cause errors and the degradation of the transmitted signal.
Convolutional codes and the Viterbi algorithm are designed to deal with such channel
impairments. Convolutional codes are powerful because their encoding and decoding
processes involve comparing the received signal with the expected signal. The Viterbi
algorithm can estimate the most likely transmission sequence from a received signal
in spite of channel distortions.

• Low computational complexity: Satellite communication systems often have limited
computational resources due to power and size constraints. Convolutional codes and
the Viterbi algorithm are computationally efficient and require relatively few resources,
making them suitable for use in satellite communication systems.

• Real-time processing: Satellite signals must be processed in real-time to provide real-
time communication services. The algorithm used for the decoding needs to be fast
and efficient, which is another reason why the Viterbi algorithm is often used. The
algorithm has been proven to decode signals in real-time, making it a good fit for
satellite communication systems.

• Compatibility with modulation schemes: Convolutional codes can be used with a
variety of modulation schemes, including phase-shift keying (PSK) and quadrature
amplitude modulation (QAM). This makes them a versatile choice for satellite com-
munication systems, where different modulation schemes may be used depending on
the specific requirements of the system.

Based on the requirements of high data rate, channel characteristics, low compu-
tational complexity, real-time processing, and compatibility with modulation schemes,
Convolutional codes with the Viterbi algorithm are well-suited for use in GPS systems.

4.1. Convolutional Codes vs. LDPC Codes

LDPC codes are known for their efficiency; however, decoding LDPC codes is more
challenging compared to decoding Convolutional codes. Furthermore, LDPC codes require
a larger memory capacity to store the parity check matrix used in the decoding process
than Convolutional codes.

To comprehend the reasons behind the higher memory requirements for LDPC codes
in comparison to Convolutional codes, we can observe the following:

In LDPC codes [22,23], the code matrix, denoted as the parity matrix H, plays a vital
role in establishing the relationship between the message and the codeword. The parity
matrix consists of (N-K) rows and N columns, where N represents the block length and
K represents the message length. This matrix is essential for both encoding and decoding
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procedures, as it guides the transformation of messages into codewords and vice versa.
The memory required to store the code matrix is directly proportional to the number of
elements in the matrix, which is (N-K) × N.

The decoding process for LDPC codes involves the utilization of the message-passing
algorithm. This decoding method employs the parity matrix H and specific rules to update
the probabilities of each bit in the codeword. The iterations of these updates continue until
a solution is reached or a maximum limit is attained. The memory needed for decoding the
code using the message-passing algorithm is proportional to the number of elements in the
matrix H, multiplied by the number of iterations I, which yields ((N-K) × N) · I.

In Convolutional codes [10,24], the generator matrix G is a (k,n) matrix consisting
of polynomial entries. The generator matrix G defines the combination of input bits and
shift register bits to generate the output bits. Each row in G corresponds to one output
bit, and each column represents one input bit or one shift register bit. For example, if

G =
(

1 1 0
0 1 1

)
, it implies that the encoder has k = 2 output bits, n = 1 input bit, and

m = 2 shift register bits, and this is because the generator matrix for a convolutional code
is a matrix that describes how the input bits are encoded into output bits by using shift
registers and modulo-2 additions. The number of rows of the generator matrix is equal to
the number of output bits per input bit, which is denoted by k. The number of columns of
the generator matrix is equal to the number of input bits plus the number of shift register
bits, which is denoted by n + m. The degree of each row of the generator matrix is equal to
the number of feedback connections from the shift registers to that output bit [25].

In the previous example, the generator matrix has two rows, so k = 2. It has three
columns, so n + m = 3. Since the first row has degree 1 and the second row has degree 2,
there are two feedback connections in total, so m = 2. Therefore, n = 1.

The memory required to store the generator matrix G of the Convolutional code is
dependent on the size of the matrix. In general, the size of the matrix is determined by the
rate and constraint length of the code.

To provide an example, let us consider a rate 1/2 Convolutional code with s = 64 states
(m = 6 bits) and an LDPC code with rate and a block length of N = 2048 bits. In this case,
the generator matrix would have 2 rows and 12 columns. This is because each input bit is
mapped to two output bits, and the encoder uses the current input bit as well as the five
previous input bits to generate each pair of output bits. Therefore, the generator matrix
will be 2 × 7. This is because k = 2 (the number of output bits per input bit) and n = 1 (the
number of input bits). The number of columns is n + m, which is 1 + 6 = 7. The size of
memory needed for saving this matrix in the Convolutional code depends on the data type
and the format of the matrix. For example, if the matrix is stored as a binary array of 0 s
and 1 s, then each element would take 1 bit of memory. The total size of the matrix would
be 2 × 7 = 14 bits.

Conversely, the memory required to store the parity matrix H of the LDPC code is
proportional to (N-K) × N = 2,097,152 bits. Clearly, the LDPC code demands significantly
more memory to store the code matrix compared to the Convolutional code. The block
length is the same for LDCP and Convolutional code in this example, but in encoding
operation in Convolutional code the memory required to store the generator matrix G of
the convolutional code depends only on the number of memory elements m and not on the
block length.

The memory requirements for decoding also depend on the decoding algorithm
employed. For the Viterbi decoding of Convolutional codes, the memory needed is propor-
tional to s · N = 131,072. The result s · N = 131,072 comes from multiplying the number of
states s = 64 by the block length N = 2048. This is the memory required to store the survivor
paths in the Viterbi decoding algorithm. Each survivor path is a sequence of N bits that
represents a possible input to the Convolutional encoder. The Viterbi decoder keeps track of
s survivor paths at each decoding step and chooses the one with the minimum path metric
as the most likely input. So, as we mentioned before, the block length is important in the en-
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coding operation and it is not in the encoding operation. In the message-passing decoding
of LDPC codes, the memory required [26] is proportional to (N-K) × N · I = 209,715,200.
The result (N-K) × N · I = 209,715,200 comes from multiplying the number of parity bits
(N-K) = 1024 by the block length N = 2048 by the number of iterations I = 100. This is the
memory required to store the messages in the message-passing decoding algorithm. Each
message is a vector of N real numbers that represents the likelihood ratio of a bit being 0
or 1. The message-passing decoder exchanges messages between the variable nodes and
the check nodes in each iteration and updates the posterior probabilities of the bits. The
number of iterations I = 100 is an arbitrary choice. It depends on the desired decoding
performance and complexity. The more iterations, the better the performance, but also the
higher the complexity. There is no fixed rule for choosing the number of iterations, but
some common values are 10, 50, or 100.

Through this comparison, it becomes evident that the memory necessary for decoding
LDPC codes is considerably higher than that required for Convolutional codes. Thus, the
limited memory, in addition to other factors such as the processing power available in
the GPS receivers, makes it difficult to use LDPC codes. On the other hand, the Viterbi
algorithm used with Convolutional codes provides less memory requirment and a low
complexity alternative [27] and good balance of error correction performance and computa-
tional efficiency for GPS receivers Compared with LDPC codes. These are a number of the
advantages of using Convolutional codes over LDPC codes in GPS systems, while there are
many more advantages to consider.

4.2. Convolutional Codes vs. BCH Codes

BCH codes are a class of cyclic error-correcting codes that are constructed using
polynomials over a finite field. They have precise control over the number of symbol errors
correctable by the code and can be decoded easily using an algebraic method known as
syndrome decoding. They are used in various applications such as satellite communications,
DVDs, QR codes, and quantum-resistant cryptography.

One way to compare the complexity of BCH codes and Convolutional codes is to look
at their encoding and decoding algorithms.

In order to explicate the intricacies involved, we shall consider a (15, 7) BCH code and
a (2, 1, 2) Convolutional code as illustrative examples. These codes have been chosen due
to their comparable error-correcting capabilities. This is solely a simplified illustration, and
the actual complexity may vary depending on the implementation and the code parameters.

BCH codes: They are a class of cyclic error-correcting codes that are constructed using
polynomials over a finite field. They have precise control over the number of symbol errors
correctable by the code and can be decoded easily using an algebraic method known as
syndrome decoding. They are used in various applications such as satellite communications,
DVDs, QR codes, and quantum-resistant cryptography.

BCH encoding: It is the process of finding a polynomial that is a multiple of the
generator polynomial, which is defined as the least common multiple of the minimal
polynomials of some consecutive powers of a primitive element. The encoding can be
either systematic or non-systematic, depending on how the message is embedded in the
codeword polynomial.

To encode a message using BCH code, we need to choose a finite field GF(q), a code
length n, and a design distance d. Then, we need to find a generator polynomial g(x) that
has ∝, ∝2, . . . , ∝(d−1) as roots, where ∝ is a primitive element of GF(qm) and n = qm − 1.
The table of minimal polynomials in reference [18] can be used to find g(x) as the least
common multiple of some of them. Then, multiply the message polynomial m(x) by g(x) to
obtain the codeword polynomial c(x).

BCH decoding: This is the process of finding and correcting the errors in the received
codeword using the syndromes, which are formed by evaluating the received polynomial
at some powers of a primitive element. There are several algorithms for decoding BCH
codes, such as Peterson’s algorithm, the Forney algorithm, Sugiyama’s algorithm, and
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the Euclidean algorithm. They involve finding the error locator polynomial and the error
values, and then subtracting them from the received codeword to recover the original one.

To decode a received word r(x) using BCH code, we need to calculate the syndromes
sj = r(∝j) for j = 1, 2, . . . , 2t, where t is the number of errors that can be corrected. Then, use
an algorithm, such as Peterson’s algorithm or the Euclidean algorithm, to find the error
locator polynomial ∧(x) that has the error locations as roots. Then, use another algorithm,
such as Forney’s algorithm, to find the error values at those locations. Finally, correct the
errors by subtracting them from the received word to get the original codeword.

For example, suppose we want to encode the message [1 0 1 0] using a binary BCH
code with n = 15 and d = 7, it is recommended to choose GF(2) as the finite field and use
the reducing polynomial z4 + z + 1 and the primitive element ∝ (z) = z as in reference [18].
Then, we can find the generator polynomial g(x) as follows:

g(x) = lcm(m1(x), m2(x), . . . , m6(x)) = (x4 + x + 1)(x4 + x3 + x2 + x + 1) = x8 + x7 + x6 + x4 + 1

Please note that the lcm, which stands for least common multiple, is responsible for
ensuring that g(x) contains all the necessary roots required for BCH encoding.

Now, the message polynomial is m(x) = x3 + x, so the codeword polynomial is
c(x) = m(x)g(x) = (x3 + x)(x8 + x7 + x6 + x4 + 1) = x11 + x10 + x9 + x7 + x5 + x
The codeword is [0 0 0 0 1 0 1 1 1 0 1 1 0 0 0].
Suppose we receive the word r(x) = [0 0 0 0 1 0 1 0 1 0 1 1 0 0 0], which has two errors

at positions i1 = 8 and i2 = 10. The syndromes can be computed as follows:
s1 = r(∝) = ∝ s2 = r(∝2) = ∝ s3 = r(∝3) = ∝ s4 = r(∝4) = ∝ s5 = r(∝5) = ∝ s6 = r(∝6) = ∝
Peterson’s algorithm can be used to find the error locator polynomial as follows:

Λ(x) = lcm(mi1(x), mi2(x)) = (x + α15−i1)(x + α15−i2) = (x + α7)(x + α5) = x2 + α12x + α

while Forney’s algorithm can be employed to find the error values as follows:

ei1 =
s1

Λ′(α15−i1)
=

α

(α12−i1)
=

α

(α12−8)
=

α

(α4)
= α

ei2 =
s1

Λ′(α15−i2)
=

α

(α12−i2)
=

α

(α12−10)
=

α

(α2)
= α

To fix the errors, you can subtract them from the received word as follows:

c(x) = r(x)− e(x) = [000010111011000]− [0000000αααα0000] = [000010100101000]

This is the same as the original codeword.
The complexity and the number of operations required for encoding and decoding BCH

codes depend on the parameters of the code, such as the code length, the design distance, and
the number of errors. Here are some general formulas for estimating the complexity:

For encoding, the complexity is proportional to the degree of the generator polynomial
g(x), which is, at most, (m · t), where m is the extension degree of the finite field and t is the
number of errors that can be corrected. The number of operations is O(m · t2) for binary BCH
codes and O(m · t2 log q) for non-binary BCH codes, where q is the size of the finite field.

For decoding, the complexity is proportional to the number of syndromes that need
to be computed and processed, which is (2 · t) for binary BCH codes and t for non-binary
BCH codes. The number of operations is O(t2 log n) for binary BCH codes and O(t3 log q)
for non-binary BCH codes, where N is the code length.

The given example is a binary BCH code because the finite field used is GF(2), which
has only two elements (0 and 1).

Our objective entails the determination of the computational workload involved in
both encoding and decoding a message within the provided example. The ultimate goal
is to assess the inherent complexity embedded within the BCH code and subsequently
conduct a comparative analysis between such complexity and the counterpart system
comprised of Convolutional codes.
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To know the number of encoding operations in BCH in the given example, we need
to multiply the message polynomial m(x) by the generator polynomial g(x) to get the
codeword polynomial c(x). The degree of g(x) is 8, which is equal to (m · t), where m = 4
and t = 2. The number of operations is O(m · t2) = O(4 · 22) = O(16) for binary BCH codes.
This means that you need, at most, 16 operations in GF(2) to encode the message.

For decoding, we need to calculate the syndromes, find the error locator polynomial,
find the error values, and correct the errors. The number of operations depends on the
number of errors and the algorithm used. For binary BCH codes, the number of operations
is O(m · t2) for calculating the syndromes, O(m · t3) for finding the error locator polynomial
using Peterson’s algorithm or O(m · t2) using the Euclidean algorithm, O(m · t2) for finding
the error values using Forney’s algorithm, and O(m · t) for correcting the errors. The total
number of operations is O(m · t3) for Peterson’s algorithm or O(m · t2) for the Euclidean
algorithm. In this example, m = 4 and t = 2, so the total number of operations is, at
most, 128 for Peterson’s algorithm or 64 for the Euclidean algorithm (note that this is the
maximum number of operations, meaning that the number of operations may be less than
these numbers).

On the other hand, to encode the message [1 0 1 0] using a convolutional code (2, 1, 2),
it is necessary to utilize the State Transition Table and the encoder circuit illustrated in
Figure 3. Subsequently, the following operations need to be performed:

• Set all memory registers to zero.
• Feed the input bits one by one and shift the register values to the right.
• Calculate the output bits using the generator polynomials g1 = (1,1,1) and g2 = (1,0,1).
• Append two zero bits at the end of the message to flush the encoder.

For each input bit, we need to perform two additions and no multiplications. The total
number of operations for encoding a message of length N plus m (m for the number of
zeros that need to flush the shift registers) and, therefore, the total number of operations
for encoding a message of length N is 2N + m.

Figure 9 shows the encoding operation using a trellis diagram:

Figure 9. Message encoding using convolutional code (2,1,2).

Figure 10 shows the decoding operation using the Viterbi algorithm:
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Figure 10. Codeword decoding operation using Viterbi algorithm.

For encoding a message of length N = 4, we need to perform 2N + 2 = 10 additions and
no multiplications. For decoding a message of length N = 4 + 2 = 6 with four states in the
trellis diagram, we need to perform approximately N · 42 = 96 additions and 48 comparisons
(there are eight possible transitions per time step and six time steps for a message of length
4 + 2 = 6). Therefore, there are 8 · 6 = 48 comparisons for these time steps (note that the total
of the comparisons is less than 48, because the comparisons number in time step 1 and 2 is
less than 8).

Another way to compare the complexity of BCH codes and Convolutional codes is
to look at their codeword lengths. BCH codes tend to produce longer codewords than
Convolutional codes for the same message length and error-correcting capability. This is
because BCH codes have a fixed codeword length that depends on the size of the finite
field, while Convolutional codes have a variable codeword length that depends on the
constraint length and the code rate. For example, a (63,51) BCH code can correct up to
two errors per codeword, while a (3,1) Convolutional code with constraint length seven
can correct up to five errors per codeword. However, the BCH code has a codeword
length of 63 bits, while the Convolutional code has a codeword length of 21 bits for a
message length of 7 bits [28,29].

When comparing the encoding and decoding operations, it is evident that Convolu-
tional codes require fewer steps compared to BCH codes. Additionally, the mathematical
operations involved in BCH codes are more complicated than in Convolutional codes.
However, Convolutional codes still face a fundamental issue known as exponential com-
plexity. Despite this drawback, Convolutional codes are considered the most appropriate
choice for GPS communication systems.

Overall, the high complexity associated with BCH codes makes them unsuitable for
implementation in GPS systems and real-world applications. Consequently, Convolutional
codes with Viterbi decoding, which are less computationally complex, are preferred over
BCH codes.

4.3. Convolutional Codes vs. Turbo Codes

Turbo codes are a type of forward error correction codes that use two or more Convo-
lutional codes in parallel with an interleaver [19]. They have high performance and can
achieve near-Shannon limit error correction capacity [30]. However, they also have some
drawbacks, and two of them are as follows:

First Drawback: Turbo codes require complex encoding and decoding algorithms
that require significant computing power.
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The encoding process involves two or more Convolutional encoders and an interleaver,
while the decoding process involves soft-input–soft-output decoders that use either the
log-MAP or the max-log-MAP algorithm. Numerous studies have focused on addressing
the issue of the power consumption caused by Turbo codes. For instance, a study conducted
by Oliver Yuk-Hang Leung, Chung-Wai Yue, Chi-ying Tsui, and Roger S. Cheng at Hong
Kong University of Science and Technology [31], examined the complexities and high
power consumption associated with decoding Turbo codes in receivers. The authors
presented potential solutions to this problem in their research. The Adaptive State of
Charge (SoC) Limiter is not discussed in this article because this article is a theoretical or
research article, due to it focusing on a comparative analysis of different coding methods
and their efficacy in GPS systems. This article presents mathematical models, algorithms,
and theoretical insights to support its claims and conclusions. Addressing the issue of
energy consumption was based on previous studies such as reference [31]. This study
makes a comparison between the requirements or the amount of energy consumption
between the methods used in the coding process in satellite communications systems to
indicate reasons behind the preference for or suitability of one method over the other in
global positioning systems (GPS). Therefore, energy management methods for the codes
were not discussed in this paper.

Second Drawback: The use of a turbo code may increase the processing time of the
GPS receiver, which may result in a delay in receiving and processing GPS signal data.

This is because the decoding algorithm requires multiple iterations to converge to a
reliable solution, and each iteration involves matrix operations and logarithmic calculations,
and this because the computational complexity involved in Turbo codes leads to increased
power consumption. In computer science and engineering, it is widely recognized that
there is a trade-off between complexity, power, and time. More complex codes or models
require additional resources such as memory, processing power, and energy for storage
and operation, resulting in longer execution times and higher power consumption. The
complexity of Turbo codes compared to Convolutional codes has been explored in various
studies, including in research conducted by David J.C. MacKay [32].

Thus, GPS systems often use Convolutional codes due to their lower computational
complexity (compared to other code types using satellite communications systems) and
faster decoding time, yet they are effective for error correction.

In addition to the information mentioned, one of the most significant reasons that
makes Convolutional codes suitable for GPS Systems is that block codes are typically slower
than Convolutional codes for the following reasons:

• Block codes require larger block sizes to achieve the same level of error protection
as convolutional codes. The larger block size means more bits need to be processed,
which can slow down the system.

• Block codes require more complex encoding and decoding algorithms than Convolu-
tional codes, which can also slow down the system. Convolutional codes use a shift
register and some XOR gates to generate the parity bits, which is a simpler process
than the matrix multiplication required for block codes.

• Error detection and correction are more efficient in Convolutional codes than block
codes. Convolutional codes can detect and correct errors in real-time, while block
codes require the entire block to be received before errors can be corrected.

Overall, while block codes can offer more robust error correction, they require more
complex algorithms and larger block sizes, which can make them slower than convolutional
codes in some applications like GPS systems. Therefore, BCH, LDPC, and turbo codes are
not suitable for GPS systems. Also, difficulties in LDPC, BCH, and Turbo codes make them
require the following:

• More memory to store the parity check matrix used for decoding;
• Significant processing power, which can be problematic for low-power and low-cost

GPS devices that are commonly used in commercial applications;
• Slow encoding and decoding operation.
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On the other hand, Convolutional codes and the Viterbi algorithm can offer a favorable
balance of computational efficiency and error-correction performance specifically suited
for Global Positioning System (GPS) receivers.

5. Conclusions

Convolutional codes and the Viterbi algorithm are two efficient methods used for error
correction in satellite communication systems, particularly in GPS systems. Convolutional
codes are effective error-correcting codes that can work at high data rates and demand
relatively few resources, thus making them a suitable choice for employment in GPS
systems. In contrast, the Viterbi algorithm is computationally efficient and can estimate
the most probable transmission sequence from a received signal in real-time, making it an
appropriate choice for GPS systems. Other efficient coding methods, such as LDPC codes
and Turbo codes, which have a high computational complexity and memory requirements,
may not be compatible with the limited processing power and low-cost devices used in
commercial applications, making them less well-suited for GPS systems.

Overall, the advantage of Convolutional codes is that they can achieve high coding
gains with relatively low decoding complexity. However, the performance of Convolutional
codes can be limited by their constraint length (the number of bits that each input bit is
dependent on), and they may not be able to correct bursts of errors as effectively as other
error-correcting codes. This article contributes to the existing knowledge by offering a
comprehensive understanding of why convolutional codes are suitable for GPS systems.
The discoveries act as a valuable asset for researchers, engineers, and professionals in
satellite communication, facilitating the progression and refining of GPS system designs.
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