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Abstract: The piano fingering annotation task refers to assigning finger labels to notes in piano sheet
music. Good fingering helps improve the smoothness and musicality of piano performance. In
this paper, we propose a method for automatically generating piano fingering using a model-based
reinforcement learning algorithm. We treat fingering annotation as a partial constraint combinatorial
optimization problem and establish an environment model for the piano performance process
based on prior knowledge. We design a reward function based on the principle of minimal motion
and use reinforcement learning algorithms to decide the optimal fingering combinations. Our
innovation lies in establishing a more realistic environment model and adopting a model-based
reinforcement learning approach, compared to model-free methods, to enhance the utilization of
samples. We also propose a music score segmentation method to parallelize the fingering annotation
task. The experimental section shows that our method achieves good results in eliminating physically
impossible fingerings and reducing the amount of finger motion required in piano performance.

Keywords: piano fingering model; reinforcement learning; symbolic music processing; combinatorial
optimization

1. Introduction

Piano composers and arrangers add fingering to sheet music to indicate which finger
should be used to play each note. However, most piano sheet music only provides detailed
notation of the musical notes themselves, without specific fingering instructions. Human
performers rely on their professional knowledge, personal physical conditions, the actual
sequence of notes, and multiple rehearsals to determine the fingering. This process involves
a significant amount of decision-making. A scientifically and logically arranged fingering
not only reduces the difficulty of performance and relieves mental burden for the pianist
but also enhances the musicality and fluidity of the performance. Generally, when novice
performers receive a piece of music they are about to practice, their first task is to annotate
their own fingering on the sheet music. In theory, any key on the piano can be played with
any finger. However, the number of possible fingering paths increases exponentially with
the length of the note sequence, and the majority of these fingerings are difficult to execute
or even physically impossible.

The fingering annotation task is mainly approached through two categories: rule-based
and data-driven methods. Rule-based methods [1–7] aim to summarize the anatomical
and kinematic principles of piano playing, model the piano keyboard and human hand as
realistically as possible, and scientifically quantify the motion cost of fingering transitions.
They make use of the state information in simulated performances to decide on fingerings.
Data-driven methods [8–13], on the other hand, utilize piano scores annotated with human
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fingerings to extract implicit patterns of how humans arrange fingerings. These patterns
are then used to predict fingerings for new music scores.

In earlier works, due to the lack of human expert annotated dataset, rule-based
methods were often used. However, in recent years, the availability of the PIG dataset [10]
has shifted the research focus towards data-driven methods. Nevertheless, in recent
research [12], we have found that the accuracy of the PIG dataset needs improvement, as it
contains fingerings like “crossed chords” or “thumbless cross” that are not realistically
playable by humans. This directly affects the effectiveness of data-driven methods, often
resulting in the generation of fingerings that include such unplayable fingerings.

In this research, we employed rule-based approaches. We model the generation of
piano fingerings as a Markov decision process (MDP). The agent interacts with its environ-
ment and evaluates the fingerings using a reward function. We introduce the prioritized
sweeping algorithms [14] to implement model-based reinforcement learning. In order to
execute the algorithm without enumerating the state space and action space of the piano
fingering problem, we replaced the traditional Q-table used in tabular reinforcement learn-
ing with a hash table based on key-value storage. Additionally, we propose a method for
segmenting the music score to enable the parallel execution of the algorithm. The completed
processing steps are shown in Figure 1.

Figure 1. Processing steps of automatic piano fingering annotation.

The main contributions are summarized as follows:

• We constructed a more realistic environment model for piano performance, and invalid
action masking is used to maximally constrain physically impossible fingerings.

• We used model-based reinforcement learning to address the fingering annotation task,
which has improved the sampling efficiency compared to the previous model-free
approach.

• We introduce a Q-table based on key-value storage to achieve tabular reinforcement
learning without enumerating action and state spaces.

• We propose a piano sheet music segmentation method to parallelize problem-solving.

This paper is divided into seven sections. Section 1 provides a brief overview of the
problem. Section 2 presents related work in the field. Section 3 describes the approach used
to model the environment for the problem. Section 4 describes learning algorithm we used.
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Section 5 discusses the experimental details and result evaluation. In Section 6, a method
for segmenting the music score is presented. Finally, Section 7 concludes the paper and
provides suggestions for future research.

2. Related Work

Piano fingering automatic annotation can be broadly categorized into two methods:
rule-based and data-driven.

The earliest rule-based method for piano fingering annotation was proposed by R.
Parncutt and others [1]. Hart [2] introduced a method that utilizes dynamic programming
to compute optimal fingerings for single-note melodies. Balliauw [3,4] applied two different
search algorithms to tackle this problem. Ramoneda [5] and Koornstra [6] explored model-
free reinforcement learning algorithms to find fingerings with minimal hand movement;
however, since it is based on a very simple environment model, it can only handle single-
note melodies. Xu [7] conducted research on the application of reinforcement learning
to the piano performance of humanoid robotic hands with only four fingers. Applying
reinforcement learning to other combinatorial optimization problems has also been the
subject of extensive research [15–17]. Huang et al. [18] conducted research on invalid action
masking in reinforcement learning.

E. Nakamura and Y. Yonebayashi [8,9] proposed hidden Markov models (HMMs)
for piano fingering, respectively, for single-handed and double-handed outputs, laying
the foundation for subsequent data-driven approaches using statistical learning to predict
fingerings. In their subsequent work [10], E. Nakamura formalized the task as a statistical
learning problem and achieved good fingering consistency by modeling fingerings with
a third-order HMM and a long short-term memory (LSTM) network, which is similar
to the part-of-speech tagging task in natural language processing. They also introduced
the chord hidden Markov model (CHMM) for chord fingering modeling and published
the PIG dataset. Guan et al. [11] proposed the pitch difference model, which efficiently
utilized the PIG dataset by using relative pitch instead of absolute pitch. Srivatsan et al. [12]
proposed checklist models, which introduced soft constraints and used the REINFORCE
algorithm to optimize evaluation metrics, improving the overall fluency of fingerings,
but the experimental results show that the soft constraint rules used in this work do not
fundamentally eliminate unplayable fingerings such as crossed chord, and the optimization
objectives of the reinforcement learning part also need to be improved. Randolph et al. [13]
treated the fingering annotation as an information retrieval problem and used the Czerny
corpus as the dataset.

The quality of data determines the upper limit of data-driven approaches. Existing
data-driven methods often struggle to directly eliminate physically impossible fingering
predictions. Additionally, during data preprocessing, they often create unrealistic fingering,
for example, due to limited data, data-driven methods adopt a technique of flipping left-
hand finger labels and pitch to create a second “right-hand portion” in order to augment the
training data. However, although the human left and right hands are mirror images of each
other, the arrangement of black and white keys on the keyboard is not a mirror-symmetric
structure. Simply flipping the left-hand pitch and finger labels cannot accurately represent
a right-hand performance. Rule-based methods, on the other hand, have difficulties
describing the performance process with fixed paradigms, and their modeling accuracy
needs improvement, as many studies are limited to fingering for single-note melodies.

As a continuation of rule-based method research, we aim to formalize the piano
performance process through MDP and propose a quantifiable method for calculating
motion to enhance the accuracy of the environmental model. Our research aims to achieve
a certain level of matching with human fingerings while maximizing the limitation of
physically impossible fingerings and minimizing the motion, even seeking fingerings
superior to human annotations. Our action constraints and modeling methods can also be
applied to future research combining data-driven methods.
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3. Environmental Model
3.1. Overview of Model Definitions

In reinforcement learning, an environment model is a simulation model that interacts
with an agent. It allows the agent to observe the state, receive the agent’s action signals,
return rewards to the agent, and transition to the next state according to probability. The en-
vironment model is an MDP, which can be composed of a 4-tuple (S, A, Pa(s, s′), Ra(s, s′)).
S is the state space, A is the action space, Pa is the state transition probability, Ra is the
reward function for state transition, s and s′ represent the current state and the new state to
which it transitions after executing action a, respectively.

In this problem, the state s is composed of a triplet (i, fg, nnext), where i represents the
position of a note or chord in the musical piece in terms of its chronological occurrence; fg
represents the current fingering action, which is a sequence composed of note–finger pairs,
denoted by pn f = (n, f ); therefore, fg can be represented as fg = (pn f 1, pn f 2, . . . , pn f 5); f
is a finger number (1 = thumb, 2 = index finger, · · · , 5 = little finger) on both hands; nnext
represents the sequence of notes to be played in the next time step.

Due to the difficulty of fully enumerating the state space, we employ the tabular
reinforcement learning method with key-value storage described in Section 4.1 to avoid
enumerating the state space S and action space A. Since the state transitions are deter-
ministic, Pa is always 1. The reward function Ra quantifies the difficulty of fingering
transitions for more challenging fingerings, and the reward function Ra returns lower
rewards, or conversely, returns higher rewards. The objective of the reinforcement learn-
ing algorithm is to maximize the accumulated reward, thereby determining the optimal
fingering decision path.

3.2. Simulation of Keyboard and Hand Interaction

This study utilizes the “white key distance” metric to describe the distance between
two keys on a keyboard. It converts the distance between any two keys on the keyboard
into a count of white keys, with black keys counting as 0.5 white keys.

kw = [21, 23 . . . . . . 107, 108]

dA0(note) = note ∈ kw ? index(note, kw) : index(note + 1, kw)− 0.5

dk(note1, note2) = |dA0(note1)− dA0(note2)| (1)

where kw represents the enumeration of MIDI note numbers for all white keys. dA0 repre-
sents the distance from the leftmost A0 key on the piano to a specific note. dk refers to the
white key distance between two piano keys, note1 and note2.

Regarding hand features, we can sample the performer’s hand and represent it with a
matrix M f .

White key distance dk and hand feature matrix M f are illustrated in Figure 2. And,
Figure 3 illustrates the correspondence between finger numbers and specific fingers.

Figure 2. White key distance and hand feature matrix. The distance dk between keys can be obtained
by subtracting the numbers on the keyboard. The numbers in the matrix M f represent the maximum
stretchable distance for the hands.
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Figure 3. Finger numbers.

f 1– f 5 represent the thumb to little finger. The values in the matrix are measured in
white key distance and record the maximum expansion distance or maximum crossing
distance of each finger. When the value is −1, this means that the corresponding action
cannot be performed. Taking the right hand as an example, let fl represent the finger which
has a lower label, fh represent the fingers has a higher label, and fc represent the fingers
used for cross-fingering. The maximum expansion distance dsmax and maximum crossing
distance dcmax between two fingers can be represented using the following method:

dsmax = M f [ fl , fh]

dcmax = M f [ fc, 1] (2)

3.3. Invalid Action Masking

In an MDP, we want the agent to always perform anatomically possible actions through
invalid action masking. This way, we do not need to penalize physically impossible
fingerings in the design of the reward function (invalid action penalty). Instead, we can
quantitatively evaluate the difficulty of all possible finger technique transfers. Therefore,
we need to define a mask function (Algorithm 1) that returns the set of physically possible
actions for different states s. On the other hand, invalid action masking has increased the
sampling efficiency of the agent by reducing the search space .

Algorithm 1 Invalid action masking for fingering

procedure MASK(notes)
all_ f ingerings← enumerating all potential fingerings by note counts
if length(notes) == 1 then . Only single note at next time

valid_ f ingerings ← remove thumbless crossing, hop, invalid cross fingering,
invalid expansion and contraction

else . More than one notes at next time
for f ingering ∈ all_ f ingerings do

note_ f inger_pairs← pair( f ingering, notes)
for f inger_combine ∈ combination(note_ f inger_pairs, 2) do

if invalid expansion and contraction in this f inger_combine then
break

end if
end for
push(valid_ f ingerings, f ingering) if all combinations valid

end for
end if
return valid_ f ingerings

end procedure

For the next moment when the number of notes requiring finger allocation is n,
enumerating all potential fingerings can be seen as a simple combination problem: selecting
n fingers from the five available fingers. The number of combinations is calculated as Cn

5 .
However, not all potential fingerings are playable. Some fingerings may have a distance
between two fingers that exceeds the maximum expansion distance dsmax, or violate finger
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contraction rules. To determine whether a fingering exceeds the maximum expansion
distance, we can compare the white key distance dk between two notes in the fingering with
the maximum expansion distance dsmax. If dk > dsmax, it is considered physically impossible
for the two fingers to stretch that far. To identify violations of finger contraction, we can
compare the number of piano keys between two notes with the number of fingers involved.
If |note1− note2| < | f inger1− f inger2|, it is considered a violation of finger contraction,
where neither f inger1 nor f inger2 can be the thumb. Furthermore, transfer constraints
should also take into account physically impossible scenarios in 1-to-1 fingerings, such as
the thumb not being able to transition from a white key to a black key during cross fingering.

3.4. Quantification of Fingering Transition Difficulty

Below are some metrics for quantifying the fingering transition difficulty, which will
be involved in the computation of the reward function.

3.4.1. Stretching Rate

During single-note playing, finger stretching and contracting frequently occur, and the
stretching abilities of different fingers are not equal. This study proposes a quantification
method called a “finger stretching rate” to measure finger extension, as shown in Figure 4a.

We first define the finger extension between two fingers: when two fingers are placed
on the keyboard, the white key distance between their finger labels fa and fb is defined as
the natural distance dnature = | fa − fb|. The maximum extension distance can be obtained
from the matrix M f mentioned earlier, denoted by dmax, which represents the maximum
extension ability between the two fingers. The actual distance between the two fingers on
the keyboard is the white key distance dk between two pressed notes.

The stretching rate can be defined as rs = (dk− dnature)/(dmax − dnature). A value close
to 1 indicates that the fingers are approaching their maximum stretching ability, resulting
in greater discomfort and a lower reward. Similarly, for finger contraction, we can define
the contraction rate rs = (dnature − dk)/dnature. A value close to 1 indicates that the fingers
are approaching their maximum contraction ability, resulting in stronger discomfort and a
lower reward.

During chord playing, we allocate n fingers on the keyboard. We can calculate the
combinations of fingers used, with the number of combinations being C2

n. The overall
stretching rate of the chord fingering can be obtained by averaging the stretching rates rs

of each finger combination. Specifically, the formula is rall = (
c
∑

k=1
(rsk)

a)/c. Since lower

stretching rates result in less discomfort, the discomfort is usually more noticeable when
approaching maximum stretching. Therefore, a parameter a > 1 is introduced to slow
down the growth of the stretching rate at lower values of stretching.

3.4.2. Hand Movement Distance

Hand position refers to the position of the hand on the keyboard. Since the hand
covers an area of multiple piano keys, it is not convenient to be precise about specific keys.
However, by observing the anatomical diagrams of the human hand, we can approximate
the hand position with the positions of middle finger fingers when the hand is naturally
relaxed on the keys. In cases where multiple fingers are involved in playing chords and
other techniques, the hand position can be approximated by averaging the positions of the
thumb and little fingers. The hand displacement distance can be calculated by considering
the changes in hand position before and after fingerings, as shown in Figure 4b.

For the left hand, h = −1, and for the right hand, h = 1. In the case of single-note
fingerings, where fn represents the finger pressing the note n, the hand position can be
calculated as ps( fn, n) = dA0(n) + h · (3− fn). For chord fingerings with multiple notes,
let us consider the finger fl and note nl of the lowest pitch in the fingering, as well as the
finger fh and note nh of the highest pitch. The hand position for the chord fingering can be
determined as pc( fl , nl , fh, nh) = (ps( fl , nl) + ps( fh, nh))/2.
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If the positions before and after the fingering transition are denoted by ppre and pnext,
respectively, the hand position movement distance can be calculated as dh = ppre − pnext.
A larger hand position movement indicates a stronger discomfort during the fingering
transition, resulting in a lower reward.

3.4.3. Cross Fingering Distance

Cross fingering is a special finger technique where one finger crosses over the other
fingers, as shown in Figure 4c, it commonly used in fast-paced performances that cover
a wide range of musical notes. Cross fingering refers to fingers 2, 3, and 4 crossing over
finger 1, or finger 1 passing under fingers 2, 3, and 4. When calculating the cross fingering
distance, let us assume the note played by finger 1 (thumb finger) is na, and the note
played by finger fc participating in the finger crossing is nc. The cross fingering distance is
calculated as dc = dk(na, nc) + fc − 1. The greater the cross fingering distance, the stronger
the discomfort in finger movement and the lower the reward.

3.4.4. Fingering Mismatches Count

The term “fingering mismatch count” cm refers to the number of occurrences in an
adjacent fingering transitions where the same note is played using different fingers or
where a single finger plays two different notes, as shown in Figure 4d. In such cases, finger
transitions can also pose certain difficulties.

3.4.5. Inverse Fingering Count

The “inverse fingering count” ci involves rearranging all the notes within a pair of
adjacent fingerings from low to high and calculating the inversion number of finger labels
corresponding to each note, as shown in Figure 4e. If an inverse fingering exists, it makes
fingering transitions more challenging, and thus lower rewards should be assigned.

Figure 4. Quantification of motion in fingering transfer, the blue arrows represent the transitions
of fingerings. The numbers on the keys represent fingering labels, while the numbers enclosed in
circles represent the fingering in the previous moment.

3.5. Reward Function

The reward function represents the evaluation of fingering difficulty. We quantify the
motion information of fingering transitions mentioned above and assign higher rewards to
fingering transitions that are more comfortable and easier to play. The maximum reward
for each fingering transition is set to around 50. The parameters of the reward function
have been carefully balanced through iterative experiments.
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For single-note to single-note fingering transitions (i.e., 1-to-1 transitions as shown
in Table 1), there are three possibilities: finger expansion/contraction, cross fingering,
and hand position movement. We prioritize finger expansion and contraction as the first
choice, followed by cross fingering, and finally consider hand position movement.

reward =


40 + 10(1− r2

s ) if finger stretches
20 + 2.5(4− dc) if cross fingering
−10− 0.5dh if hand movement

(3)

For single-note to multiple-note or multiple-note to multiple-note fingering transitions
(i.e., 1-to-n and n-to-n transitions, as shown in Table 1), when the hand position movement
distance is significant, we prioritize fingering options with lower expansion rates

reward =

{
20(1− rall) + (5− dh) if dh > 5
(10(1− r2

all) + 8(5− dh)) · (1− (ci + cm)/nt) if dh ≤ 5
(4)

For multiple-note to single-note fingering transitions (i.e., n-to-1 transitions as shown
in Table 1), the main consideration is to minimize the hand movement distance.

reward = (50− dh) · (1− (ci + cm)/nt) (5)

Table 1. The motion metrics required for different types of fingering transitions.

Fingerings Transitions Types Metrics

1-to-1
stretching rate rs
cross fingering distance dc
hand movement distance dh

1-to-n n-to-n

hand movement distance dh
stretching rate rall
fingering mismatches count cm
inverse fingering count ci
total number of notes before and after fingering transition nt

n-to-1

hand movement distance dh
fingering mismatches count cm
total number of notes before and after fingering transition nt
inverse fingering count ci

4. Learning Algorithm
4.1. Tabular Reinforcement Learning with Key-Value Storage

In this task, attempting to directly enumerate the discrete state space and action space
to construct a |S| × |A| table is very cumbersome, especially since the combination of
88 piano keys and 5 finger states is very large. Moreover, for any state s, it is impossible to
access the complete action space.

For this, we designed a key-value storage tabular reinforcement learning method, as
shown in the Figure 5, replacing the underlying access of the Q-table with an arbitrary key-
value storage system, such as a hash table. This method avoids the complete enumeration
of the state space and action space. Like classical tabular reinforcement learning, this
method is only applicable to MDPs with discrete state spaces and discrete action spaces,
and requires that the state–action pairs in the MDP be finite. After the agent performs action
a in state s, it will use a hash function to calculate the hash value of the state–action pair
(s, a) as the address of the hash table. This address stores the Q-value of the corresponding
state–action pair (s, a). After performing the action and obtaining the reward r, the iterated
new Q-value is written back to the corresponding address in the hash table, and then the
agent enters the next state.
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Figure 5. Traditional tabular Q-learning and key-value storage Q-learning.

4.2. Model-Based Reinforcement Learning in Fingerings Annotation

In earlier studies on piano fingering annotation using reinforcement learning, model-
free algorithms such as Q-learning [19] or deep Q network (DQN) [20] were commonly
employed. Model-free algorithms do not estimate the probability distribution of state
transitions and the reward function of the MDP. They can only learn through interaction
with the environment.

Instead, model-based algorithms can learn by predicting the rewards and state tran-
sitions after executing actions. This process is referred to as model learning [17]. In this
task, since the environmental model is deterministic, meaning the state transition prob-
ability Pa(s, s′) is always 1, utilizing model-based reinforcement learning algorithms can
reduce the interaction between the agent and the environmental model compared to model-
free algorithms, thereby improving the sampling efficiency. Therefore, a model-based
reinforcement learning approach like prioritized sweeping is more suitable for this task.

Prioritized sweeping is essentially an improvement to the Dyna architecture [21]. It
introduces a priority queue, during the planning step of Dyna, which utilizes the expe-
rience in model learning to prioritize learning state–action pairs with a larger TD-error.
In Algorithm 2, we replaced the Q-table and Model(s, a) in the original algorithm with
implementations using hash tables instead of 2D matrices. This is intended to avoid the
enumeration of the state space and action space.

Algorithm 2 Prioritized sweeping (key-value storage)/
procedure PRIORITIZED SWEEPING
Initialize empty hash table Q(s, a), Model(s, a) and empty priority queue PQueue.

while true do
s← current(nonterminal)state
a← policy(s, Q)
Execute action a, observe resultant state, s′, and reward, r
Model(s, a)← s′, r
p← |r + γmaxa′Q(s′, a′)−Q(s, a)|
push(PQueue, (s, a), p)
while !isempty(PQueue) do

s, a← pop(PQueue)
s′, a← Model(s, a)
Q(s, a)← Q(s, a) + α[r + γmaxa′Q(s′, a′)−Q(s, a)]
for s̄, ā predicted to lead to s do

r̄ ← predicted reward
p← |r + γmaxa′Q(s′, a′)−Q(s, a)|
if p > θ then

push(PQueue, (s̄, ā), p)
end if

end for
end while

end while
end procedure
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5. Experiment and Evaluation
5.1. Implementation Details

This experiment utilizes music scores in MusicXML format as experimental materials
and incorporates the PIG dataset for algorithm comparison. The process begins with
parsing the MusicXML into a music21 [22] stream. Then, all chord symbols are removed,
and the resulting treble clef and bass clef parts are separately exported into two MIDI files.
The MIDI.jl [23] library is employed to parse the notes from the MIDI files, sorting them
in chronological order, and combining them into a two-dimensional array based on their
play time. The MDP modeling is implemented using POMDPs.jl [24], and a corresponding
prioritized sweeping solver is developed.

The agent’s exploration strategy utilizes the epsilon-greedy algorithm with an explo-
ration rate of ε = 0.8. For the reinforcement learning algorithm in a fully deterministic
environment, a learning rate of 0.99 is employed, emphasizing the learning of new Q-values
to facilitate faster convergence. Since the constructed MDP for this task does not possess
cyclic structures, the agent can reach the terminal state within a finite number of steps.
Hence, a discount factor of γ = 1 is utilized, maximizing the prediction of absorbing
future rewards, i.e., maxaQ(st+1, a). In the planning process of the prioritized sweeping,
a threshold of θ = 3 is chosen for the priority queue. Any state–action pair with a TD-
error greater than θ is added to the priority queue. During the reinforcement learning
algorithm’s iterations, the total reward is calculated based on the optimal value function
every 10 iterations. If the change in total reward is within the range of ±0.5, we consider
that the algorithm has converged, and the iteration process is stopped.

Finally, the experiment was conducted on a regular computer with an i5-9500 CPU
and 8GB RAM. The algorithm was deployed on a Linux 6.1 LTS operating system and
executed using Python 3.11 and Julia 1.9 interpreters to run the experimental code.

5.2. Influence of Model-Based Method on Sampling Efficiency

We used model-free Q-learning and model-based prioritized sweeping to annotate the
same music score, and recorded the total rewards obtained based on the optimal actions
after each iteration, as shown in Figure 6.

Figure 6. Comparison between the model-free and model-based RL methods.
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It can be observed that model-based methods have a higher sampling efficiency
compared to model-free methods. This is because the prioritized sweeping agent utilizes the
experience from the learned model during the planning step to iteratively update the state–
action pairs where the TD-error exceeds a threshold, and propagates this process forward.

5.3. Analysis of Fingering Results

To facilitate comparison, we conducted experiments using the PIG dataset. Due to
differences in input representations, we performed some preprocessing steps. For instance,
we treated the space between longer rests as separate sequences and considered arpeggio as
chords rather than continuous single notes. We compared our algorithm with the statistical
learning algorithm [10] and the DQN reinforcement learning algorithm [5]. Since the
DQN implementation only supports monophonic melodies and is based on a simpler
environmental model, we removed most of the melodies containing chords and used less
data for comparison.

We evaluated the results using the match rate Mgen [10] for annotation accuracy and
the metrics crossed chord, thumbless cross, hop, and step spread [12] for fingering quality.
The dataset ground truth is presented in Table 2. The experimental results are presented in
Table 3.

We made an improvement in evaluating the overall hand stretching using the step
spread metric. Previously, the method used the semitone difference ∆p divided by the
difference in finger labels ∆ f . In our approach, we replaced the semitone difference with the
difference in white key distances ∆dk, resulting in StepSpread = ∆dk/∆ f . This modification
provides a better reflection of the physical distances on the keyboard.

Table 2. Dataset ground truth.

Crossed Chord Thumbless Cross Hop Step Spread

Full dataset 92 224 561 1.18
Test set 72 119 323 1.18
Test set (De-dupe) 1 10 18 47 1.20

1 Keeping only one sample for each different piece.

Table 3. Experimental result. HMM represents a previous data-driven statistical learning method.
DQN is a model-free reinforcement learning algorithm, implemented based on a simpler environ-
mental model. Prioritized sweeping is the model-based reinforcement learning algorithm utilized in
this research.

Method Mgen
Crossed
Chord

Thumbless
Cross Hop Step

Spread

1rd HMM 61.7 25 6 14 1.18
2rd HMM 64.3 17 8 44 1.17
3rd HMM 64.5 16 9 48 1.18
DQN 41.7 — 1 21 28 1.16
Prioritized sweeping 58.4 0 5 4 1.14

1 This implementation cannot label chords.

Our method exhibited a lower match rate Mgen compared to the statistical approach,
which was expected considering that reinforcement learning algorithms do not acquire any
experience from the PIG dataset. However, our method achieved significant improvement
in several metrics that measure poor fingering, such as crossed chord, thumbless cross,
and hop. We were able to eliminate nearly all instances of physically impossible fingerings
and difficult-to-play fingerings.

Our method achieved the best results in the evaluation of the overall hand stretching
metric, step spread. This indicates that our reinforcement learning algorithm has been opti-
mized for motion efficiency, leading to superior performance in terms of hand stretching.
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5.4. Example Results
5.4.1. More Comfortable Fingering

Due to our method’s optimization of motion cost, it exhibits smaller finger movement
compared to statistical learning approaches. For instance, Figure 7 shows the fingering
results of Masaru Yokoyama’s “Syotengaru”:

Figure 7. Thered line represents reinforcement learning fingering result, while the blue line represents
the statistical learning result. Lower fluctuations in the line imply greater finger stretches. The green
blocks below represent the MIDI visualization of the melody.

The reinforcement learning approach selects finger 4 to play G4, while the statistical
approach selects finger 3 and 2. Clearly, the statistical learning method involves greater
hand stretching, whereas our method produces fingerings with reduced stretching, offering
enhanced comfort.

5.4.2. Explore Better Fingering

Our method has the potential to discover fingerings that are better than human
annotated fingerings, as shown in Figure 8.

Figure 8. Comparison of human-annotated fingering and algorithm-annotated fingering. The
numbers on the musical notes indicate fingering labels.

Human-annotated fingerings are in line with first intuition, as there are two octaves,
A4-A5 and B4-B5, choosing to directly move hand positions is intuitive. However, the fin-
gering choice derived from the algorithm does not involve hand position change. It selects
the index finger to play B4 and then cross thumb finger to play C5. This approach not only
avoids hand movement but also reduces the discomfort caused by the significant stretch of
using the finger transition 2–5 to play C5-B5, as indicated in the human-annotated fingering.
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5.5. Human Evaluation

We conducted a small-scale human evaluation of the fingering generated by the
algorithm. We recruited a music master’s degree holder with several years of experience
playing piano and provided them with ten excerpts of sheet music annotated with fingering
generated by the algorithm.

The pianist provided feedback on the fingering segments we provided. He noted
that our method ensured fundamental playability, consistent with our expectations. Our
method was beneficial in optimizing finger stretches in most cases, especially in piano
arrangements for some popular music pieces, where these musical techniques typically
require less demand on finger agility. However, the pianist also observed that in a very few
instances, our method did not perform well on melodic segments with specific sequential
patterns, where each sequential repetition requires the same fingerings for consistent
fingering memorization and smooth performance rather than simply minimizing motion.
Clearly, our method cannot account for musical semantics. This suggests that our future
work must involve a combination of data-driven and rule-based methods.

6. Music Score Segmentation
6.1. Segmentation Method

Due to the exponential growth of the number of note combinations with sequence
length, heuristic search methods or reinforcement learning methods often require more
time when annotating long sequences of music scores. In previous studies, there have been
no attempts to parallelize the task of automatic piano fingering annotation. Due to the
presence of Markovian properties in the fingering allocation process, it is often believed
that the notes to be annotated must be modeled as a complete HMM or a MDP. However,
based on E. Nakamura’s statistical analysis [10] of human-annotated piano fingering scores,
they discovered that an apex note in a monophonic passage has an almost unique choice of
finger, i.e., the little finger. We found that this property is not only global but also holds
true for the apex single notes in local melodic fragments.

A local region is defined as a gradually expanding range centered around a single
note. The notes within this range must be played in quick succession, with no significant
gap in the time between two notes (usually not exceeding the length of a half note), and the
pitch range should exceed a perfect fifth. If within this range, there are at least five different
pitches of notes or, if the pitch range exceeds an octave, and the pitch of the center single
note is the highest within the range, then that single note is considered a local apex note
within the local region, as shown in Figure 9. The same applies to the lowest single note for
the left hand.

Figure 9. Local apex note. The red arrow represents the current local apex note. The blue arrow
indicates a gradually expanding local range. The numbers represent the count of expansions.

We analyzed the fingering data in the PIG dataset that were annotated by at least four
individuals to verify the probability of local apex notes being played with the little finger.
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The results indicate an accuracy of 98.41% for right-hand notes and 99.34% for left-hand
notes. This indicates that the fingering selection for local apex notes is also nearly unique.

The uniqueness of the fingering for local apex notes allows us to partition the entire
music score into smaller sequential segments, enabling the parallel decomposition of the
task and reducing the depth of the search. By scanning the unannotated complete music
score sequence, we can identify the local apex notes in the right hand and the local lowest
notes in the left hand. These points can serve as segmentation positions to divide the
music score into smaller segments, treating each segmented music score sequence as an
independent annotation task, as shown in Figure 10.

Figure 10. The fingering annotation task between two local apex notes (red square) can be considered
as independent.

6.2. Influence of Music Score Segmentation on Processing Speed

In order to compare the influence of music score segmentation on the speed of fingering
annotation, we conducted a set of comparative experiments. We segmented the right-hand
part of Bach Invention No. 1 C into six melody segments of roughly equal length. Then,
we constructed these melody segments into an MDP and parallelized the execution of
the reinforcement learning algorithm using different six CPU cores. In another group of
experiments, we did not segment the music score and directly constructed the complete
right-hand part into an MDP, using the same CPU to execute the algorithm. Tables 4 and 5
are the performance records of the experiments averaged over multiple runs.

Table 4. Model-free method (Q-learning) execution time and memory usage.

Time Memory Usage

segmentation 5.16 s 2.80 GB
no segmentation 13.21 s 6.85 GB

Table 5. Model-based method (prioritized sweeping) execute time and memory.

Time Memory Usage

segmentation 7.15 s 1.95 GB
no segmentation 7.61 s 2.52 GB

It can be observed that the performance is the poorest when using a model-free
reinforcement learning algorithm without any processing of the music score. Both using
model-based algorithms and segmenting the music score for parallel processing result in
performance improvements. However, during the experiments, we also discovered that
when parallelizing the execution of the reinforcement learning algorithm, it is not advisable
to divide the sequence into very small segments. This is because the overhead of thread
scheduling may exceed the algorithm’s execution cost.

7. Conclusions

In this study, we continue the exploration of rule-based fingering automatic annotation
by utilizing model-based reinforcement learning algorithms to find fingerings with minimal
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motion. We constructed a more realistic environmental model, improved the sampling
efficiency through model-based reinforcement learning, and propose a method for seg-
menting long sequential music scores. Our method achieves good results in eliminating
physically impossible fingerings and reducing the amount of finger motion required in
piano performance.

Since our algorithm is built upon a simulation model of the performance process and
generates physically playable fingerings, it is particularly suitable for application in piano
performances by humanoid robots in the future. The constraint methods we propose can
also be applied in statistical learning approaches.

However, we must acknowledge that a purely rule-based fingering annotation method
is not the ultimate solution. Firstly, the parameters in the reward function are difficult to de-
termine directly and require repeated trial and adjustment. Secondly, the intricate patterns
of hand movements are difficult to describe comprehensively with detailed rules, making
it challenging to fully characterize the problem. Thirdly, due to our reinforcement learning
algorithm needing to simultaneously optimize multiple objectives (such as reducing finger
stretches and movements at the same time), it is difficult to assign clear priorities for each
optimization objective to all states, leading to conflicts in rules.

We believe that a combination of rule-based and data-driven approaches will be the
direction of future work. We believe that a true hard constraint machine learning system is
needed to effectively improve the quality of fingerings. In addition, modern end-to-end
constrained optimization learning is also a solution worth exploring. However, how to
balance runtime and accuracy will be a challenge.

Moreover, considering that classical music in PIG has entered the public domain, we
hope that subsequent research can establish an open source fingering dataset to facilitate
collaboration among researchers to correct errors in the dataset and improve the quality
of fingering annotations for data-driven methods. We also anticipate that future datasets
can adopt more common formats, and include metadata such as tempo and time signature.
Additionally, the playing techniques of notes such as ornaments and staccato can also
be marked.
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