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Abstract: Researchers have recently focused on multimodal emotion recognition, but issues persist in
recognizing emotions in multi-party dialogue scenarios. Most studies have only used text and audio
modality, ignoring the video modality. To address this, we propose M2ER, a multimodal emotion
recognition scheme based on multi-party dialogue scenarios. Addressing the issue of multiple faces
appearing in the same frame of the video modality, M2ER introduces a method using multi-face
localization for speaker recognition to eliminate the interference of non-speakers. The attention
mechanism is used to fuse and classify different modalities. We conducted extensive experiments in
unimodal and multimodal fusion using the multi-party dialogue dataset MELD. The results show
that M2ER achieves superior emotion recognition in both text and audio modalities compared to the
baseline model. The proposed method using speaker recognition in the video modality improves
emotion recognition performance by 6.58% compared to the method without speaker recognition. In
addition, the multimodal fusion based on the attention mechanism also outperforms the baseline
fusion model.

Keywords: multimodal; emotion recognition; feature extraction; feature-level fusion; attention
mechanism; speaker recognition

1. Introduction

Emotions are unique and important forms of human expression [1]. When conducting
early research on emotions, Ekman [2] classified people’s basic emotions according to their
needs. In 1977, Picard proposed the concept of emotional computing [3], aiming to equip
computers with the ability to recognize, understand, express, and adapt to human emotions.
An important direction in emotional computing research is emotion recognition, which can
create more intelligent and harmonious user entities for applications such as lie detection,
audiovisual monitoring, online conferences, and human–computer interaction (HCI) [4].

Researchers often rely on unimodal emotion recognition [5]. Recently, significant
progress has been made in the research of unimodal approaches for text, audio, and video.
Particularly, facial emotion recognition (FER) technology has a wide range of applications,
including HCI, emotional chat, psychological diagnosis, and other tasks [6]. AffectNet [7]
is a widely recognized corpus for video modality emotion recognition. Currently, the
top three models in terms of accuracy for seven-class emotion recognition on AffectNet
are POSTER++ (67.49%) [8], Emotion-GCN (66.46%) [9], and EmoAffectNet (66.37%) [10].
Other studies related to FER are as follows: Bakariya et al. [11] created a real-time system
that can recognize human faces, assess human emotions, and recommend music to users.
Meena et al. [12] proposed a facial image sentiment analysis model based on a CNN. It is
discovered that more convolution layers, a strong dropout, a large batch size, and many
epochs can obtain better effects. Savchenko [13] studied lightweight convolutional neural
networks (CNNs) for FER task learning and verified the effectiveness of CNNs for FER.
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Meena et al. [14] utilized Inception-v3, along with additional deep features, to enhance
image categorization performance. A CNN-based Inception-v3 architecture was used for
emotion detection and classification. In a study by Saravanan [15], they found that CNNs
are highly effective for image recognition tasks due to their ability to capture spatial features
using numerous filters. They proposed a model consisting of six convolutional layers, two
max-pooling layers, and two fully connected layers, which performed better than decision
trees and feed-forward neural networks on the FER-2013 dataset. Li [16] used a CNN,
which extracts geometric and appearance features, and LSTM, which captures temporal
and contextual information on facial expressions. This CNN–LSTM architecture allows
for a more comprehensive representation of facial expressions by combining spatial and
temporal information. Ming et al. [17] presented a facial expression recognition method
that included an attention mechanism based on a CNN and LSTM. This model was able to
effectively extract information on important regions, better than general CNN–LSTM-based
models. Sang [18] focused on reducing intra-class variation in facial expression depth
features and introduced a dense convolutional network [19] for the FER task.

There has been an increase in the combination of transformers in various FER methods.
Xue [20] was the first to use the vision transformer for FER and achieved state-of-the-art
results. VTFF [21] excels in dealing with facial expression recognition tasks in the wild due
to its feature fusion. Chen et al. [22] introduced CrossViT, which uses dual branches to
combine image patches of different sizes to produce more reliable features. Heo et al. [23]
examined the benefits of pooling layers in ViT, similar to their advantages in CNNs.

However, in real-world scenarios, the video modality often presents complex data
formats. For example, multiple faces often appear in the same frame in multi-party dia-
logue scenarios, and the presence of non-speaking individuals’ faces can interfere with the
final emotion recognition. This is the reason why most of the existing research on multi-
modal emotion recognition in multi-party dialogues has not utilized the video modality.
Challenges such as speaker recognition, significant intra-class facial expression variations,
and subtle inter-class differences further highlight the room for improvement in emotion
recognition. Thus, there is still considerable scope for further research and exploration in
the field of emotion recognition.

It is hard to obtain accurate emotional information only through a single modality [24,25].
Compared with unimodal emotion recognition, multimodal emotion recognition can make
up for the noise interference caused by the single modality and make full use of the
complementary features between different modalities. Zadeh [26] conducted multimodal
sentiment analysis on three modalities of text, audio, and video for the first time and
released the first dataset containing text, audio, and video modalities—the YouTube dataset.
Rosas [27] proposed a multimodal research dataset—Moud—and conducted sentiment
analysis in sentences. Zadeh [28] constructed a large-scale multimodal dataset CMU-
MOSEI. In recent years, based on the above datasets, researchers have carried out many
classic multimodal emotion analysis methods based on text, audio, and video modalities.
Dai [29] combined multimodal feature extraction and fusion into a model and optimized
it at the same time, which improved the accuracy of emotion recognition in real-time
performance. Ren [30] used the self-supervised training model to fuse the features of text,
audio, and video modalities into non-standard classes and achieved better results than the
baseline model.

The focus of multimodal emotion recognition lies in how to extract features and
perform subsequent fusion. However, most of the current research on multimodal emotion
recognition only focuses on the stage of feature fusion, neglecting the initial stage of
unimodal emotional feature extraction. For example, in the case of the audio modality,
most studies directly extract audio features using open-source toolkits such as Librosa
and OpenSmile [31,32] and fuse them with features from other modalities. In the context
of multi-party dialogues, many researchers have focused on studying the text and audio
modalities while neglecting the video modality. Extracting comprehensive features from
individual modalities is a prerequisite for multimodal emotion recognition. The more
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comprehensive the extraction of emotional features from each modality, the better it can
reflect the characteristics of emotion.

There are three main methods of multimodal fusion: data-level fusion, feature-level
fusion, and decision-level fusion. The specific process of feature-level fusion is illustrated in
Figure 1. Feature-level fusion can fully leverage the advantages of each modality, effectively
integrate information from different modalities, and consider the correlation between
various data in different modalities. However, if the feature-level fusion is achieved by
directly concatenating the feature vectors, it will result in high-dimensional vectors, leading
to problems such as the curse of dimensionality.

Figure 1. The specific process of feature-level fusion, which involves extracting emotional features
from individual modalities, combining the obtained feature vectors in a specific way, and finally
using an emotion classifier to recognize the fused features.

Recently, many research works have focused on attention-based fusion and its variants,
such as self-attention, multi-head attention, and transformers [33]. The attention-based
fusion integrates the advantages of early fusion and late fusion and compensates for their
shortcomings [34]. The attention mechanism is a specialized structure that can be embedded
in the framework of machine learning models. By employing the attention mechanism, the
problem of information overload can be addressed. Furthermore, the attention mechanism
can provide an effective resource allocation scheme in neural networks [35]. As the number
of model parameters increases in deep neural networks, the model generally becomes more
expressive and capable of storing a greater amount of information. However, the increasing
number of parameters also demands significant computational resources during model
training, making it challenging. By incorporating the attention mechanism into neural
networks, it becomes possible to identify which data in the input sequence contributes more
significantly to the task at hand [36]. Consequently, more limited attention can be allocated
to the most valuable portions of information, while reducing attention or disregarding
irrelevant information, thus efficiently utilizing computational resources [37]. Hu [38]
proposed the Multimodal Dynamic Fusion Network (MM-DFN) to recognize emotions
by fully understanding multimodal conversational context. Wang et al. [34] proposed
a cross-attention asymmetric fusion module, which utilized information matrices of the
acoustic and visual modality as weights to strengthen the text modality.

Based on the above situation, we propose M2ER that optimizes the key steps of
multimodal emotion recognition in multi-party dialogue scenarios. We mainly focus
on how to fully utilize video modalities. The contributions of M2ER are summarized
as follows:

• We constructed suitable feature extraction models for text, audio, and video modalities.
Addressing the challenge of multiple faces appearing in a single frame in the video
modality, we propose a method using multi-face localization for speaker recognition,
thus extracting features from facial expression sequences of the identified speaker.

• For the multimodal fusion model, we adopted the feature-level fusion approach
utilizing a multimodal fusion model based on the attention mechanism. The extracted
unimodal emotional features are combined using cross-modal attention to capture the
intermodal interactions. Furthermore, the attention mechanism employed determines
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the contribution of each modality to the final emotion classification, enabling the
fusion with different weights.

• We conducted experiments on the Multimodal Emotion Lines Dataset (MELD) [39]
using both unimodal and multimodal fusion methods and further evaluated the
scalability of our models on the MEISD dataset [40]. The extensive experiments show
that our unimodal feature-based emotion recognition model of M2ER outperforms the
baseline models. The multimodal fusion model achieves higher recognition accuracy
compared to the unimodal emotion recognition systems. Moreover, our fusion model
of M2ER exhibits superior performance in multimodal emotion recognition tasks
compared to directly concatenated models.

The remaining parts of the paper are structured as follows: Section 2 presents the
detailed design of the proposed M2ER, including the extraction of unimodal features and
the multimodal feature fusion model. In Section 3, we outline the experiments conducted
on unimodal and multimodal emotion recognition separately and verify the scalability of
the models. Furthermore, we discuss the advantages of our work as well as the limitations
and future work in Section 4; Finally, Section 5 concludes the work of this paper.

2. Detailed Design

Figure 2 illustrates the overview framework of M2ER, which includes the extraction of
emotional features from text, audio, and video modalities, as well as the multimodal fusion
classification framework adopted in our work based on the attention mechanism. We will
introduce the detailed scheme of the unimodal extraction model in Section 2.1 and fusion
model information in Section 2.2.

Figure 2. The framework of M2ER. Detailed information will be introduced in the following
Sections 2.1 and 2.2.

2.1. The Unimodal Extraction Model of M2ER

We adopted a feature-level fusion method for multimodal emotion recognition, so we
need to perform feature extraction for each modality in the first step. The detail of feature
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extraction models of M2ER for the three modalities (including text, audio, and video) are
described in Sections 2.1.1–2.1.3.

2.1.1. Text Modality Preprocessing and Feature Extraction

We used the Embeddings from Language Model (ELMo) [41] pre-trained model to
obtain dynamic word vector features for the text modality. The core of ELMo lies in utilizing
a bidirectional Long Short-Term Memory (LSTM) [42] recurrent neural network structure
for feature extraction. During training, ELMo leverages the entire input text and considers
both forward and backward input sequence information simultaneously to obtain more
comprehensive text emotional features. We also adopted BERT [43] to extract semantic
information at the sentence level. BERT can be used to extract text emotional features, where
the proximity of words in the feature vector space reflects their semantic similarity [44]. The
BERT model utilizes the transformer as a feature extractor. When processing a task, BERT
first transforms the input text to obtain BERT input representation. Then, the transformer
encoder performs computations on the input, then the computed results serve as the input
for the next transformer encoder. This process is repeated, resulting in the representation
of the entire text.

In conclusion, in the feature extraction part of text modality, we utilized the pre-
trained model of ELMo and BERT to obtain text emotional features from the word-level
and semantic-level perspectives, respectively. Finally, the extracted features from both parts
were combined to obtain complete text emotional features. The process of text modality
feature extraction is illustrated in Figure 3.

Figure 3. Text feature extraction model.

2.1.2. Audio Modality Preprocessing and Feature Extraction

The representation of audio signals is quite diverse, and the way audio signals are
described greatly impacts the performance of subsequent feature extraction and emotion
recognition. The purpose of the preprocessing is to transform audio signals with different
quality into signals with smooth and uniform representative characteristics, which is
convenient for the subsequent feature extraction. Preprocessing includes pre-emphasis,
framing, and windowing. The next step is to process the data by transforming the raw
audio into spectrograms, which contain both temporal and frequency domain information.
These spectrograms are fed into a pre-trained model. Due to its excellent performance in
audio emotion recognition, the pre-trained DenseNet [19] network model was selected for
extracting emotional features from the spectrograms. The overall steps for audio emotion
feature extraction are illustrated in Figure 4.



Appl. Sci. 2023, 13, 11340 6 of 20

Figure 4. Audio feature extraction model.

Spectrograms visualize audio signals, and they can be regarded as color images in
terms of their representation. By using the two-dimensional image to describe the three-
dimensional information of time, frequency, and energy, the differences between different
audio data can more effectively captured. Moreover, spectrograms are two-dimensional,
colorful images, making them suitable for feature extraction using CNNs. The spectrograms
corresponding to the seven emotions are shown in Figure 5.

Figure 5. Spectrogram of seven emotions. The horizontal axis of the spectrogram represents the
temporal information of the audio signal, while the vertical axis represents the frequency of the audio
signal. The two-dimensional coordinates in the spectrogram represent the frequency of the audio at a
specific moment, and the intensity of the coordinates also reflects the energy of the audio. The darker
the color in the spectrogram, the higher the energy.

Finally, each spectrogram corresponding to each short-time frame is input into DenseNet
to extract emotional features from the spectrogram. The detailed architecture of the
DenseNet used for feature extraction is shown in Figure 6.

Figure 6. Structure of DenseNet in our method.
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2.1.3. Video Modality Preprocessing and Feature Extraction

Capturing the emotional features of facial expressions from speakers accurately is a
key challenge in implementing video-based emotion analysis. In real-life applications, the
analysis is typically focused on the emotions of the subject (usually human) in a video,
and human emotions tend to change slowly over time. Therefore, it is not necessary to
analyze every frame in the video when extracting emotional features. Sampling frames
from the video and analyzing those samples is sufficient. However, there are usually
multiple faces present in the same frame in the case of multi-party dialogue scenarios.
The facial expressions of unrelated persons can interfere with the analysis of the speaker’s
emotions. Therefore, the challenge in analyzing facial expressions in multi-party dialogue
scenarios is how to isolate the facial expressions of the speaker.

We selected MELD, which is a widely used multi-party dialogue dataset. In our study,
we first read all the sample data from the dataset. For all the video data, we sampled every
fifth frame and applied multi-face localization to locate all the faces in the sampled frames,
as shown in Figure 7. There are three persons: Rachel, Monica, and Phoebe with distinct
facial expressions, i.e., neutral and anger. The facial expressions of the non-speakers (Rachel
and Monica) in the frame can affect the emotion recognition of the real speaker (Phoebe).
Therefore, it is necessary to exclude the faces of unrelated persons from the frames. Then,
we extracted facial expression images of all the faces in the sampled frames.

Figure 7. An example of multiple face detection technology locating all faces.

The facial expression image obtained in the previous step is for everyone in the picture,
including both the speaker and the non-speaker. We use the speaker recognition method
to extract the facial expression sequence of the speaker in the video. The length of the
video modality in MELD is set to correspond to a single sentence in the text modality. The
text modality also provides speaker annotations for each sentence in the dialogue. We can
determine who is speaking in the video by loading the labels from the text modality. We
applied speaker recognition to filter out the facial images of the speaker for each video
segment. Figure 8 illustrates the changes in a speaker’s facial expressions in a specific
sequence of video segments.

Figure 8. The changes in the speaker’s facial expression. For each video segment, the number of
facial expression images obtained through the previous steps is different. To ensure a consistent
frame count for each video segment, a trimming and padding process is performed.

Firstly, the average number of facial expression frames obtained is calculated for each
video segment in the dataset after the previous steps. During the experiment, we chose
to retain a sequence of 30 frames for each video segment. For segments with fewer than
30 frames, zero-padding is used to fill the remaining frames, while for segments with
more than 30 frames the sequence is trimmed to 30 frames. After that, the 30-frame facial
expression sequence represents the entire video segment, and it can be directly input into
the facial feature extraction model.
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In the stage of feature extraction, we input the facial expression sequences of the
speaker obtained from the previous steps into a pre-trained model VGG16 [45] to extract
emotional features from each frame. Since facial expressions are slow-changing sequences,
we also adopted LSTM to capture temporal context information through multiple rounds
of training, thereby obtaining richer and more comprehensive emotional features.

The specific process for extracting emotional features from the video modality is
shown in Figure 9. The preprocessing primarily involves using the OpenCV library to read
video frame data. Then, our speaker recognition method of M2ER is applied to filter out
the facial expressions of the speaker in the video. As a result, the complete video samples
are processed into facial expression sequence images with dimensions of (30, 3, 224, 224).
The feature extraction stage utilizes a combination of VGG16 and LSTM. The output from
the fully connected layers is used as the emotional feature vector of the video modality.

Figure 9. Video feature extraction model.

2.2. Multimodal Emotion Recognition Based on Attention Mechanism

Building an effective multimodal fusion model is a crucial step in multimodal senti-
ment recognition. We adopted a feature-level fusion approach to combine the emotional
features extracted from the text, audio, and video modalities obtained by the aforemen-
tioned models. Current research on multimodal sentiment recognition often relies on
extracting a large number of features to identify emotion. However, directly concatenat-
ing these features can lead to the curse of dimensionality, and there is no distinction in
their importance, which may result in the overshadowing of relatively significant features.
Furthermore, there are often correlations among the features from the text, audio, and
video modalities. Additionally, it is observable that people express emotion differently in
real-life scenarios, but existing multimodal fusion models often overlook this phenomenon.
The attention mechanism can be used in neural networks to achieve more effective re-
source allocation. Based on these issues, M2ER explores an attention-based multimodal
fusion model.

Our fusion model consists of three main parts: (shown in Figure 2).

(1) Cross-Modal Attention Interaction—Part 1: This module utilizes cross-modal attention
to capture the intermodal relationships and obtain the feature representation of the
interaction between different modalities.

(2) Multimodal Attention Fusion—Part 2: This module employs the attention mechanism
to determine the importance of each modality in the final fusion classification. It
obtains the weight distribution of each modality’s features in the fusion process and
performs the fusion accordingly.

(3) Finally, the fused multimodal features are passed through the softmax classification
layer for emotion recognition.

2.2.1. Cross-Modal Attention Interaction

Because multimodal emotion recognition often involves a large number of features,
determining the importance of these features and capturing the relationships among
multimodal emotional features are key issues. In our fusion model, we incorporate the
emotional features extracted from the text, audio, and video modalities. This is achieved by
utilizing cross-modal attention to facilitate the interaction among different modalities. The
input to the Cross-Modal Attention Interaction—Part 1 is the emotional features of the text,
audio, and video modalities, represented as MT , MA, and MV , respectively. The specific
architecture of Part 1 is shown in Figure 10.
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Figure 10. Cross-modal attention interaction architecture.

Taking the example of inputting the text and audio modality into the Cross-Modal
Attention Interaction module, MT∗ represents the feature representation with interaction
obtained from the text through this module. The calculation formula for MT∗ is shown
in Equations (1)–(3). Similarly, MA∗

represents the feature representation with interaction
obtained from the audio modality through the T-A attention module. The calculation
formula for MA∗

is shown in Equations (4)–(6).

HTA = MT MAT
, (1)

αTA = so f tmax(HTA, (2)

MT∗
= (αTA MT) ∗ MT , (3)

HAT = MA MT T
, (4)

αAT = so f tmax(HAT , (5)

MA∗
= (αAT MA) ∗ MA, (6)

where HTA and HAT represent the cross-modal interaction information between the text and
audio modalities. αTA and αAT represent the scores obtained for the text and audio modali-
ties in the cross-modal attention interaction. By applying the soft attention mechanism to
the emotional features of the input text and audio modalities in Part 1 and multiplying MT ,
MA with the corresponding elements of their respective matrices, we obtain the feature
representation with interaction for the text and audio modalities MT∗, MA∗.

Part 1 is divided into three main parts: text–audio attention interaction (T-A), text–
video attention interaction (T-V), and audio–video attention interaction (A-V).

(1) T-A: The emotional features MT , MA of the input text and audio modalities in Part 1
are used to obtain the interaction representation between text and audio MT∗, MA∗

through cross-modal attention;
(2) T-V: The emotional features MT , MV of the input text and video modalities in Part 1

are used to obtain the interaction representation between text and video, MT1∗, MV∗

through cross-modal attention;
(3) A-V: The emotional features MA, MV of the input audio and video modalities in Part

1 are used to obtain the interaction representation between audio and video MA1∗,
MV1∗ through cross-modal attention.

Finally, we obtained the interaction feature representations of the text modality: MT∗,
MT1∗; the interaction feature representations of the audio modality: MA∗, MA1∗; and the
interaction feature representations of the video modality: MV∗, MV1∗. These represen-
tations are concatenated with the respective emotional features of each modality using
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fully connected layers to obtain the complete representation of the text, audio, and video
modalities’ emotional features. The calculation formulas for this process are shown in
Equations (7)–(9).

FT = tanh(WT [MT ⊕ MT∗ ⊕ MT1∗] + bT), (7)

FA = tanh(WA[MA ⊕ MA∗ ⊕ MA1∗] + bA), (8)

FV = tanh(WV [MV ⊕ MV∗ ⊕ MV1∗] + bV), (9)

WT , WA, WV , bT , bA, bV are the parameters to be learned, ⊕ denotes the concatenation
operation. By performing the concatenation operation, we obtain the final text emotional
features FT

i , audio emotional features FA
i , and video emotional features FV

i for Part 1.

2.2.2. Multimodal Attention Fusion

People often express emotions in different ways in reality. Some people prefer to
express their emotions through various facial expressions while others through different
tones of voice. Based on this phenomenon, it can be inferred that different modalities
of emotional features contribute differently to the final emotion classification. Therefore,
in our fusion model, an attention mechanism was adopted to determine the importance
of each modality in the final classification. Specifically, the attention mechanism is used
to allocate attention weights to the emotional features FT , FA, and FV obtained in Part 1.
Finally, these weighted features are summed to obtain the fused emotional feature, denoted
as F∗. The calculation process is illustrated in Equations (10)–(12):

HX = tanh(WX
attF

X + bX
att), (10)

βX = so f tmax(HX), (11)

F∗ = ∑
X

FX βT
X , (12)

where X represents the modality, which can be text, video, or audio. HX represents the
hidden unit state, WX

att represents the weights, and bX
att represents the biases. Equation (11)

is used to normalize the weight vector. The resulting F∗ is then fed into the fully connected
layer and the softmax classification layer for emotion classification.

3. Evaluation
3.1. Dataset Introduction

This study primarily adopted MELD for experiments. MELD is a multimodal dataset
based on dialogues which is widely used for emotion recognition. The dataset consists of
over 1400 dialogues, which contain more than 13,000 utterances. Due to the presence of
multiple speakers in the same scenario, multi-party dialogues are more challenging than
binary dialogues.

For each dialogue segment in MELD, researchers have annotated the corresponding
emotion category for each utterance. Table 1 presents the emotion distribution in MELD.
Table 2 provides several key statistical data of the dataset. By analyzing the emotion
distribution in the training, validation, and test sets, it can be observed that the emotion
distribution in the dataset is uneven. The majority of emotions are neutral, while the
categories of fear and disgust have fewer instances. So, we conducted further experiments
on the MEISD dataset with a more balanced emotional distribution to verify the scalability
of our model.
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Table 1. The emotion distribution in MELD.

Emotion Training Set Test Set Validation Set

Anger 1109 153 345
Disgust 271 22 68

Fear 268 40 50
Joy 1743 163 402

Neutral 4710 470 1256
Sadness 683 111 208
Surprise 1205 150 281

Table 2. The detailed distribution of MELD. In the training, validation, and test sets, the average
utterance length is almost the same.

MELD Statisic Training Set Test Set Validation Set

No. of modalities {a, v, t} {a, v, t} {a, v, t}
No. of unique words 10643 2384 4361

Avg./Max utterance length 8.0/69 7.9/37 8.2/45
No. of dialogues 1039 114 280
No. of dialogues dyadic MELD 2560 270 577
No. of utterances 9989 1109 2610
No. of speakers 260 47 100

Avg. No. of utterances per dialogue 9.6 9.7 9.3
Avg. No. of emotions per dialogue 3.3 3.3 3.2
Avg./Max No. of speakers per
dialogue 2.7/9 3.0/8 2.6/8

No. of emotion shift 4003 427 1003
Avg. duration of an utterance 3.59 s 3.59 s 3.58 s

3.2. Experimental Setting

In our work, the experiments primarily utilized Python with PyTorch. Table 3 displays
the hardware configuration used during the experiments. Python 3.7 with PyTorch 1.12.1
was installed on the PC via Anaconda.

Table 3. The server hardware configuration information.

Graphics Card Server RAM

NVIDIA GeForce RTX 3090 Ti AMD Ryzen 9 5950X 16-Core Processor 3.4 GHz 32 G

Our experiment used the cross-entropy loss function and optimized the model param-
eters using the Adam optimizer [46] with the learning rate of 0.001. To prevent overfitting,
We applied the dropout rate of 0.2. The model was trained for 100 epochs with the batch
size of 64, which we found to be the most effective.

The experiment was mainly divided into three processes: training, validation, and
testing. The model was trained on the training set of MELD, and the validation set was
used to observe the training progress of the model and adjust relevant parameters based
on the actual training process. Finally, the trained model was used to predict the results on
the test set.

3.3. Performance Evaluation

Precision, Recall, and F1 Score are the main key performance indicators used to
compare the performance of various models or algorithms [47]. Precision is the ability of
the classifier not to label as positive a sample that is negative, and Recall is the ability of the
classifier to find all the positive samples. The F1 Score can be interpreted as a weighted
harmonic mean of the Precision and Recall. All of them were computed for the proposed
model and other baseline models. In our experiment, the micro-F1 Score was used as the
evaluation metric.
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For binary classification evaluation metrics, the calculation formula for F1 Score is
shown in Equations (13)–(15), as follows:

Recall =
TP

TP + FN
, (13)

Precision =
TP

TP + FP
, (14)

F1 = 2 ∗ Recall ∗ Precision
Recall + Precision

, (15)

where TP is true positives, TN is true negatives, FP is false positives, and FN is false negatives.
Multiclass evaluation metrics are derived from binary classification evaluation metrics.

The micro-F1 Score takes into account the issue of class imbalance. This approach calculates
the global Precision and Recall directly based on individual samples. The calculation
formulas are shown in Equations (16)–(18), as follows:

Precisionmicro =
∑L

i=1TP

∑L
i=1TP + ∑L

i=1FP
, (16)

Recallmicro =
∑L

i=1TP

∑L
i=1TP + ∑L

i=1FN
, (17)

micro − F1 =
2 · Precisionmicro · Recallmicro
Precisionmicro + Recallmicro

, (18)

3.4. Results of Unimodal Experiments

This section primarily outlines the related experiments conducted on MELD, compar-
ing our proposed method with commonly used baseline models for emotion recognition.
Specifically, we compare the Text-CNN (text modality only) [48], bcLSTM [49], and Dia-
logueRNN [50] models with our proposed model.

In these experiments, due to the imbalanced distribution of emotions within MELD,
we utilized micro-F1 and weighted-average F1 (w-avg F1) as evaluation metrics. Table 4
presents the results for the seven emotion categories on the test set.

Table 4. Scores for unimodal emotion classification on the test set. To facilitate a clearer comparative
analysis, this table was transformed into a bar chart as shown in Figure 11.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

text-CNN text 34.49 8.22 3.74 49.39 74.88 21.05 45.45 55.02

bcLSTM text 42.06 21.69 7.75 54.31 71.63 26.92 48.15 56.44
audio 25.85 6.06 2.9 15.74 61.86 14.71 19.34 39.08

DialogueRNN text 40.59 2.04 8.93 50.27 75.75 24.19 49.38 57.03
audio 35.18 5.13 5.56 13.17 65.57 14.01 20.47 41.79

M2ER
text 40.45 15.24 5.55 53.31 77.57 37.85 52.42 60.05

audio 31.51 9.02 5.25 29.08 64.84 13.06 20.13 43.39
video 24.43 6.62 4.54 22.89 63.68 20.07 29.44 42.73

It can be observed that the emotion recognition performance in the text modality is
generally better than that in the audio and video modalities. The text modality achieved
a w-avg F1 of 60.05%, which is an improvement of 9.14%, 6.4%, and 5.3% compared to
the Text-CNN, bcLSTM, and DialogueRNN models, respectively. The audio modality
achieved a w-avg F1 of 43.39%, which is an improvement of 10.03% and 3.8% compared
to the bcLSTM and DialogueRNN models, respectively. These results demonstrate the
effectiveness of the text and audio modality feature extraction models, surpassing the
performance of popular baseline models.
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Figure 11. Performance results of different models of text and audio modalities on MELD. The figure
shows the comparison of the w-avg F1 values for different models in text and audio modality emotion
recognition on MELD.

3.5. Results of Multimodal Experiments

Relevant experiments were conducted on the training, validation, and test sets of
MELD. The experimental results are shown in Table 5. This model utilizes cross-modal
attention interaction to capture correlated information between modalities, obtaining
feature representations with interactive effects. By using the attention mechanism, it
determines the importance of each modality in the final fusion classification and combines
the multimodal information.

Table 5. Scores for the seven emotion classifications on the test set. “text + audio + video” represents
our attention-based multimodal fusion model. This table was transformed into a bar chart, as shown
in Figure 12.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

bcLSTM text + audio 43.39 23.66 9.38 54.48 76.67 24.34 51.04 59.25

DialogueRNN text + audio 43.65 7.89 11.68 54.40 77.44 34.59 52.51 60.25

M2ER

text 40.45 15.24 5.55 53.31 77.57 37.85 52.42 60.05
audio 31.51 9.02 5.25 29.08 64.84 13.06 20.13 43.39
video 24.43 6.62 4.54 24.89 63.68 20.07 29.44 42.73

text + audio + video 43.75 16.93 9.62 56.63 80.11 41.67 54.14 62.83

Comparing the results in Figure 12 shows that our three-modality fusion emotion
recognition model achieved a w-avg F1 score of 62.83%, outperforming the individual
modalities of text, audio, and video in emotion recognition. Compared to unimodal data,
multimodal data can capture more diverse emotional features. Multimodal fusion can also
compensate for the limitations of individual modalities. Furthermore, our multimodal
fusion model shows improved fusion performance compared to several baseline models.
It was found that the recognition results for disgust and fear were not satisfactory. To
address this, we further conducted a five-class emotion recognition experiment on MELD,
excluding the less frequent emotions of fear and disgust. The results of this experiment are
shown in Table 6.
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Figure 12. Results of unimodal and multimodal emotion classification of our model on the test set. They
present a comparison of the w-avg F1 values for both unimodal and multimodal emotion recognition.

Table 6. Scores for the five emotion classifications on the test set.

Model
Emotion

Anger Joy Neutral Sadness Surprise w-avg F1

bcLSTM text + audio 45.9 52.2 77.9 11.2 49.9 60.6

DialogueRNN
text 41.7 53.7 77.8 21.2 47.7 60.8

audio 34.1 18.8 66.2 16 16.6 44.3
text + audio 48.2 53.2 77.7 20.3 48.5 61.6

M2ER

text 42.1 53.2 78.6 35.9 52.3 62.9
audio 32.5 31.0 66.1 13.6 23.2 46.7
video 29.2 26.0 65.7 19.5 29.6 46.3

text + audio + video 45.6 55.1 79.4 36.3 53.9 64.3

By comparing the results in Tables 5 and 6, it can be observed that after excluding
two less frequent emotions, the five-class emotion recognition performance significantly
improved compared to the seven-class classification because there are very few samples for
the emotions of fear and disgust in the training set. Additionally, distinguishing between
anger, disgust, and fear is challenging as the differences between these emotions are subtle.
This explains why the recognition results for disgust and fear were relatively poor in the
seven-class emotion recognition experiment. Furthermore, the performance of the text
modality in emotion recognition remained generally superior to that of the audio and video
modalities in the five-class emotion recognition experiment, and the multimodal emotion
recognition outperformed the single modality.

3.6. Ablation Experiments

We conducted ablation experiments to validate the effectiveness of different compo-
nents designed in our multimodal feature fusion model by removing specific modules in
the multimodal fusion part.

Our fusion model mainly consists of two parts: Part 1 utilizes cross-modal attention
to capture the interaction between modalities; Part 2 utilizes the attention mechanism to
determine the importance of each modality for the final classification and fuses the multi-
modal information. We conducted comparative experiments between direct concatenation
and the fusion mechanism we adopted, as shown in Table 7.

Comparing the experimental results in Figure 13, Fusion 2 improved the performance
by 1.09% compared to Fusion 1. Compared with Fusion 1 and Fusion 2, Fusion 3 improved
the performance by 3.4% and 2.3%, respectively, as Fusion 2 and Fusion 3 utilize the corre-
lated information between modalities and effectively allocate importance weights to each
modality. The ablation experiments confirmed the effectiveness of each module in the
fusion model in our work—Part 1 and Part 2.
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Table 7. Results of ablation experiments for multimodal fusion emotion recognition. Fusion 1 represents
direct concatenation; Fusion 2 represents the first part of the fusion model, Part 1, which considers only
the interaction between modalities and within each modality; Fusion 3 represents the complete fusion
model, Part 1 + Part 2. This table has been transformed into a bar chart, as shown in Figure 13.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

M2ER
Fusion 1 text + audio + video 41.81 11.63 7.10 54.37 77.84 40.09 53.41 60.74
Fusion 2 text + audio + video 41.99 15.83 7.90 55.07 78.52 40.39 53.86 61.40
Fusion 3 text + audio + video 43.75 16.93 9.62 56.63 80.11 41.67 54.14 62.83

Fusion 1: 
Direct Concatenation

Fusion 2: 
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Fusion 3:
 Part1+Part2
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AFigure 13. Experimental results of multimodal emotion recognition ablation. They present the
comparison of the w-avg F1 scores for different variants of the multimodal fusion model on MELD.

Since the baseline models on MELD did not utilize the video modality, and it was
found that most dialogue emotion recognition studies based on MELD also did not utilize
the video modality through research, A comparative analysis was performed between the
video modality emotion recognition models without speaker recognition and the models
utilizing it in order to validate the effectiveness of our proposed speaker recognition method.
The results are presented in Table 8.

Table 8. Results of the ablation experiments in the video modality. video’ represents the method where
our method was not used. video represents our proposed method of using speaker recognition.

Model
Emotion

Anger Disgust Fear Joy Neutral Sadness Surprise w-avg F1

video’ 22.64 5.41 3.32 23.07 60.34 14.15 24.16 40.05
video 24.43 6.62 4.54 22.89 63.68 20.07 29.44 42.73

By comparing the data in Table 8, it can be observed that our model achieved a w-
avg F1 score of 42.73% for emotion classification in the video modality. Furthermore, by
comparing the data of video’ and video, it is evident that our proposed speaker recognition
method improved the emotion recognition performance in the video modality by 6.58%.
The comparison in Table 8 indicates that the method effectively enhances the efficiency of
extracting emotional features in multi-party dialogue scenarios, highlighting the role of the
video modality in emotion recognition during multi-party dialogues.

3.7. Model Scalability Verification

To validate the scalability of our multimodal emotion recognition model, we con-
ducted emotion recognition experiments on the MEISD dataset, which is also a multi-party
dialogue dataset. Additionally, we performed emotion recognition tests on some real-world
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data using the fusion model and presented the test results to visualize the generalization
performance of the model.

We further conducted multi-class emotion recognition experiments on the MEISD
dataset, using the micro-F1 score as the evaluation metric. Since the distribution of each
emotion label in the training, validation, and test sets of the MEISD dataset is relatively
balanced, the prediction performance for each emotion label is almost the same. Therefore,
we collected the overall w-avg F1 score for comparison and presentation in the experiments.
The results are shown in Table 9.

Table 9. Scores for emotion classification on the MEISD dataset. This table has been transformed
into a bar chart, as shown in Figure 14.

Model w-avg F1

text-CNN text 54.18

bcLSTM

text 57.05
audio 41.17
video 39.45

text + audio + video 59.32

DialogueRNN

text 58.73
audio 41.52
video 40.87

text + audio + video 60.57

M2ER

text 61.10
audio 43.49
video 42.91

text + audio + video 62.97

Figure 14 shows that our multimodal emotion recognition approach also performs well
on the MEISD dataset. The w-avg F1 score for text modality emotion recognition is 61.10%,
for audio modality is 43.49%, and for the video modality is 42.91%. The performance of
individual modalities in emotion recognition surpasses that of classical baseline models.
The fusion model achieves a w-avg F1 score of 62.97%, outperforming the individual
modality recognition results. These experimental results demonstrate the effectiveness and
scalability of our multimodal emotion recognition model in multi-party dialogue scenarios.
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Figure 14. Emotional classification results of the MEISD. They present the comparison of w-avg F1
scores for unimodal and multimodal emotion recognition of various models on the MEISD dataset.

To better illustrate the scalability of the model, we tested it on some actual examples,
as shown in Table 10. From the table, it can be observed that in the case of Example A, the
facial image of the speaker obtained from the video modality shows an upward curvature
of the mouth, indicating a smiling expression. Additionally, the speaker’s voice has a high
pitch and a cheerful speaking rate. The text also expresses a positive emotion, leading to
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a predicted emotion of positive. In the case of Example B, the facial image of the speaker
obtained from the video modality shows a furrowed brow, and the speaker’s speech is
slow and filled with a tone of sadness. The text modality also exhibits negative sentiment,
resulting in a predicted emotion of negative, which aligns with the authentic label. In the
case of Example C, the facial expression of the speaker obtained from the video modality
is relatively neutral without a clear emotional color, but its text and audio modalities
have evident negative sentiment, so the final prediction result is also negative, which is
consistent with the real label. Through the analysis and presentation above examples, it is
evident that our multimodal emotion recognition model based on multi-party dialogue
scenarios can effectively identify the speaker and successfully fuse information from the
text, audio, and video modalities.

Table 10. Examples of multimodal emotion recognition. T represents the dialogue text, V represents
the speaker’s visual information, and A represents the audio information in the video.

Example Speaker T V A Authentic
Emotion

Predicting
Emotion

A Phoebe Ohh! I’m gonna be
on the news.

high pitch,
cheerful tone Positive Positive

B Monica So, I hear you, you
hate me!

slow pace,
downcast tone Negative Negative

C Ross Look! I did not feel
like dancing. Okay?

downcast
tone, high
pitch

Positive Positive

4. Discussion
4.1. Strengths

M2ER has solved the problem of speaker recognition when multiple faces appear
in the same video frame, which enables utilization of the video modality for emotion
recognition. When encountering multiple people in the same scene, M2ER eliminates the
interference of other people by recognizing the speaker and using the facial expressions of
the speaker in the video and the changes during video playback.

To incorporate the multimodal fusion model into our approach, we employed a
feature-level fusion that relies on the attention mechanism. By utilizing cross-modal
attention, we combined the extracted unimodal emotional features to effectively capture
intermodal interactions.

4.2. Limitations and Future Work

In real-world scenarios, a variety of factors can cause modality absence, such as the
faces in the video not appearing within the range of the camera at some moments. The
datasets we used are also affected by modality absence, which definitely affects the accuracy
of the modality. In future work, we will focus on addressing the issue of modality absence,
which may enhance M2ER.

The proposed method involves multiple components, including face detection, face
recognition, and attention-based fusion; while these components enhance the effectiveness
of the model, they also introduce complexity that undoubtedly increases the difficulty of
implementation for others.

Another limitation is that only two datasets were utilized for the experiment, without
further testing the generalization of the model. Due to the potential impact of different data
sources on performance, it is necessary to explore how well the proposed method general-
izes to other datasets due to the potential impact of diverse data sources on performance in
the future.



Appl. Sci. 2023, 13, 11340 18 of 20

5. Conclusions

In this paper, our work primarily focuses on the research of multimodal emotion recog-
nition in multi-party dialogue scenarios. We propose a novel approach using multi-face
localization for speaker recognition in the video modality, thus enhancing the efficiency
of utilizing the video modality in the field of multimodal emotion recognition. In the
multimodal fusion part, we explore a multimodal feature fusion model based on attention
mechanism to address dimension explosion and poor correlation in the directly concate-
nated fusion model. We conducted seven-class emotion experiments, five-class emotion
experiments, and scalability experiments. The results validate the effectiveness of M2ER.

Author Contributions: Conceptualization, G.W.; methodology, B.Z. and X.Y.; validation, B.Z., X.Y.
and G.W.; formal analysis, Y.W.; investigation, Y.W.; resources, X.Y.; data curation, G.W. and B.Z.;
writing—original draft preparation, X.Y.; writing—review and editing, B.Z. and R.S.; visualiza-
tion, Y.W; supervision, B.Z. and R.S. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflicts of interest.

References
1. Ekman, P. An argument for basic emotions. Cogn. Emot. 1992, 6, 169–200. [CrossRef]
2. Ekman, P.; Friesen, W.V. Constants across cultures in the face and emotion. J. Personal. Soc. Psychol. 1971, 17, 124. [CrossRef]

[PubMed]
3. Picard, R.W. Affective Computing; MIT Press: Cambridge, MA, USA, 2000.
4. Trigeorgis, G.; Ringeval, F.; Brueckner, R.; Marchi, E.; Nicolaou, M.A.; Schuller, B.; Zafeiriou, S. Adieu features? end-to-end speech

emotion recognition using a deep convolutional recurrent network. In Proceedings of the 2016 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP), Shanghai, China, 20–25 March 2016; pp. 5200–5204.

5. Zhang, S.; Zhang, S.; Huang, T.; Gao, W.; Tian, Q. Learning affective features with a hybrid deep model for audio–visual emotion
recognition. IEEE Trans. Circuits Syst. Video Technol. 2018, 28, 3030–3043. [CrossRef]

6. Perveen, N.; Roy, D.; Chalavadi, K.M. Facial expression recognition in videos using dynamic kernels. IEEE Trans. Image Process.
2020, 29, 8316–8325. [CrossRef] [PubMed]

7. Mollahosseini, A.; Hasani, B.; Mahoor, M.H. Affectnet: A database for facial expression, valence, and arousal computing in the
wild. IEEE Trans. Affect. Comput. 2019, 10, 18–31. [CrossRef]

8. Mao, J.; Xu, R.; Yin, X.; Chang, Y.; Nie, B.; Huang, A. Poster v2: A simpler and stronger facial expression recognition network.
arXiv 2023, arXiv:2301.12149.

9. Panagiotis, A.; Filntisis, P.P.; Maragos, P. Exploiting emotional dependencies with graph convolutional networks for facial
expression recognition. arXiv 2021, arXiv:2106.03487.

10. Ryumina, E.; Dresvyanskiy, D.; Karpov, A. In search of a robust facial expressions recognition model: A large-scale visual
cross-corpus study. Neurocomputing 2022, 514, 435–450. [CrossRef]

11. Bakariya, B.; Singh, A.; Singh, H.; Raju, P.; Rajpoot, R.; Mohbey, K.K. Facial emotion recognition and music recommendation
system using cnn-based deep learning techniques. In Evolving Systems; Springer: Berlin/Heidelberg, Germany, 2023; pp. 1–18.

12. Meena, G.; Mohbey, K.K.; Indian, A.; Khan, M.Z.; Kumar, S. Identifying emotions from facial expressions using a deep
convolutional neural network-based approach. In Multimedia Tools and Applications; Springer: Berlin/Heidelberg, Germany, 2023;
pp. 1–22.

13. Savchenko, A.V. Facial expression and attributes recognition based on multi-task learning of lightweight neural networks. In
Proceedings of the 2021 IEEE 19th International Symposium on Intelligent Systems and Informatics (SISY), Subotica, Serbia,
16–18 September 2021; pp. 119–124.

14. Meena, G.; Mohbey, K.K.; Kumar, S. Sentiment analysis on images using convolutional neural networks based inception-v3
transfer learning approach. Int. J. Inf. Manag. Data Insights 2023, 3, 100174. [CrossRef]

15. Mehendale, N. Facial emotion recognition using convolutional neural networks (ferc). SN Appl. Sci. 2020, 2, 446. [CrossRef]
16. Li, T.H.S.; Kuo, P.H.; Tsai, T.N.; Luan, P.C. Cnn and lstm based facial expression analysis model for a humanoid robot. IEEE Access

2019, 7, 93998–94011. [CrossRef]

http://doi.org/10.1080/02699939208411068
http://dx.doi.org/10.1037/h0030377
http://www.ncbi.nlm.nih.gov/pubmed/5542557
http://dx.doi.org/10.1109/TCSVT.2017.2719043
http://dx.doi.org/10.1109/TIP.2020.3011846
http://www.ncbi.nlm.nih.gov/pubmed/32746249
http://dx.doi.org/10.1109/TAFFC.2017.2740923
http://dx.doi.org/10.1016/j.neucom.2022.10.013
http://dx.doi.org/10.1016/j.jjimei.2023.100174
http://dx.doi.org/10.1007/s42452-020-2234-1
http://dx.doi.org/10.1109/ACCESS.2019.2928364


Appl. Sci. 2023, 13, 11340 19 of 20

17. Ming, Y.; Qian, H.; Guangyuan, L. Cnn-lstm facial expression recognition method fused with two-layer attention mechanism.
Comput. Intell. Neurosci. 2022, 2022, 7450637. [CrossRef] [PubMed]

18. Sang, D.V.; Ha, P.T. Discriminative deep feature learning for facial emotion recognition. In Proceedings of the 2018 1st International
Conference on Multimedia Analysis and Pattern Recognition (MAPR), Ho Chi Minh City, Vietnam, 5–6 April 2018; pp. 1–6.

19. Huang, G.; Liu, Z.; Maaten, L.V.D.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.

20. Xue, F.; Wang, Q.; Guo, G. Transfer: Learning relation-aware facial expression representations with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 3601–3610.

21. Ma, F.; Sun, B.; Li, S. Facial expression recognition with visual transformers and attentional selective fusion. IEEE Trans. Affect.
Comput. 2021, 14, 1236–1248. [CrossRef]

22. Chen, C.-F.R.; Fan, Q.; Panda, R. Crossvit: Cross-attention multi-scale vision transformer for image classification. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 357–366.

23. Heo, B.; Yun, S.; Han, D.; Chun, S.; Choe, J.; Oh, S.J. Rethinking spatial dimensions of vision transformers. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 11936–11945.

24. Nguyen, D.; Nguyen, K.; Sridharan, S.; Ghasemi, A.; Dean, D.; Fookes, C. Deep spatio-temporal features for multimodal emotion
recognition. In Proceedings of the 2017 IEEE Winter Conference on Applications of Computer Vision (WACV), Santa Rosa, CA,
USA, 24–31 March 2017; pp. 1215–1223.

25. Guanghui, C.; Xiaoping, Z. Multi-modal emotion recognition by fusing correlation features of speech-visual. IEEE Signal Process.
Lett. 2021, 28, 533–537. [CrossRef]

26. Zadeh, A.; Zellers, R.; Pincus, E.; Morency, L. MOSI: multimodal corpus of sentiment intensity and subjectivity analysis in online
opinion videos. arXiv 2016, http://arxiv.org/abs/1606.06259.

27. Zadeh, A.; Liang, P.P.; Poria, S.; Cambria, E.; Morency, L.-P. Multimodal language analysis in the wild: Cmu-mosei dataset and
interpretable dynamic fusion graph. In Proceedings of the Annual Meeting of the Association for Computational Linguistics,
Melbourne, Australia, 15–20 July 2018. Available online: https://api.semanticscholar.org/CorpusID:51868869 (accessed on
15 July 2018).

28. Dai, W.; Cahyawijaya, S.; Liu, Z.; Fung, P. Multimodal end-to-end sparse model for emotion recognition. arXiv 2021,
arXiv:2103.09666.

29. Ren, M.; Huang, X.; Shi, X.; Nie, W. Interactive multimodal attention network for emotion recognition in conversation. IEEE
Signal Process. Lett. 2021, 28, 1046–1050. [CrossRef]

30. Khare, A.; Parthasarathy, S.; Sundaram, S. Self-supervised learning with cross-modal transformers for emotion recognition. In
Proceedings of the 2021 IEEE Spoken Language Technology Workshop (SLT), Shenzhen, China, 19–22 January 2021; pp. 381–388.

31. Lv, F.; Chen, X.; Huang, Y.; Duan, L.; Lin, G. Progressive modality reinforcement for human multimodal emotion recognition from
unaligned multimodal sequences. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 2554–2562.

32. Xie, B.; Sidulova, M.; Park, C.H. Robust multimodal emotion recognition from conversation with transformer-based crossmodality
fusion. Sensors 2021, 21, 4913. [CrossRef]

33. Zhang, L.; Liu, C.; Jia, N. Uni2mul: A conformer-based multimodal emotion classification model by considering unimodal
expression differences with multi-task learning. Appl. Sci. 2023, 13, 9910. [CrossRef]

34. Wang, H.; Yang, M.; Li, Z.; Liu, Z.; Hu, J.; Fu, Z.; Liu, F. Scanet: Improving multimodal representation and fusion with sparse-and
cross-attention for multimodal sentiment analysis. Comput. Animat. Virtual Worlds 2022, 33, e2090. [CrossRef]

35. Ma, H.; Wang, J.; Qian, L.; Lin, H. Han-regru: Hierarchical attention network with residual gated recurrent unit for emotion
recognition in conversation. Neural Comput. Appl. 2021, 33, 2685–2703. [CrossRef]

36. Jiao, W.; Lyu, M.R.; King, I. Real-time emotion recognition via attention gated hierarchical memory network. arXiv 2019,
http://arxiv.org/abs/1911.09075.

37. Xing, S.; Mai, S.; Hu, H. Adapted dynamic memory network for emotion recognition in conversation. IEEE Trans. Affect. Comput.
2022, 13, 1426–1439. [CrossRef]

38. Hu, D.; Hou, X.; Wei, L.; Jiang, L.; Mo, Y. Mm-dfn: Multimodal dynamic fusion network for emotion recognition in conversations.
In Proceedings of the ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP),
Singapore, 22–27 May 2022; pp. 7037–7041.

39. Poria, S.; Hazarika, D.; Majumder, N.; Naik, G.; Cambria, E.; Mihalcea, R. MELD: A multimodal multi-party dataset for emotion
recognition in conversations. arXiv 2018, arXiv:1810.02508.

40. Firdaus, M.; Chauhan, H.; Ekbal, A.; Bhattacharyya, P. MEISD: A multimodal multi-label emotion, intensity and sentiment
dialogue dataset for emotion recognition and sentiment analysis in conversations. In Proceedings of the 28th International
Conference on Computational Linguistics, Barcelona, Spain, 8–13 December 2020; pp. 4441–4453. Available online: https:
//aclanthology.org/2020.coling-main.393 (accessed on 8 December 2020).

41. Peters, M.E.; Neumann, M.; Iyyer, M.; Gardner, M.; Clark, C.; Lee, K.; Zettlemoyer, L. Deep contextualized word representations.
arXiv 2018, arXiv:1802.05365.

42. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef] [PubMed]

http://dx.doi.org/10.1155/2022/7450637
http://www.ncbi.nlm.nih.gov/pubmed/36275954
http://dx.doi.org/10.1109/TAFFC.2021.3122146
http://dx.doi.org/10.1109/LSP.2021.3055755
http://arxiv.org/abs/1606.06259
https://api.semanticscholar.org/CorpusID:51868869
http://dx.doi.org/10.1109/LSP.2021.3078698
http://dx.doi.org/10.3390/s21144913
http://dx.doi.org/10.3390/app13179910
http://dx.doi.org/10.1002/cav.2090
http://dx.doi.org/10.1007/s00521-020-05063-7
http://arxiv.org/abs/1911.09075
http://dx.doi.org/10.1109/TAFFC.2020.3005660
https://aclanthology.org/2020.coling-main.393
https://aclanthology.org/2020.coling-main.393
http://dx.doi.org/10.1162/neco.1997.9.8.1735
http://www.ncbi.nlm.nih.gov/pubmed/9377276


Appl. Sci. 2023, 13, 11340 20 of 20

43. Munikar, M.; Shakya, S.; Shrestha, A. Fine-grained sentiment classification using bert. In Proceedings of the 2019 Artificial
Intelligence for Transforming Business and Society (AITB), Kathmandu, Nepal, 5 November 2019; Volume 1, pp. 1–5.

44. Jiang, D.; He, J. Tree framework with bert word embedding for the recognition of Chinese implicit discourse relations. IEEE
Access 2020, 8, 162004–162011. [CrossRef]

45. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
46. Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980.
47. Sharma, S.; Rana, V.; Kumar, V. Deep learning based semantic personalized recommendation system. Int. J. Inf. Manag. Data

Insights 2021, 1, 100028. [CrossRef]
48. Kim, Y. Convolutional neural networks for sentence classification. arXiv 2014, arXiv:1408.5882.
49. Poria, S.; Cambria, E.; Hazarika, D.; Majumder, N.; Zadeh, A.; Morency, L.-P. Context-dependent sentiment analysis in user-

generated videos. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long
Papers), Vancouver, BC, Canada, 30 July–4 August 2017; pp. 873–883. Available online: https://aclanthology.org/P17-1081
(accessed on 30 July 2017).

50. Majumder, N.; Poria, S.; Hazarika, D.; Mihalcea, R.; Gelbukh, A.; Cambria, E. DialogueRNN: An Attentive RNN for Emotion
Detection in Conversations. arXiv 2018, arXiv:1811.00405.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/ACCESS.2020.3019500
http://dx.doi.org/10.1016/j.jjimei.2021.100028
https://aclanthology.org/P17-1081

	Introduction
	Detailed Design
	The Unimodal Extraction Model of M2ER
	Text Modality Preprocessing and Feature Extraction
	Audio Modality Preprocessing and Feature Extraction
	Video Modality Preprocessing and Feature Extraction

	Multimodal Emotion Recognition Based on Attention Mechanism
	Cross-Modal Attention Interaction
	Multimodal Attention Fusion


	Evaluation
	Dataset Introduction
	Experimental Setting
	Performance Evaluation
	Results of Unimodal Experiments
	Results of Multimodal Experiments
	Ablation Experiments
	Model Scalability Verification

	Discussion
	Strengths
	Limitations and Future Work

	Conclusions
	References

