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Featured Application: This method addresses the problem of predicting anomaly data in soft-
ware runtime. The proposed method utilizes multiple time windows to choose models from
multiple classes of anomaly method detectors and fuses the anomaly results in order to save the
process of anomaly detection model selection. In practice, the technique can make timely predic-
tions and alerts for anomalous operation.

Abstract: The detection of anomalies in software systems has become increasingly crucial in recent
years due to their impact on overall software quality. However, existing integrated anomaly detectors
usually combine the results of multiple detectors in a clustering manner and do not consider the
changes in data anomalies in the time dimension. This paper investigates the limitations of existing
anomaly detection methods and proposes an improved integrated anomaly detection approach
based on time windows and a voting mechanism. By utilizing multiple time windows, the proposed
method overcomes the challenges of cumulative anomalies and achieves enhanced performance
in capturing anomalies that accumulate gradually over time. Additionally, two hybrid models
are introduced, based on accuracy and sensitivity, respectively, to optimize performance metrics
such as AUC, precision, recall, and F1-score. The proposed method demonstrates remarkable
performance, achieving either the highest or only a marginal 3% lower performance compared to the
optimal model.

Keywords: abnormal detection; time window; fault diagnosis

1. Introduction

In recent years, the importance of detecting anomalies in software systems has become
increasingly evident. As software has become more prevalent in our daily lives, ensuring
its quality has become crucial. Software failures have been linked to catastrophic accidents,
highlighting the need for effective anomaly detection [1]. Moreover, the economic impact
of software bugs and failures is substantial, with an estimated annual cost of $59.5 billion
to the U.S. economy alone [2]. However, the task of identifying and diagnosing software
faults poses significant challenges.

One limitation of anomaly detection in software is the inability to pinpoint the exact
location of a true fault using real-time operational data. Traditionally, fault identification
relies on the fault time and human expertise, rather than real-time data analysis. This
approach is not efficient for modern software systems that generate vast amounts of
operational data. To address this issue, the emergence of unsupervised learning techniques
has provided a methodological foundation for detecting anomalies in real-world software.

Numerous unsupervised anomaly detection methods have been developed, including
those available in the PYOD (version 1.1.0) [3] module for Python. These methods encom-
pass linear models based on proximity, statistical approaches, abnormality combinations,
and neural networks. However, determining the most suitable unsupervised anomaly
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detection method for a specific software failure time series dataset is not straightforward.
The selection of optimal anomaly detectors requires research and exploration of integrated
outlier detection methods.

An integrated detector combines the results and performance of multiple types of
detectors, increasing the chances of achieving better detection outcomes. However, the ef-
fectiveness of the integrated detector heavily depends on the chosen integration method. If
the integration is poorly executed or the results are not adequately combined, the predictive
ability of the integrated detector will suffer.

Existing anomaly detection integrators encompass several approaches dominated by
voting-based, weighted average-based, stacking-based, and data clustering-based methods.
However, in the realm of software operation anomalies, most anomalies do not simply
manifest abruptly. For instance, studies focused on collecting performance data, such
as CPU and memory usage, have revealed a discernible tendency for these metrics to
transition from normal to abnormal states. In the context of predicting software anomalies,
certain methods aim to forecast performance anomalies in advance. These approaches
leverage techniques such as long and short-term memory neural networks to capture the
typical behavior of a system and identify early deviations that may serve as precursors to
an impending anomaly. This observation further underscores the temporal and predictable
nature of software anomalies [4,5]. Nonetheless, existing integrated detectors primarily
emphasize the distribution and clustering of anomaly data. This emphasis poses challenges
when attempting to incorporate the gradual accumulation of anomalies over time into
the anomaly detection process. Although the clustering method is good at separating
anomalous data from normal data, it is not effective for cumulative anomalies [6].

Therefore, this study considers an integrated anomaly detection method based on
time windows. Considering that the cumulative time of anomalies is difficult to grasp and
fix, this paper investigates the use of multiple time windows in combination with a voting
mechanism to circumvent the anomaly advancement or lagging problem brought about by
a single time window. Meanwhile, this paper proposes two hybrid models that combine
the detection results of multiple anomaly detection basics, which can simultaneously deal
with sudden and cumulative anomalies.

The main contributions of this paper are as follows:

1. Proposing an improved integrated anomaly detector that utilizes multiple time win-
dows and a voting mechanism to enhance the detection of cumulative anomalies.
By incorporating information from different time windows, the detector achieves
enhanced performance in capturing anomalies that accumulate gradually over time.

2. Introducing two anomaly-integrated models based on accuracy and sensitivity, respec-
tively. These models provide effective integration of anomaly detection results, aiming
to optimize performance metrics such as AUC, precision, recall, and F1-score. The
proposed models demonstrate remarkable performance, achieving either the highest
or only a marginal 3% lower performance compared to the optimal model.

These contributions address the need for an advanced integrated anomaly detection
approach that considers the cumulative nature of anomalies and optimizes performance
metrics. The proposed techniques have the potential to significantly improve anomaly
detection accuracy and effectiveness in various domains.

The rest of the paper is organized as follows. Section 2 introduces the related research.
Section 3 describes the proposed hybrid anomaly detection model. Sections 4 and 5 validate
the effectiveness of the method through four experiments. Section 6 summarizes the study.

2. Related Research
2.1. Software Fault Detection Method

Software reliability prediction and evaluation technology remains a popular research
topic and also implies the prediction of the possibility of software failure. Researchers [1,2]
have investigated the future directions of architecture and fault data. Reliability diagnosis
based on architecture uses the Markov model and various extended models, and also
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uses the failure rate information and path of the modules in the software. State transition
predicts the reliability of the software system. Reliability diagnosis based on fault data uses
the fault interval data and cumulative fault data collected in the reliability test to propose
statistical models to evaluate the operating status of the system.

Current software fault diagnosis methods primarily include statistical methods and
machine learning methods. Based on this development, a model that combines these
two methods is used to diagnose software faults [7]. Software failure prediction models
based on statistical methods primarily include many regression models, such as logistic
regression, negative binomial regression, Poisson regression, and multiple zero negative
binomial regression models. Since the relationship between software failure and data rarely
has a direct linear correlation model, the most basic linear regression is not applicable to
software failure prediction. Logistic regression improves upon linear regression because
linear regression has difficulty classifying results when there is an illegal probability value
other than 0–1; thus, logistic regression uses logarithmic transformation, and the result
can be any value in the range of negative infinity to positive infinity. Taghi et al. [8,9]
proposed a generalized classification rule to solve the problem that the logistic regression
model could not perform a quantitative quality prediction. They conducted case studies
on two industrial software systems and developed each system. Two counting models
(PRM and ZIP) and one classification model (LRM) were used. Andrea Janes et al. [10]
used statistical models that were suitable for nonnormally distributed count data, such
as Poisson regression, negative binomial regression, and multiple zero negative binomial
regression models, using correlation, dispersion coefficient, and the Alberg diagram on the
same dataset as the evaluation criterion.

Machine learning algorithms have long been widely used for software fault diagno-
sis. The primary machine learning algorithms used are naive Bayes, Bayesian networks,
support vector machines (SVMs), random forests, artificial neural networks, and other
methods. Tim Menzies et al. [11] compared the classification performance of naive Bayes
and decision trees. After logarithmic processing of the data, the training method of naive
Bayes can achieve better classification results. Shiqing Jia et al. [12] used a multisource
linear regression algorithm to analyze and diagnose web server parameters in detail based
on the software aging phenomenon. Domenico Cotroneo et al. [13] performed defect data
analysis on three large software projects to collect data on age-related errors (ARBs). Naive
Bayes, Bayesian networks, decision trees, and other methods were used to construct a fault
diagnosis model. Ref. [14] proposed a timed error detection framework that combines sys-
tematic interleaving of recorded instructions in source code with two detection algorithms
to achieve error detection for two real-world critical information systems.

2.2. Development of Anomaly Detectors

The earliest anomaly detectors were derived from linear models. LMDD, OCSVM,
and PCA are representative of linear models. This type of model primarily focuses on the
deviation or dissimilarity of the data and uses a linear model to find possible interference
values from a series of similar data. These interference values may be anomalous objects to
look for [15–17].

Proximity-based detection is also a major research topic of anomaly detectors. KNN (k
nearest neighbors) was developed first and judges abnormal data using the distance to the
k-th nearest neighbor as an outlier. Many variants have also been developed based on KNN,
such as AvgKNN and MedKNN [18,19]. In addition to KNN, other neighboring anomaly
detectors can be identified according to different specified outlier sources. Methods such as
LOF, COL, and CBLOF use different outlier factors to discriminate and process abnormal
data [20–22]. HBOS uses histograms to obtain abnormal points in the series of data [23].
The closest proximity detector is ROD (rotation-based outlier detection) [24], which learns
local spatial attributes and uses Rodrigues’ rotation formula to construct anomaly scores.
This method does not require distribution assumptions and achieves good performance
during forecasting.
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The development of neural networks has also created new research directions for
anomaly detection. More mature neural network detectors include AutoEncoder and
VAE [25]. A self-encoding neural network is an unsupervised learning algorithm that
uses a back propagation algorithm and makes the target value equal to the input value,
making this type of algorithm more suitable for high-dimensional complex data. The
cutting-edge neural network detectors also include SO_GAAL and MO_GAAL [26]. By
generating confrontation, the generator creates abnormal data from random noise, and the
discriminator determines whether the data generated are abnormal or original and normal.
In the final abnormality detection process, it is only necessary to use the discriminator to
determine whether data are normal or abnormal.

2.3. Anomaly Detection Integrator

An integrated anomaly detector is a sophisticated approach that combines multiple
anomaly detection techniques or models to improve the accuracy and effectiveness of
anomaly detection in various domains, including software systems, industrial processes,
cybersecurity, and more. Instead of relying on a single detector, an integrated anomaly
detector leverages the collective strength and diversity of multiple detectors to enhance the
overall detection performance [27].

The integration process involves combining the outputs or predictions of individual
anomaly detectors to generate a consolidated result. This integration can be achieved
through different methods, such as voting, weighted averaging, stacking, or cluster-
ing [27–29]. The choice of integration method depends on factors like the nature of the
data, the characteristics of the anomaly detection models, and the specific objectives of the
detection task.

The integrated anomaly detector offers several advantages over using a single detector.
By combining multiple detectors it can leverage their complementary strengths and mitigate
their individual weaknesses. This leads to improved detection accuracy, robustness, and
the ability to handle a wider range of anomaly types and patterns. Moreover, the integrated
detector can provide more reliable and confident anomaly alerts or predictions, as it takes
into account multiple perspectives and evidence [29].

Two recent outstanding representative anomaly detectors are LSCP [30] and SUOD [31].
LSCP uses the consistency of the nearest neighbors in randomly selected feature subspaces
to define the local area around the test instance, thereby selecting the best detector and
optimizing the detection result to a certain extent. SUOD focuses on solving the efficiency
problems caused by using multiple detectors. SUOD designed three acceleration modules
to optimize the anomaly detection process from three levels of data, model, and execution
and achieved better experimental results.

However, existing studies rarely incorporate the cumulative properties of anomaly
data over time-varying anomalies into anomaly detection [4–6]. Both weighting-based and
clustering-based identify anomalies from the characteristics of the data itself. For sudden
anomalies, these methods play a good supervisory role. But for cumulative anomalies,
these methods have some limitations.

3. Anomaly Detection Synthesis Algorithm Based on Multiple Time Windows

Different algorithms examine the abnormal state of high-dimensional data from their
own perspectives, but none can completely describe the anomaly. To fully identify possible
data anomalies, an ensemble learning framework was designed to comprehensively use
various newer algorithms. The algorithms used are from the 11 algorithms in the PYOD [3]
library of the Python language, as shown in Table 1.
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Table 1. Abnormal data monitoring algorithm table.

Algorithm Type Abbreviation Introduction

Linear model PCA
Principal Component Analysis (the sum of

weighted projected distances to the
eigenvector hyperplanes)

Linear model OCSVM One-Class Support Vector Machines
Based on proximity LOF Local Outlier Factor
Based on proximity COF Connectivity-Based Outlier Factor
Based on proximity CBLOF Clustering-Based Local Outlier Factor
Based on proximity HBOS Histogram-based Outlier Score

Based on proximity KNN k Nearest Neighbors (use the distance to the
kth nearest neighbor as the outlier score)

Combination of abnormal IForest Isolation Forest

Neural network AutoEncoder Fully connected AutoEncoder (use
reconstruction error as the outlier score)

Neural network VAE Variational AutoEncoder (use reconstruction
error as the outlier score)

To improve the adaptability between the algorithm and the data, a comprehensive
anomaly detection algorithm based on multiple time windows is proposed in this section.
This algorithm uses a time window to search for a sequence of anomaly detection algorithms
that is suitable for the training set. Two criteria of accuracy or sensitivity were used to fuse
the anomaly detection algorithm, and the comprehensive anomaly score and anomaly label
were calculated. The overall detection scheme is shown in Figure 1.
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3.1. Automatic Selection of Detectors Based on Multiple Time Windows

This section describes how to select the most similar and optimal multiple detectors
from multiple anomaly detection models.

As shown in Figure 2, the steps of this method are as follows:

1. Training data are input into 10 anomaly detection algorithms for training, and each
algorithm obtains a set of anomaly scores.

2. Multiple time windows are selected, where each time window refers to a continuous
set of data.

3. The time windows are cycled through, as shown in Figure 3.

3.1 We set the sample data corresponding to the largest n scores with the same
number of windows in each group as an abnormal label.

3.2 We randomly generate adjacent spaces. The default number of random times is
1/3 to 1/2 of the total sample data. The length of the adjacent data is equal to
the length of the time window. We then find the space with the largest number
of abnormal tags in this space and the front and rear spaces.
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3.3 We record the model sequence with abnormal labels in the adjacent space
obtained in the previous step.

3.4 We repeat steps 3.1 to 3.3 for the models that did not appear in 3.3 to obtain the
second set of model sequences.

4. The anomaly scores and anomaly labels of the two sets of the model sequences
obtained in step 3 are then fused as the final detection result.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 6 of 32 
 

3.1. Automatic Selection of Detectors Based on Multiple Time Windows 
This section describes how to select the most similar and optimal multiple detectors 

from multiple anomaly detection models. 
As shown in Figure 2, the steps of this method are as follows: 

1. Training data are input into 10 anomaly detection algorithms for training, and each 
algorithm obtains a set of anomaly scores. 

2. Multiple time windows are selected, where each time window refers to a continuous 
set of data. 

3. The time windows are cycled through, as shown in Figure 3. 
3.1. We set the sample data corresponding to the largest n scores with the same 

number of windows in each group as an abnormal label. 
3.2. We randomly generate adjacent spaces. The default number of random times is 

1/3 to 1/2 of the total sample data. The length of the adjacent data is equal to the 
length of the time window. We then find the space with the largest number of 
abnormal tags in this space and the front and rear spaces. 

3.3. We record the model sequence with abnormal labels in the adjacent space 
obtained in the previous step. 

3.4. We repeat steps 3.1 to 3.3 for the models that did not appear in 3.3 to obtain the 
second set of model sequences. 

4. The anomaly scores and anomaly labels of the two sets of the model sequences ob-
tained in step 3 are then fused as the final detection result. 

 
Figure 2. Automatic selection model. 

Figure 2. Automatic selection model.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 32 
 

 
Figure 3. Time window loop. 

The first step is to put the training data into each anomaly detection algorithm for 
training and to obtain each anomaly score and anomaly label. 

For each set of abnormal tags, multiple sets of model selection tags are generated 
with different time windows. The label setting condition is the position corresponding to 
the largest 𝑛  scores, where n is equal to the length of the time window. We select labels 
for multiple sets of models in the same time window and generate a neighboring space to 
count the number of abnormal labels in the space. For data group 𝑖 with different total 
numbers of abnormal labels, the number of spatial abnormal labels should be multiplied 
by the corresponding weight 𝛼 , which is determined by the real number of abnormal 
labels 𝑛  and the set number of labels 𝑛 . The calculation method is shown in Formula 
(1). In this study, we assume that if there are anomalies in the dataset, there should be 
multiple anomaly detectors that can identify most of the typical anomalies. The goal of 
this step is to use a random neighboring space to find these abnormal points recognized 
by multiple detectors. 

i = max 1 t

s

n
n

α
 
 
 
，

 
(1) 

Then, we count the number of detectors with abnormal tags in the abnormal space 
centered on this abnormal point. As shown in Figure 4, taking the median of the total as 
the dividing line, we select the detector that is larger than the dividing line. These detec-
tors are the results found by this time window. We then count the detector results multi-
plied by the coefficient of 𝛼  and select the detector with more than half of the occurrences 
as the final result. 

Concurrently, we identified another situation. The best multiple detectors did not 
appear in the anomaly space during the first iteration; this likely occurred because the 
number of different types of anomaly detectors selected were not exactly the same, result-
ing in the best detectors not necessarily appearing in the space with the most anomalies. 
Therefore, the secondary selection strategy was used in this study, as described in step 
3.4. The detectors that did not appear in the first round are optimized again based on the 
time window. In subsequent steps, the performance indicators of the two rounds of results 
are calculated concurrently, and the best are selected for use. 

Figure 3. Time window loop.



Appl. Sci. 2023, 13, 11349 7 of 30

The first step is to put the training data into each anomaly detection algorithm for
training and to obtain each anomaly score and anomaly label.

For each set of abnormal tags, multiple sets of model selection tags are generated with
different time windows. The label setting condition is the position corresponding to the
largest ns scores, where n is equal to the length of the time window. We select labels for
multiple sets of models in the same time window and generate a neighboring space to
count the number of abnormal labels in the space. For data group i with different total
numbers of abnormal labels, the number of spatial abnormal labels should be multiplied by
the corresponding weight αi, which is determined by the real number of abnormal labels
nt and the set number of labels ns. The calculation method is shown in Formula (1). In
this study, we assume that if there are anomalies in the dataset, there should be multi-
ple anomaly detectors that can identify most of the typical anomalies. The goal of this
step is to use a random neighboring space to find these abnormal points recognized by
multiple detectors.

αi = max
(

1,
nt

ns

)
(1)

Then, we count the number of detectors with abnormal tags in the abnormal space
centered on this abnormal point. As shown in Figure 4, taking the median of the total as
the dividing line, we select the detector that is larger than the dividing line. These detectors
are the results found by this time window. We then count the detector results multiplied by
the coefficient of αi and select the detector with more than half of the occurrences as the
final result.
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Concurrently, we identified another situation. The best multiple detectors did not
appear in the anomaly space during the first iteration; this likely occurred because the
number of different types of anomaly detectors selected were not exactly the same, resulting
in the best detectors not necessarily appearing in the space with the most anomalies.



Appl. Sci. 2023, 13, 11349 8 of 30

Therefore, the secondary selection strategy was used in this study, as described in step 3.4.
The detectors that did not appear in the first round are optimized again based on the time
window. In subsequent steps, the performance indicators of the two rounds of results are
calculated concurrently, and the best are selected for use.

3.2. Model Integrated Based on Accuracy or Sensitivity

Section A filters out suitable multiple anomaly algorithm detectors with better results
for the dataset. This section introduces how to integrate the results of these anomaly detec-
tion algorithms to make the final anomaly result reach the optimal or suboptimal result.

For each detector, its results on the test set contain two results: anomaly score and
anomaly label. First, for each group of abnormal scores, to facilitate their integration, the
respective scores are standardized by Z score. The conversion formula is shown in Formula
(2). The purpose is to scale the scores that are inconsistent in each interval so that they fall
into a specific interval for integration:

z =
x− µ

σ
(2)

where µ is the sample mean and σ is the sample variance.
Next, for the fusion of anomaly scores and anomaly labels, there are two solutions

in this study, one based on accuracy and one based on sensitivity. The formula based on
accuracy is as follows (3) and (4):

Ai =


∑

d∈D
Aid × Lid/ ∑

d∈D
Lid, ∑

d∈D
Lid/num(D) ≥ 0.5

∑
d∈D

Aid × (1− Lid)/ ∑
d∈D

Lid, ∑
d∈D

Lid/num(D) < 0.5
(3)

Li =


1, ∑

d∈D
Lid/num(D) ≥ 0.5

0, ∑
d∈D

Lid/num(D) < 0.5
(4)

where A is the anomaly score; L is the anomaly label; i refers to the i-th sample; D is all the
selected anomaly detectors; and num(D) counts the number of anomaly detectors.

When accuracy is most important, the abnormal label in this study is set to one when
half or more of the selected algorithms report that there is an abnormality in the sample
data. The final score is the average of the standardized scores of all models considered
abnormal. This fusion calculation considers as much information as possible to reduce the
false alarm rate in real fault diagnosis and to improve the accuracy of fault diagnosis.

The formula based on sensitivity is as follows:

Ai = ∑
d∈D

Aid × Lid/ ∑
d∈D

Lid (5)

Li =

{
1, ∑

d∈D
Lid/num(D) > 0

0, else
(6)

where A is the anomaly score; L is the anomaly label; i refers to the i-th sample; D represents
all the selected anomaly detectors; and num(D) counts the number of anomaly detectors.

When sensitivity is most important, the label of the point is set equal to one if the
abnormal label of a certain point of sample data is identified as one using a specific model.
This method tries to eliminate as many abnormalities as possible. All points are considered.
In most cases, this method will reduce the recall rate of the model. However, in a real
application, the two modes have their own advantages and disadvantages, as shown and
analyzed in the experiments described below.
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4. Experiments Design

In this study, we have designed four sets of validation experiments. The first set of
experiments focuses on examining the impact of different time windows on the detec-
tor’s ability to identify anomalies. It presents the results under various combinations of
time windows. The second set of experiments builds upon the findings from the first
set and compares the integration results with those of the basic anomaly detector. The
objective is to validate the effectiveness of the anomaly integration algorithm presented
in Section 3. In the third set of experiments, we compare the proposed method with ex-
isting integration methods. These experiments evaluate the results against the original
10 basic anomaly detectors using publicly available real datasets. Lastly, the fourth set of
experiments explores the application of this comprehensive set of methods on real software.
Its aim is to demonstrate the feasibility and effectiveness of the proposed software fault
diagnosis methods.

4.1. Dataset

In this section, seven real-time series derived from the real world were used as experi-
mental objects. Their characteristics are shown in Tables 2 and 3 [32,33].

Table 2. Real-world datasets used for training.

Name Dimension %Outlier Source

SKAB (3368, 8) 0.3385 SKAB
Ad-cpc (1538, 1) 0.0052 NAB
Occu (2380, 1) 0.0004 NAB
speed (1127, 1) 0.0151 NAB
twitter (15,902, 1) 0.003 NAB
cardio (1831, 21) 0.0961 ODDS
vowels (1456, 12) 0.0343 DAMI

Table 3. Real-world datasets used for validation.

Name Dimension %Outlier Source

SKAB (2244, 8) 0.3356 SKAB
Ad-cpc (1643, 1) 0.0018 NAB
Occu (2500, 1) 0.0048 NAB
speed (2495, 1) 0.0020 NAB
twitter (15,831, 1) 0.0013 NAB
cardio (1730, 21) 0.0936 ODDS
vowels (1563, 12) 0.0275 DAMI

SKAB data comes from the dataset skoltech anomaly benchmark (SKAB) [32], which
contains 34 datasets with collective anomalies. Ad-cpc, Occu, speed, and twitter come from
NAB [33], which is a novel benchmark for evaluating algorithms for anomaly detection in
streaming real-time applications. This dataset consists of over 50 labeled real-world and
artificial time series data files and includes a novel scoring mechanism designed for real-
time applications. These datasets contain only one-dimension, and few abnormal points
exist. Vowels and cardio come from the ODDS and DAMI. Since the algorithm proposed in
this study uses a continuous time window, simple random proportional sampling cannot
be used to divide the training and validation sets. Therefore, for each dataset, two sets of
continuous data are selected as the test and verification sets.

For the experimental results, we have used AUC, precision, recall, and F1 as evaluation
criteria. These metrics are widely used in outlier research and can be used to analyze
the results.



Appl. Sci. 2023, 13, 11349 10 of 30

4.2. Anomaly Detector Selection

For the base anomaly detector, we have selected the 10 anomaly detection methods
listed in Table 1. In this study, the proposed methods are denoted as mixModel-pre and
mixModel-sen, representing the precision-based integration model and the sensitivity-
based integration model, respectively. To compare these integration models, we have
chosen LSCP [30], which is a method that prioritizes integrated anomalizers following the
clustering of anomaly data.

To enhance the understanding of the integration models’ capabilities, the study in-
troduces two distinct models: mixModel-pre and mixModel-sen. These models focus on
precision and sensitivity, respectively, which are essential aspects of anomaly detection. By
separately considering these two dimensions, the study aims to provide a comprehensive
evaluation of the integration models’ performance in capturing anomalies effectively.

To benchmark the performance of the integration models, LSCP is employed as a
reference. This method utilizes clustering techniques to enable effective integration of
multiple anomaly detectors, ultimately enhancing the overall detection capabilities.

Our expectation for the method presented in this study is that it has the potential to
optimize one or more of the numerous anomaly detectors that exhibit similar anomaly
detection outcomes. By integrating the results of these detectors, we anticipate achieving
anomaly detection results that are consistent with the optimal model or demonstrate only a
marginal decrease in performance.

Furthermore, it is important to highlight that, prior to the experiments, we optimized
the hyperparameters of the 10 base detectors using Bayesian optimization. However, it
should be noted that this optimization was conducted within a specific range and may
not be generalizable to all datasets. The primary objective of this paper is to explore
the selection of suitable detectors for integration based on the time window, rather than
delving into the hyperparameter optimization problems of the individual models. Hence,
to ensure consistency and prevent the influence of varying hyperparameter combinations
on the experimental results, we directly employed the same hyperparameter settings for all
detectors. The specific parameter configurations for each detector can be found in Table 4.

Table 4. Parameter use of the basic anomaly detectors.

Detector Parameters Value Detector Parameters Value

HBOS

n_bin 10

OCSVM

degree 2
alpha 0.1 Coef0 0

Tol 0.5 tol 0.005
contamination 0.1 nu 0.5

LOF

n-neighbors 10 contamination 0.1

leaf_size 15
VAE

encoder_neurons [15, 8, 4]
contamination 0.1 encoder_neurons [4, 8, 15]

p 2

KNN

contamination 0.1

IFOREST

n_estimator 10 n-neighbors 5
contamination 0.1 radius 1.0
max_features 0.5 leaf_size 30

n_jobs 1 p 2

AutoEncoder hidden_neurous [8, 15]
COF

contamination 0.1

CBLOF

n_cluster 10 n-neighbors 6

contamination 0.1
PCA

contamination 0.1
alpha 0.9 n_components None

beta 5 other default
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4.3. Experimental Design
4.3.1. Impact of Different Time Windows on Model Selection

This experiment was designed to demonstrate the intermediate process of the model
preference method and its effectiveness, and discusses the implications of combining
different time window intervals. The datasets used in this experiment are the seven
datasets introduced in Section 4.1. Each of these different time windows is retrained data
and recognized.

4.3.2. Comparison of Anomaly Detection Algorithms

This experiment compares the performance of the proposed anomaly detection in-
tegrated algorithm based on a time window and 10 basic anomaly detection algorithms.
Firstly, 10 basic detectors are used to train and detect each dataset to obtain anomaly scores.
After obtaining the integrated algorithms through the model optimization algorithm intro-
duced in Section 3, their results are fused from the perspective of accuracy and sensitivity
and compared with the results of the basic detector. The datasets used in this experiment
are the seven datasets introduced in Section 4.1. The data in this experiment are the average
values obtained from five replicates.

4.3.3. Comparison of Integrated Methods

In order to verify the effectiveness of the two integrated methods proposed in Section 3,
we designed a set of experiments for validating their effects. In this study, we use the previ-
ously mentioned LSCP anomaly detection integration method as an experimental baseline.
The datasets used in this experiment are the seven datasets introduced in Section 4.1. The
data in this experiment are the average values obtained from five replicates.

4.3.4. Instance Validation

This experiment is designed to validate the effectiveness of the methods on a real
software anomaly dataset. We considered tomcat (version 8.0.37) as an experimental object,
and the selected fault was to use the stress testing tool Jmeter (version 5.6.2) to make tomcat
run until the Java produced memory overflows, which causes tomcat to crash. Tomcat
is a core project of the Apache Software Foundation’s Jakarta project. Tomcat is popular
among Java enthusiasts and is recognized by some software developers. It is a popular
web application server. The characteristics of the running data collected during the tomcat
running process are shown in Table 5.

Table 5. Data characteristics of tomcat failure.

Name Dimension %Outlier

tomcat failure 1600, 30 0.077

5. Result and Discussion

This section will present each of the four experimental results presented in Section 4
and their discussion.

5.1. Impact of Different Time Windows on Model Selection

In this experiment, we present the results obtained by applying different time windows
to the preferred method proposed in Section 3.1. The analysis focuses on the SKAB, occu,
and cardio datasets. We computed the anomaly data distribution plots for each dataset
using time windows set to 2, 10, 20, 30, 40, 50, and 60, respectively. These datasets
were carefully chosen as they originate from diverse data sources and exhibit distinct
anomaly characteristics.

The selected datasets encompass various anomaly types, including cumulative anoma-
lies, transient anomalies, and cases with multiple anomalies. These characteristics are
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visually represented in the graphs, enabling a comprehensive comparison that showcases
the effectiveness of our method in handling different dataset characteristics.

For a more detailed explanation, we have included the experimental data and analysis
of the remaining datasets in Appendix A. This additional information provides additional
insights into our methodology and its performance across various datasets.

In these plots, the vertical axis represents the anomaly labels. The anomaly labels were
determined based on the anomaly scores, which range from 0 to 1, within a fixed number
(i.e., the time window). For instance, when the time window is set to two, the two highest
anomaly scores are considered anomalies (labeled as 1), while the remaining scores are
considered non-anomalies (labeled as 0). It is possible to observe labels in the graph that
exceed the specified number. This occurs when multiple anomaly scores have the same
value, leading to additional instances labeled as anomalies.

Figures 5–8 depict the classification of anomalous labels under different time windows
in the SKAB dataset. The yellow line represents the actual labels, while the blue line repre-
sents the anomaly labels generated by each detector within a fixed number of anomalies.
From the figures, it is evident that almost every basic detector exhibits some false alarms
and omissions in anomaly detection.
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By comparing the extent of overlap between the yellow region (actual anomalies) and
the blue region (detected anomalies), we can assess the performance of different detectors.
Figure 5 demonstrates that it is challenging to determine which detectors are better suited
for integration when the time window is small. And our algorithm also judges that there
are multiple detectors focused on some data points, making it difficult to choose.
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As the time window continues to increase, specifically in the range of 30–60, the
number of selected detectors starts to decline and becomes more concentrated. Among
them, VAE and AutoEncoder consistently maintain their favorable rankings. Other anomaly
detectors occasionally appear or disappear. Notably, the PCA algorithm exhibits greater
stability. Figures 7 and 8 further confirm that these algorithms perform well in the anomaly
region. While there are other algorithms like COF and LOF that excel in detecting certain
anomalies, their numbers are relatively limited compared to the selected detectors. Hence,
they were not chosen for integration.

Table 6 presents the detectors selected by our algorithm with comparable performance
under different time windows. Meanwhile, Table 7 displays the preferred detectors when
combining multiple time windows. It is evident that the selection of detectors tends to
stabilize as the number of time window combinations increases. The combination of
multiple time windows effectively mitigates the impact of randomness associated with a
single time window.

However, it is important to note that determining whether a larger time window is
superior is not possible to conclude definitively. In datasets such as twitter and other
non-cumulative data anomalies (as shown in Appendix A), employing too many time
windows may not align with the actual distribution of anomalies, leading to algorithmic
judgment issues. Therefore, for practical purposes, we recommend limiting the selection
of time windows based on the number of actual data anomalies. Generally, it is optimal
to set the time window to no more than 1.5 times the size of the actual anomaly area.
This approach ensures a more accurate assessment of anomalies while avoiding potential
judgment problems caused by excessive time window combinations.
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Table 6. Algorithm selection results under different time windows.

Size of Time Windows Detector of Choice

2 LOF, VAE, AutoEncoder, CBLOF, KNN, PCA
10 LOF, OCSVM, VAE, AutoEncoder, CBLOF, COF, KNN, PCA
20 HBOS, OCSVM, IFOREST, VAE, AutoEncoder, CBLOF, PCA
30 IFOREST, VAE, AutoEncoder, PCA
40 VAE, AutoEncoder
50 VAE, AutoEncoder, PCA
60 SO_GAAL, VAE, AutoEncoder, CBLOF

Table 7. Algorithm selection results under different Time Window Combination.

Time Widow Combination Detector of Choice

2-10 LOF, VAE, AutoEncoder, CBLOF, KNN, PCA
2-20 LOF, VAE, AutoEncoder, CBLOF, PCA
2-30 LOF, VAE, AutoEncoder, PCA
2-40 VAE, AutoEncoder, PCA
2-50 VAE, AutoEncoder, PCA
2-60 VAE, AutoEncoder, PCA

Figures 9–12 depict the classification of anomalous labels under different time win-
dows of the occu dataset. Table A4 presents the detectors selected by our algorithm with
comparable performance under different time windows and the preferred detectors when
combining multiple time windows.
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As observed in Figures 9–12, the distribution of anomalies in the occu dataset is
limited, and these anomalies occur for a short duration. When the time window is small,
detectors such as HBOS, OCSVM, IFOREST, CBLOF, KNN, and PCA can effectively identify
these anomalies. However, as the time window increases, the accuracy of these detectors
starts to decline, leading to a concentration of errors on certain common points, which
results in misreported anomalies. Consequently, our method remains relatively stable
regardless of changes in the time window, and different combinations of time windows do
not significantly affect the preferred model’s outcomes. This is also evident from Table 8.
Although our method successfully selects a few anomaly detectors that perform well, this
could be attributed to chance or the specific selection of basic detectors. Our analysis
suggests that this observation may be related to the characteristics of the occu dataset. All
datasets from this data source are one-dimensional and exhibit a discrete distribution of
anomalies. A similar pattern can be observed in the speed and twitter datasets, as outlined
in Appendix A. Upon further examination of the results, when some of the underlying
anomaly detectors correctly identify similar anomalies, our method can identify these
detectors with similar detection results.

Figures 13–16 depict the classification of anomalous labels under different time win-
dows of the cardio dataset. Table 9 presents the detectors selected by our algorithm with
comparable performance under different time windows and the preferred detectors when
combining multiple time windows. The cardio dataset is characterized by the fact that
its anomalies are concentrated on the last period of time and are cumulative continuous
anomalies. This differs from both the SKAB and occu datasets.
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Table 8. Algorithm selection results under different time windows of occu dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 HBOS, OCSVM, IFOREST, CBLOF, KNN, PCA 2-10 HBOS, OCSVM, IFOREST, CBLOF, KNN
10 HBOS, OCSVM, IFOREST, CBLOF, KNN 2-20 HBOS, OCSVM, IFOREST, CBLOF, KNN
20 HBOS, OCSVM, IFOREST, CBLOF, KNN 2-30 HBOS, OCSVM, IFOREST, CBLOF, KNN
30 HBOS, OCSVM, IFOREST, CBLOF, KNN 2-40 HBOS, OCSVM, IFOREST, CBLOF, KNN
40 HBOS, OCSVM, IFOREST, CBLOF, KNN 2-50 HBOS, OCSVM, IFOREST, CBLOF, KNN
50 HBOS, OCSVM, IFOREST, CBLOF, KNN, PCA 2-60 HBOS, OCSVM, IFOREST, CBLOF, KNN
60 HBOS, OCSVM, IFOREST, CBLOF, KNN, PCA
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Table 9. Algorithm selection results under different time windows for cardio dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 AutoEncoder, CBLOF, KNN, PCA 2-10 AutoEncoder, CBLOF, KNN, PCA
10 OCSVM, VAE, AutoEncoder, CBLOF, KNN, PCA 2-20 VAE, AutoEncoder, PCA
20 VAE, AutoEncoder, PCA 2-30 VAE, AutoEncoder, PCA
30 VAE, AutoEncoder, PCA 2-40 VAE, AutoEncoder, PCA
40 OCSVM, IFOREST, VAE, AutoEncoder, PCA 2-50 VAE, AutoEncoder, PCA
50 VAE, AutoEncoder, CBLOF, KNN, PCA 2-60 AutoEncoder, CBLOF, KNN, PCA
60 OCSVM, VAE, AutoEncoder, CBLOF, KNN, PCA

As evident from the changes depicted in Figures 13–16, most of the base detectors
exhibit effective recognition of cardio anomaly data in the case of a small window setting.
However, as the time window increases, sporadic false alarms of anomalies start to emerge,
although the primary anomalies remain concentrated in the final segment. Nonetheless,
our method adeptly selects the three detectors (VAE, AutoEncoder, PCA) that demonstrate
the best recognition capability. The primary reason behind this lies in the fact that, as the
time window expands, the other anomaly detectors, while also proficient at identifying
true anomalies, tend to exhibit a higher tendency to falsely recognize anomalies compared
to the three VAEs. Conversely, the three detectors (VAE, AutoEncoder, PCA) are better
at concentrating on the actual anomalies, making them stand out. Additionally, from
Figures 9 and 16, it can be observed that when the time window is either too small or too
large, it becomes more challenging to select our method. However, the combination of time
windows can effectively address this issue and provide an appropriate solution.

It is evident that our time-window combination approach may effectively select the
underlying detectors that demonstrate excellent performance in identifying cumulative
anomalies over extended periods of time. This observation is further supported by the anal-
ysis of the vowels dataset in Appendix A. However, in order to consistently demonstrate
this conclusion, further experiments with datasets exhibiting similar characteristics would
be necessary. This is one of the future directions of this work.

It is worth highlighting that each time window experiment in this study involves
separate retraining and data detection processes. The results obtained demonstrate a certain
degree of reproducibility, as indicated by the variability of anomalies observed in some of
the detectors shown in the figure. The majority of the detectors employed are traditional
machine learning algorithms, while neural network algorithms like VAE and AutoEncoder
exhibit notably consistent anomaly detection outcomes.
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5.2. Comparison of Anomaly Detection Algorithms

Table 10 shows the results obtained with each dataset of the preferred algorithm
scheme introduced in Section 3. Tables 11–17 show the performance of each algorithm with
7 real-world datasets. The NAB dataset is not suitable for neural network type anomaly
detection algorithms due to its one-dimensional characteristics and is therefore considered
in this study.

Table 10. Algorithm selection result with seven datasets.

Dataset Algorithm of Choice

SKAB VAE, AutoEncoder, PCA
Ad-cpc LOF, COF, KNN
Occu HBOS, OCSVM, CBLOF, IFOREST, KNN
speed HBOS, IFOREST, CBLOF, PCA
twitter OCSVM, HBO, CBLOF
cardio VAE, AutoEncoder, PCA
vowels LOF, CBLOF, KNN

Table 11. Performance of each algorithm with the SKAB dataset.

SKAB mixModel-pre mixModel-sen HBOS lof OCSVM iforest VAE AutoEncoder CBLOF COF KNN PCA

AUC 0.6645 0.6638 0.6171 0.5136 0.5279 0.6058 0.6631 0.6682 0.4843 0.4531 0.5099 0.6611
precision 0.4877 0.4682 0.4328 0.3648 0.2719 0.4216 0.4850 0.4878 0.1852 0.1709 0.2893 0.4693
recall 0.6056 0.6560 0.2523 0.2669 0.2058 0.3001 0.5790 0.6082 0.0797 0.0359 0.2151 0.6494

f1 0.5403 0.5465 0.3188 0.3083 0.2343 0.3507 0.5278 0.5414 0.1114 0.0593 0.2468 0.5448

Bold numbers are the highest or next highest value in each row. Tables 11–22 is the same.

Table 12. Performance of each algorithm with the ad-cpc dataset.

ad-cpc mixModel-pre mixModel-sen HBOS lof OCSVM iforest CBLOF COF KNN PCA

AUC 0.5339 0.5339 0.4670 0.5118 0.4594 0.4787 0.4798 0.5274 0.4919 0.4336
precision 0.1333 0.1066 0.0949 0.1004 0.0984 0.0954 0.0741 0.1200 0.0848 0.0902

recall 0.0364 0.2545 0.1576 0.1455 0.1879 0.2000 0.1212 0.1455 0.1152 0.2848
f1 0.0571 0.1503 0.1185 0.1188 0.1292 0.1292 0.0920 0.1315 0.0977 0.1370

Table 13. Performance of each algorithm with the occu dataset.

occu mixModel-pre mixModel-sen HBOS lof OCSVM iforest CBLOF COF KNN PCA

AUC 0.9895 0.9824 0.9880 0.6714 0.9927 0.9900 0.9927 0.9303 0.9804 0.9783
precision 0.0175 0.0074 0.0149 0.0091 0.0152 0.0210 0.0157 0.0313 0.0087 0.0821

recall 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 0.9167
f1 0.0344 0.0148 0.0293 0.0181 0.0299 0.0412 0.0310 0.0606 0.0173 0.1507

Table 14. Performance of each algorithm with the speed dataset.

Speed mixModel-pre mixModel-sen HBOS lof OCSVM iforest CBLOF COF KNN PCA

AUC 0.9985 0.9985 0.9984 0.5866 0.9965 1.0000 1.0000 0.9911 0.9970 1.0000
precision 0.0943 0.0442 0.0481 0.0337 0.0360 0.0439 0.0439 0.0862 0.0602 0.1000

recall 1.0000 1.0000 1.0000 0.6000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
f1 0.1724 0.0847 0.0917 0.0638 0.0694 0.0840 0.0840 0.1587 0.1136 0.1818

Table 15. Performance of each algorithm with the twitter dataset.

Twitter mixModel-pre mixModel-sen HBOS lof OCSVM iforest CBLOF COF KNN PCA

AUC 0.9963 0.9944 0.5250 0.6487 0.9963 0.9955 0.9965 0.9693 0.7740 0.0552
precision 0.0880 0.0361 0.0013 0.1429 0.0776 0.0904 0.0922 0.0909 0.2558 0.0033

recall 0.9500 0.9500 1.0000 0.3500 0.9000 0.8500 1.0000 0.9500 0.5500 0.0500
f1 0.1610 0.0696 0.0025 0.2029 0.1429 0.1635 0.1688 0.1659 0.3492 0.0063
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Table 16. Performance of each algorithm with the cardio dataset.

Cardio mixModel-pre mixModel-sen HBOS lof OCSVM iforest VAE AutoEncoder CBLOF COF KNN PCA

AUC 0.9500 0.9500 0.8377 0.5958 0.9352 0.9163 0.9500 0.9500 0.8320 0.5062 0.6861 0.9500
precision 0.6011 0.6011 0.4699 0.2595 0.5027 0.4590 0.6011 0.6011 0.5355 0.1421 0.3500 0.6011
recall 0.6250 0.6250 0.4886 0.1932 0.5227 0.4773 0.6250 0.6250 0.5568 0.1477 0.2784 0.6250

f1 0.6128 0.6128 0.4791 0.2215 0.5125 0.4680 0.6128 0.6128 0.5460 0.1448 0.3101 0.6128

Table 17. Performance of each algorithm with the vowels dataset.

Vowels mixModel-pre mixModel-sen HBOS lof OCSVM iforest VAE AutoEncoder CBLOF COF KNN PCA

AUC 0.9589 0.9683 0.6766 0.9434 0.7783 0.7484 0.6217 0.6217 0.9471 0.7749 0.9768 0.6062
precision 0.2586 0.4408 0.0822 0.2913 0.1438 0.1233 0.0959 0.0959 0.2603 0.1918 0.4128 0.0890
recall 1.0000 0.8305 0.2400 0.6000 0.4200 0.3600 0.2800 0.2800 0.7600 0.5600 0.9000 0.2600

f1 0.2856 0.5727 0.1224 0.3922 0.2143 0.1837 0.1429 0.1429 0.3878 0.2857 0.5660 0.1327

Table 11 provides clear evidence that the proposed method accurately selects three
models with the highest anomaly detection performance in the SKAB dataset: PCA, AutoEn-
coder, and PCA (repeated entry). The integration results of these three models demonstrate
optimal performance or a mere 0.1% degradation in each metric, as mentioned.

However, the performance of the proposed methods varies across the NAB datasets.
Exceptional anomaly detectors were identified by our method on the ad-cpc, cardio, and
vowels datasets. Additionally, our two integrated models successfully synthesized abnor-
mal results from multiple models, resulting in improved performance compared to the basic
detector. Notably, AUC, precision, recall, and F1 scores exhibited a 1–2% improvement
across the different datasets.

Nevertheless, there are also some perplexing results. In the case of the cardio dataset,
VAE, AutoEncoder, and PCA exhibited identical performance, which is puzzling. However,
since these three algorithms were selected by the optimization model, the results of the
proposed hybrid algorithm align with those of the other algorithms.

Regarding the occu and speed datasets, our method yielded only a few outstanding
results. Observational indicators reveal that our method falls short of optimal performance
in terms of AUC and recall. A detailed comparison of the performance of selected base
detectors indicates that certain methods achieved 100% effectiveness on these datasets.
However, this poses a challenge to the accuracy of the integration results, as the integration
model takes into account negative outcomes from other models. Simultaneously, the high
recall rate significantly impairs accuracy and F1 values. It is plausible that the choice of
an anomaly threshold affects the range of identified anomalies within the data. Further
research is needed to determine a reasonable threshold selection method.

In contrast, the performance metrics on the twitter dataset were the poorest. Upon
analyzing the data, we discovered that the abnormal changes within the twitter dataset were
abrupt, resulting in the excessive inclusion of normal data across numerous time windows.
We believe that, in practical applications, the choice of the time window should be correlated
with the number of detectable anomalies. This aspect requires further experimentation
and investigation.

Based on this experiment, we can derive the following conclusions. Our two inte-
gration methods are designed to harmonize the anomaly results obtained from different
detectors. The final results exhibit an error margin of approximately plus or minus 3%
from the optimal value of the detector. Currently, we do not have a clear understanding
of the decisive factors that contribute to better or worse results. At present, it appears to
be a random issue. However, based on the results, our multiple time window strategy
proves effective in selecting anomaly detectors that yield similar recognition outcomes.
Additionally, our integration method successfully combines these detectors to produce
outstanding anomaly results.

The results produced with the SKAB, cardio, and vowels datasets are visualized in
Figure 17a which shows the visualization results of SKAB abnormal data, while Figure 17b
visualizes the abnormal results of cardio, and Figure 17c visualizes the abnormal results
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of vowels. The dimensionality reduction operation of the dataset is primarily performed
by the t-SNE method, and the dataset is projected onto a two-dimensional space. In the
figure, the detection of abnormal points with 10 basic detectors and the 2 hybrid models
proposed in this paper are repeated with points of different colors and sizes. Because other
datasets are one-dimensional, and most abnormal points are outliers, no additional analysis
is performed.
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The visualizations of cardio and vowels show that mixed models are more advanta-
geous in detecting local outliers clustered together. When the data have locality, the method
in this paper produces better classification when recognizing outliers. However, when the
data are scattered or there are multiple aggregation points, this method achieves a good
recognition rate for peripheral points but fails sometimes with local points. Concurrently,
the application effect of this method with the SKAB dataset is inferior to that of the other
two datasets. Based on these visualizations, the proposed hybrid model can be deemed
useful when the characteristics of the data appear to be aggregated.

5.3. Comparison of Integrated Methods

The experimental results are shown in Tables 18–21.

Table 18. AUC performance of the proposed algorithm and LSCP.

Datasets mixModel-Precision mixModel-Sensibility LSCP

SKAB 0.6627 0.6621 0.6647
ad-cpc 0.7439 0.7250 0.7327
occu 0.9927 0.9927 0.9927

speed 1.0000 1.0000 1.0000
twitter 0.9941 0.9462 0.9900
cardio 0.9500 0.9500 0.9501
vowels 0.9518 0.9629 0.9621

Table 19. Precision performance of the proposed algorithm and LSCP.

Datasets mixModel-Precision mixModel-Sensibility LSCP

SKAB 0.4850 0.4686 0.4854
ad-cpc 0.0046 0.0021 0.0033
occu 0.0169 0.0139 0.0154

speed 0.0439 0.0439 0.0439
twitter 0.0794 0.0013 0.0571
cardio 0.6011 0.6011 0.5978
vowels 0.4576 0.2614 0.2945
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Table 20. Recall performance of the proposed algorithm and LSCP.

Datasets mixModel-Precision mixModel-Sensibility LSCP

SKAB 0.5790 0.6534 0.5950
ad-cpc 0.6667 0.6667 0.6667
occu 1.0000 1.0000 1.0000

speed 1.0000 1.0000 1.0000
twitter 1.0000 1.0000 0.8000
cardio 0.6250 0.6250 0.6250
vowels 0.5400 0.9200 0.8600

Table 21. F1 performance of the proposed algorithm and LSCP.

Datasets mixModel-Precision mixModel-Sensibility LSCP

SKAB 0.5278 0.5458 0.5346
ad-cpc 0.0092 0.0042 0.0066
occu 0.0333 0.0273 0.0303

speed 0.0840 0.0840 0.0840
twitter 0.1471 0.0025 0.1067
cardio 0.6128 0.6128 0.6111
vowels 0.4954 0.4071 0.4388

The data in bold in the table indicate the best performing integrated algorithm with
that dataset.

The experimental results provide compelling evidence for the effectiveness of the
proposed integrated method in this paper. The performance analysis on key datasets
reveals both advantages and disadvantages when considering AUC. The integrated models
and LSCP exhibit comparable AUC values, with minimal differences numerically. However,
when evaluating precision and F1 performance, the integrated methods outperform the
others. The precision-based integrated model and LSCP achieve better performances
overall, except for the SKAB and speed datasets, where the precision-based integrated
model performed better compared to LSCP.

On the other hand, the recall indicator is where the integrated model based on sensi-
tivity excels. This model focuses more on identifying possible abnormal results, leading to
higher recall rates. However, this process may generate numerous false alarms, resulting in
lower AUC and precision values.

For the speed dataset, the effects of the three methods are similar. This outcome aligns
with previous research on the speed dataset, which attributes the results to the dataset’s
distinct abnormal characteristics. Consequently, the basic detector selected in the initial
step is closer to its prediction results, promoting consistency in the integrated process.

5.4. Instance Validation

The anomaly detection integrated algorithm mentioned in Section 3 is used to model
the data and fuse the results, which are shown in Table 22.

Table 22. Performance of each algorithm with tomcat failure.

Metrics mixModel-pre mixModel-sen HBOS lof OCSVM iforest VAE AutoEncoder CBLOF COF KNN PCA

AUC 0.9768 0.9768 0.8367 0.8602 0.9308 0.8889 0.8882 0.8882 0.8791 0.7087 0.9295 0.8871
precision 1.0000 1.0000 0.6375 0.6589 0.8813 0.7500 1.0000 1.0000 0.5813 0.4375 1.0000 1.0000
recall 0.9440 0.9440 0.4397 0.3664 0.6078 0.5172 0.6897 0.6897 0.4009 0.3017 0.5345 0.6897

f1 0.9712 0.9712 0.5204 0.4709 0.7194 0.6122 0.8163 0.8163 0.4745 0.3571 0.6966 0.8163

Experimental results show that the proposed fault diagnosis method achieves a high
accuracy rate for faults that are injected into the tomcat dataset. However, the mixed
model can also yield high early warning and low recall rates, which may be related to
oversampling when fault data are actually labeled abnormal. When the AUC values of the
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two mixed models based on sensitivity and accuracy are consistent in the table, the number
of models obtained by the model selection in the previous step is two, likely due to these
data. When two models are selected to be fused, the data will be considered abnormal for
the two integrated schemes if one model is considered abnormal. In addition, the anomaly
scores are consistent; thus, the performance indicators of the two methods are consistent.

5.5. Summary of Experiments

Through experimentation, the proposed anomaly detection algorithm based on time
windows achieves a good performance with multidimensional data. The algorithm can
filter out multiple models that are more suitable for the dataset from multiple anomaly
basic detectors and merge the results through two strategies. The algorithm can also obtain
optimal or suboptimal performance results. Although its performance is mediocre on one-
dimensional data, the algorithm is shown to achieve excellent performance with software
fault diagnosis experimentally.

5.6. Limitations and Future Directions

First and foremost, we are unable to provide a clear explanation for the observed
improvement in detection performance resulting from the choice of time window. Intu-
itively, we can comprehend that cumulative anomalies exhibit a gradual change in their
data distribution over time until an anomaly occurs. However, the selection of multiple
time windows in this study occasionally leads to the selection of a detector that may not
necessarily be the best performing model. As a consequence, the final integration of anon-
malous results is affected, as evidenced by its poor performance in certain datasets. The
interpretability of the method presented in this paper lacks a clear intuitive explanation.

Moreover, the integration models based on precision and sensitivity present conflicting
perspectives. An excessive focus on accuracy can sometimes lead to lower recall and F1
values for the method. Conversely, being overly sensitive to anomalous data can result in
higher false alarm rates. The paper does not adequately address how to strike a balance
between these two aspects. The consideration of this balance is not well addressed in
this study.

6. Conclusions

In this study, we developed an anomaly detection integrated method based on the
anomaly continuity criterion. Different from traditional combinatorial methods, this
method considers the weighted statistics of each test instance in different anomaly time
windows when selecting the optimal detector. Two detector-integrated methods based on
accuracy and sensitivity are proposed. To verify its effectiveness, the proposed method is
evaluated with seven real datasets and one real-time data collection.

The results obtained from our proposed method demonstrate the successful integration
of anomaly effects, aligning with our initial expectations. In certain instances, the integrated
results exhibit a high level of consistency with the outcomes obtained from the optimal
detector. In the majority of cases, there is a marginal decrease of only 3% in precision,
indicating a minimal impact on accuracy.

Furthermore, our proposed multiple time window strategy is specifically designed
to capture the temporal characteristics of cumulative anomalies. This approach allows
for a more effective extraction of the distribution of anomaly data. By targeting these
temporal aspects, our method enhances the ability to accurately identify and analyze
cumulative anomalies.

These findings highlight the efficacy of our approach in achieving consistent and
accurate anomaly detection results. The integration of anomaly effects and the utilization
of the multiple time window strategy contribute to a comprehensive understanding of the
anomalies, leading to improved detection performance. The minimal decrease in precision
further demonstrates the robustness and reliability of our proposed method.



Appl. Sci. 2023, 13, 11349 23 of 30

Author Contributions: Conceptualization, T.S., J.A. and Z.Z.; methodology, T.S., J.A. and Z.Z.;
software, T.S. and Z.Z.; validation, T.S. and Z.Z.; investigation, Z.Z. and T.S.; resources, T.S.; data
curation, T.S.; writing—original draft preparation, T.S. and Z.Z.; writing—review and editing, T.S.,
J.A. and Z.Z.; visualization, T.S.; supervision, J.A.; project administration, J.A. All authors have read
and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The source code of the method implementation can be downloaded at
(https://gitee.com/stlinger/anomaly-detection-Integrated-model, accessed on 10 August 2023).
The publicly available dataset used for the anomaly detection task can be found downloaded
at [32,33] (https://github.com/waico/SkAB, and https://github.com/numenta/NAB, accessed on 1
October 2023).

Acknowledgments: The authors would like to thank the editors and anonymous reviewers for their
constructive comments and suggestions for improving this work.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

The experimental data and graphs for the remaining four datasets in Experimental
Section 5.1 are shown here. Figures A1–A4 depict the classification of anomalous labels
under different time windows in the SKAB dataset. Table A1 presents the detectors selected
by our algorithm with comparable performance under different time windows and the
preferred detectors when combining multiple time windows.
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Table A1. Algorithm selection result under different time windows for ad-cpc dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 LOF, COF 2-10 LOF, COF,
10 LOF, COF, 2-20 LOF, COF,
20 LOF, COF, IFOREST, KNN 2-30 LOF, COF
30 LOF, COF, KNN PCA 2-40 LOF, COF, KNN
40 LOF, COF, KNN 2-50 LOF, COF, KNN
50 LOF, COF, KNN 2-60 LOF, COF, KNN
60 LOF, COF, KNN

The ap-cpc dataset exhibits similar characteristics to the occu dataset, featuring a
higher number of anomalies, albeit with short durations. The eight base detectors applied
to the speed dataset produce comparable detection results. With a small time window,
each detector primarily identifies a single anomaly. As the time window expands, the
number of correct detections of anomalies increases proportionally with the number of
false detections. In contrast, our preferred method is less susceptible to variations in the
time window, particularly when the time window is large, showing minimal changes. The
experimental findings obtained from the ap-cpc dataset align with those of the occu dataset,
reinforcing the consistency of the conclusions.

Figures A5–A8 depict the classification of anomalous labels under different time
windows in the speed dataset. Table A2 presents the detectors selected by our algorithm
with comparable performance under different time windows and the preferred detectors
when combining multiple time windows.
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Table A2. Algorithm selection result under different time windows for speed dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 HBOS, OCSVM, IFOREST, CBLOF, COF, KNN, PCA 2-10 HBOS, IFOREST, CBLOF, PCA
10 HBOS, IFOREST, CBLOF, PCA 2-20 HBOS, IFOREST, CBLOF, PCA
20 HBOS, IFOREST, CBLOF, PCA 2-30 HBOS, IFOREST, CBLOF, PCA
30 HBOS, IFOREST, CBLOF, PCA 2-40 HBOS, IFOREST, CBLOF, PCA
40 HBOS, IFOREST, CBLOF, KNN, PCA 2-50 HBOS, IFOREST, CBLOF, PCA
50 HBOS, IFOREST, CBLOF, KNN, PCA 2-60 HBOS, IFOREST, CBLOF, PCA
60 HBOS, OCSVM, IFOREST, CBLOF, KNN, PCA

The experimental findings on the speed dataset exhibit remarkable similarities to the
occu dataset. As depicted in Table A2, it is evident that our selection method is not as
effective on this particular dataset, despite successfully selecting the four detectors with
the best performance.

Figures A9–A12 depict the classification of anomalous labels under different time
windows in the twitter dataset. Table A3 presents the detectors selected by our algorithm
with comparable performance under different time windows and the preferred detectors
when combining multiple time windows.
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Table A3. Algorithm selection result under different time windows for twitter dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 HBOS, OCSVM, IFOREST, CBLOF,
KNN, PCA 2-10 HBOS, OCSVM, IFOREST, CBLOF, PCA

10 HBOS, OCSVM, IFOREST, CBLOF, PCA 2-20 HBOS, OCSVM, IFOREST, CBLOF, PCA
20 HBOS, OCSVM, IFOREST, CBLOF, PCA 2-30 HBOS, OCSVM, CBLOF
30 HBOS, OCSVM, CBLOF 2-40 HBOS, OCSVM, CBLOF
40 HBOS, OCSVM, CBLOF 2-50 HBOS, OCSVM, CBLOF
50 HBOS, OCSVM, CBLOF, KNN 2-60 HBOS, OCSVM, CBLOF
60 HBOS, OCSVM, CBLOF, KNN

The twitter dataset, sourced from the NAB data source, exhibits anomaly characteris-
tics that are essentially the same as those of the occu, speed, and other datasets, as depicted
in Figures A9–A12. These figures clearly illustrate the anomaly detection results of each
detector. Notably, OCSVM, LOF, and COF display prominent false alarm rates, while
HBOS, CBLOF, IFOREST, and PCA exhibit more similar results. However, our method
ultimately selects OCSVM, HBOS, and CBLOF, which may appear puzzling at first glance.

Upon closer inspection, it becomes evident that the twitter dataset contains a signif-
icantly larger amount of data compared to the other datasets. Although it might seem
that OCSVM should have more overlap with LOF, COF, and other detectors based on the
graphs, in reality, the overlap is not as substantial as it appears, possibly due to the effects
of shrinkage. The concentration of true anomalies emerges as the crucial factor in selecting
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an anomaly detector. However, this concentration is also a side effect of using a large time
window for discrete anomalies.

Figures A13–A16 depict the classification of anomalous labels under different time
windows in the vowels dataset. Table A4 presents the detectors selected by our algorithm
with comparable performance under different time windows and the preferred detectors
when combining multiple time windows.
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sults are eliminated, while those exhibiting concentration in a particular region, regardless 
of correct or incorrect anomalies, are selected. The different time windows also influence 
the final detector selection. Although the selection results tend to stabilize with LOF, 
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Table A4. Algorithm selection result under different time windows for vowels dataset.

Size of Time Windows Detector of Choice Time Widow Combination Detector of Choice

2 LOF, IFOREST, KNN 2-10 IFOREST, KNN
10 IFOREST, CBLOF, KNN 2-20 LOF, IFOREST, CBLOF, KNN
20 LOF, OCSVM, CBLOF, COF, KNN 2-30 LOF, CBLOF, KNN
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The vowels dataset is a multidimensional dataset that shares similarities with the
cardio dataset. As the time window increases, the figures indicate that the results of each
detector begin to concentrate in different regions. Detectors with scattered anomaly results
are eliminated, while those exhibiting concentration in a particular region, regardless of
correct or incorrect anomalies, are selected. The different time windows also influence the
final detector selection. Although the selection results tend to stabilize with LOF, CBLOF,
and KNN, there are occasional instances where other detectors are chosen. It is evident
that our method is not yet fully stable on this dataset, as observed from the fluctuating
selection outcomes.
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