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Abstract: Security identification solutions against WLAN network attacks according to straightfor-
ward digital detectors, such as SSID, IP addresses, and MAC addresses, are not efficient in identifying
such hacking or router impersonation. These detectors can be simply mocked. Therefore, a further
protected key uses new information by combining these simple digital identifiers with an RF sig-
nature of the radio link. In this work, a design of a convolutional neural network (CNN) based on
fingerprinting radio frequency (RF) is developed with computer-generated data. The developed
CNN is trained with beacon frames of a wireless local area network (WLAN) that is simulated as a
result of identified and unidentified router nodes of fingerprinting RF. The proposed CNN is able
to detect router impersonators by comparing the data pair of the MAC address and RF signature of
the received signal from the known and unknown routers. ADAM optimizer, which is the extended
version of stochastic gradient descent, has been used with a developed deep learning convolutional
neural network containing three fully connected and two convolutional layers. According to the
training progress graphic, the network converges to around 100% accuracy within the first epoch,
which indicates that the developed architecture was efficient in detecting router impersonations.

Keywords: WLAN; network security; network impersonations; MAC; IP address; ADAM optimizer

1. Introduction

Wireless networks have surpassed wired networks in popularity. The demand for
wireless networks stems from the fact that they provide enhanced accessibility and mobility,
are adaptable and no extra infrastructure is required. The open nature of wireless networks
opens the door to several security threats and breaches [1]. Analyzing wireless and mobile
data is crucial for various purposes [2], with a strong emphasis on cybersecurity, risk
management, attack detection, and crime analysis [3]. There are several cryptography-based
technologies for wireless network authentication, data secrecy, and integrity. However,
such tactics are rendered ineffective when faced with denial-of-service (DoS) assaults such
as jamming. Furthermore, wireless security protocol implementations are known to be
riddled with security flaws that may be readily exploited. For instance, passphrases in
Wi-Fi Protected Access (WPA) and Wi-Fi Protected Access II (WPA2) [4,5], many more,
man-in-the-middle attacks in cellular networks [6,7] and statistical analysis can jeopardize
wired equivalent privacy (WEP). Finally, wireless sensor networks, many wireless networks,
cognitive radio networks, including wireless mesh networks, and presuppose some level of
user interaction, small cell networks. As a result, unique and low-complexity approaches
for authenticating authorized users and detecting possible assaults from hostile adversaries
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are critical. Device silence technology has recently appeared, which is a technology that
contributes to building device-specific signatures by collecting its information and using it
in the process of identifying specific devices. This technology was used to reduce internal
attacks or to reduce the wireless network’s vulnerability to node falsification [6,8]. The
fundamental idea is to actively or passively extract distinctive patterns (also known as
features) expressed by target devices during wireless communication. An effective device
fingerprint must satisfy two characteristics: (1) the features must be stable, especially in
the presence of node movement and changes in the environment, and (2) They must be
impossible or very difficult to counterfeit. The first requirement renders identifiers such as
mobile identification number (MIN), international mobile station equipment identity (IMEI)
number, electronic serial number (ESN), or IP address. Candidates are unsuitable because
all of these IDs are easily changeable using software [9,10]. On the contrary, position-based
features such as common radio signal strength (RSS) cannot be employed on their own as
fingerprints because they are vulnerable to environmental and movement alters. Although
most of the interests have focused on enhancing the wireless security and fingerprinting
capabilities of wireless devices, it is surprising that there is no general insight in all of
the current literature as the focus is sparse on the most recent fundamentals and key
technologies involved.

Wireless network suffers from different conventional attacks like Denial of Service
(DoS), DNS poisoning, Routing Information Protocol attack, Flooding, Address Resolution
Protocol spoofing, IP spoofing, etc. A firewall and simple digital identifiers are a great
defense against outside attacks, but it is ineffective against insider threats. Further, RF
fingerprinting involves extracting unique features (or patterns) across the protocol stack
that can be used as device signatures. Indeed, the upper layers, medium access control
(MAC) layer and physical layer have been utilized for radio fingerprinting [11]. However,
simple unique identifiers such as MAC addresses, IP addresses, and international mobile
station equipment identity (IMEI) numbers can easily be spoofed. Location-based features
such as channel state information (CSI), angle of arrival (AoA), and radio signal strength
(RSS) are susceptible to environmental and mobility changes. The network architecture
should have effective intrusion detection and prevention systems to lessen these threats. RF
signature-based identification provides a more robust solution due to (1) low computational
cost, (2) high detection precision for earlier known attacks, and (3) identifying intrusion by
matching the preconfigured knowledge base with captured patterns [12].

Creating a Radio Frequency (RF) fingerprinting CNN for network security using
simulated Wireless Local Area Network (WLAN) frames is a complex task that involves
several steps [13]. This type of system can be used to detect unauthorized or rogue devices
within a network, which might include the following points:

(1) Data Collection, Preparation, and Labeling: this is done by collecting a dataset of
WLAN beacon frames and labeling the data, indicating whether each frame comes
from an authorized or unauthorized device.

(2) Data Preprocessing: this step preprocesses the raw beacon frame data to extract
relevant information, such as signal strength, MAC addresses, SSID (Service Set
Identifier), and other features that can be used to identify devices. This stage involves
converting and standardizing the data to make it suitable for input into a CNN.

(3) CNN Model Design: the design of a CNN architecture that is suitable for RF finger-
printing should take as input the preprocessed data and output a binary classification
(authorized or unauthorized device). The network can have convolutional layers to
extract relevant patterns from the RF data, followed by fully connected layers for
classification.

(4) Model Training: This usually includes splitting the dataset into training and testing
subsets, training the CNN on the training data, using binary classification (authorized
or unauthorized) as the target, and using appropriate loss functions and optimization
techniques for training.
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(5) Model Evaluation: Evaluating the model’s performance on the testing dataset is a
common metric for classification problems including accuracy, precision, recall, and
F1-score. In addition, this includes fine-tuning the model and hyperparameters to
optimize performance.

(6) Real-Time Monitoring: this needs to capture and process live WLAN beacon frames
in real-time, and feed these frames into the trained CNN for continuous monitoring.

(7) Alerting and Response: If the CNN detects a device as unauthorized, the model
generates an alert or takes appropriate action. This could involve disconnecting the
unauthorized device from the network or notifying network administrators.

(8) Regular Updates: this stage periodically updates the CNN model as the network
evolves, and new devices are added. Re-train the model with fresh data to maintain
its accuracy.

(9) Security Measures: In addition to using an RF fingerprinting CNN, employ other
security measures like encryption, strong authentication, and intrusion detection
systems to enhance network security.

(10) Compliance: this is to ensure that the network monitoring system complies with
relevant regulations and privacy considerations, especially if we are handling sensitive
information.

Huang et al. [14] addressed the constellation-error parameter using the SDA feature
extraction classification method. The RF source was seven TDMA satellite terminals, and
the study obtained 95% identification accuracy. Candore et al. [15] discussed the parame-
ters of frequency offset, modulation phase offset, in-phase/quadrature-phase offset, and
magnitude using the weighted voting-based classifier. The RF emitter was Six WARP radio
cards. The results demonstrated acquired 88% identification accuracy and a 12.8% false
alarm rate. The study [16] studied the IQ Imbalance parameter using SVM classification
with MATLAB to simulate 5 analog modulators. The accuracy was ≥90% for SNR ≥ 15 dB.
Brik et al. [7] discussed frequency error, SYNC correlation, IQ offset, magnitude error, and
phase error as radiometric parameters, using k-NN & SVM classification techniques, with
138 802.11 NICs RF emitters, the accuracy was 99.9% for SVM and97% for k-NN.

The study [17] proposed a method for device-type and physical device categorization
described by “GTID” depending on artificial neural networks to exploit differences in
hardware compositions and clock skews of the network items. However, choosing the best
set of features is difficult because so many different traits are used. When there are many
devices, this also results in scalability issues, which raises the computational complexity
of training. Deep neural networks offer prevailing frameworks for greatly increasing
the number of layers and their neurons, leveraging large datasets, and learning complex
functions. Authors of both [18,19] applied deep neural networks at the physical layer,
particularly spotlighting Convolutional Neural Network (CNN) and IQ samples-based
modulation recognition to categorize 11 dissimilar modulation formats. However, these
studies only recognized the modulation type of transmitters and didn’t recognize router
impersonation.

Several related works have been done on deep learning-based device identification
to identify a device in a WLAN based on its RF fingerprinting of transmitted signals.
There are a number of different security aspects and applications. We can classify these
studies into supervised and unsupervised deep neural networks. The unsupervised deep
learning networks depend on a real-time grouping of samples as discussed in [20], where
a non-parametric Bayesian method was used for device detection, while [21] depends on
an infinite hidden Markov random field (iHMRF) model. In contrast, the supervised deep
learning methods are based on a priori labeling of samples and can be further classified into
similarity-based and classification-based techniques. The similarity-based method uses
the matching concept with database entries, where the study [22] used the 802.11 wireless
driver fingerprinting model, and [23] proposed data rate fingerprinting to attain inactive
localization. The supervised classification-based models relied on unique class identifi-
cation and can be sub-classified into conventional (handcraft feature extraction) [24,25]
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with frequency domain approach [7], with PARADIS fingerprinting, and [17] with GTID
fingerprinting. Deep learning (multi-layer neural network) has been discussed by [26],
which is based on modulation recognition CNN, and [27] with Deep learning of the physical
layer. We are interested in researching hardware characteristics that are built into a device
and that are also difficult and constant for malicious agents to duplicate. Deep CNN was
applied at the physical layer in references [18,28], with a focus on modulation recognition.
The studies categorized eleven various modulation systems. However, this method merely
identifies the transmitter’s modulation type, not a specific device as we do here.

This paper’s major contribution is the development of a convolutional neural network
(CNN) architecture [29,30] for radio frequency (RF) fingerprinting utilizing computer-
produced data. We employed simulated WLAN beacon frames for training the created
CNN from unknown and known RF fingerprint routers. Then, we compared the RF finger-
print indicated by the CNN with the MAC (Media Access Control) address of the received
signals, and we combined an advanced deep-learning convolutional neural network with
the ADAM optimizer to detect the WLAN router intrusions. Adam optimizer [31–33]
is considered in this work as it merges the benefits of RMSProp [34] and AdaGrad [35]
optimization techniques, which actively adapts the exponential decline rate for the first and
second moment measures for updating parameters. In addition, Adam’s algorithm is suit-
able for large amounts of data sparse gradients and non-stationary objective optimization
with noise. Many parameters are frequently present in deep neural networks. Since most
loss functions used in deep learning are convex functions [36], finding the global optimal
solution is simple with Adam’s optimization of the deep learning model and leads to the
best convergence.

2. Materials and Methods

The hypothesis is that the network is able to detect an impersonating device via RF
signals without using the layers of the protocol and stack for other more enhanced security
mechanisms to do this at the physical layer itself. Therefore, it is possible that the indeed
each device has a unique characteristic that imparts those characteristics onto the signal. If
we learn the characteristics of those transmitted signals we will know who the device is.
Hence, the method is broadly described as RF fingerprinting to detect these fingerprints or
these characteristic signatures inside a radio’s electromagnetic transmitted signals. Further,
the main concept for identifying network devices underlying radio fingerprinting is to find
distinctive features (patterns) and utilize them as device signatures. For radio fingerprinting,
a number of features at the upper layers, medium access control (MAC), and physical (PHY)
layer have been used [3]. International mobile station equipment identity (IMEI) numbers,
MAC addresses, and IP addresses are examples of straightforward unique identifiers that
are simple to spoof. Environmental and mobility changes can affect location-based aspects
including channel state information (CSI) and radio signal strength (RSS).

The representativeness and balance of the dataset are critical considerations when
working with deep-learning neural networks. A dataset that is both representative and
balanced is essential for training a model that generalizes well to real-world data. Further, a
representative and balanced dataset is fundamental to the success of deep learning models.
It ensures that the model can generalize well to unseen data, make accurate predictions, and
avoid biases or skewed performance. Balancing classes, data augmentation, and thoughtful
dataset curation are essential steps to achieve this. Here are some key aspects to consider:

• Dataset Size: The dataset should be large enough to cover the diversity of real-world
scenarios. A small dataset may result in overfitting, where the model learns to perform
well on the training data but fails to generalize to unseen data. In this work, we
generated a 5000 Non-HT dataset of WLAN beacon frames for each router.

• Class distribution: Simulating a static Rayleigh fading channel with a specific delay
profile and average path gains effectively applies a known transformation to the data.
This introduces variations in the received signal characteristics while keeping the
channel static. The fading channel effectively acts as a data augmentation technique to
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create diversity within the dataset. By introducing variations, we generate additional
samples for the minority class and improve the performance of the deep-learning
model when dealing with class imbalance.

2.1. RF Signature-Based Router Impersonation Detection

In order to mislead network users into connecting to it, a malicious agent will try to
impersonate a genuine router in a technique known as router impersonation. Simple digital
identifiers used in security identification systems, including MAC addresses, IP addresses,
and SSIDs, are ineffective at identifying such attacks. These detectors can be easily tricked.
Consequently, additional secured solutions use further communication data, like the radio
RF link fingerprinting combined with these straightforward digital detectors.

A receiver-to-transmitter wireless pair produces a single RF signature from the receiver
for combining the RF impairments and channel. The process of identifying transmitted
RF signals in a shared spectrum throughout these signatures is called Fingerprinting
RF. The study [37] presented a design of a deep learning architecture to consume raw
baseband in quadrature/phase (IQ) to identify and sample the signal-transmitting radios.
The architecture can recognize an RF transmitting radio if the channel profiles stay steady
through the processing time or the radio impairments are dominant. The majority of
WLAN architectures have permanent routers for creating a stationary channel signature if
the receiver position is also constant. For this scenario, the deep neural networks are able
to define router impersonators by evaluating the data pair of the MAC address and the
received signal’s RF fingerprint to that of the identified routers.

These works create several fixed routers for the WLAN system with a permanent observer
utilizing the WLAN Toolbox and perform neural network training on the computer-generated
data by Deep Neural Learning. This approach assumes the following environment:

1. The network includes several trusted known routers (of identified MAC addresses)
operating in an indoor area.

2. Some unidentified routers may include router intrusions within the inspection net-
work coverage.

3. The “Unknown” category stands for each transmitting apparatus that is not included
within the known group of routers.

Figure 1 demonstrates the three known router scenarios.
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Figure 1. The diagram of the first scenario of three known routers.

The observer node gathers lighthouse signals of the routers with non-HT (non-high
throughput) and identifies the RF fingerprint using the long (legacy) training field (L-LTF).
To avoid any data dependency, L-LTF Transmitted signals are configured as the same for
every router to allow algorithm application. Since the observer and the routers are constant,
the RF signatures (combination of RF impairments and multi-path channel pattern) RF3,
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RF2, and RF1 perform without variation with time. Unidentified router information is a set
of random RF signatures that are unlike the identified routers.

In another scenario in which a user is linked to a mobile hot spot and a router, the
observer decodes the MAC address and collects beacon frames after training. Then, the
observer takes out the L-LTF signals and employs these signals to categorize the RF signa-
ture for the beacon frame source. The observer assigns that the source is a “known router”
if the RF fingerprint and the MAC address match, as shown for Router 3, Router 2, and
Router 1. In the same context, the observer defines the source as an “unknown router” if
the RF signature does not agree with every one of the identified routers and the beacon
MAC address is not included in the database, as is demonstrated for a mobile hot spot in
Figure 2.
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Figure 2. A user is linked to a mobile hot spot and a router, where the observer decodes the MAC
address and collects beacon frames after training.

The third scenario demonstrates the effect of a router intrusion; where an impersonator
router (evil twin) tries to transmit beacon frames by replicating the MAC address of an
identified router, see Figure 3. The original router can be jammed by the hacker, forcing
users to connect to its evil duplicate. The observer decodes the MAC address when
receiving the beacon frames from the evil duplicate. The MAC address of an identified
router matches the decoded MAC address but the RF signature does not counterpart. Then,
the data source is identified by the observer as a router impostor.

2.2. System Parameters Setting

1. For each router, we generated a 5000 Non-HT dataset for WLAN beacon frames.
2. For the known routers, we used the router MAC addresses as known labels, while the

remaining are “Unknown” labels.
3. The developed CNN is trained to detect any unknown routers and to categorize the

known routers.
4. We divide the data into a test of 10%, validation also of 10%, and training of the

remaining 80%.
5. The signal-to-noise ratio (SNR) is considered to work on a 5 GHz band and 20 dB.
6. The numbers of known and unknown devices are flexible. In this paper, the simulation

applies two scenarios: 4 known against 10 unknown devices first and 7 known against
3 unknown devices the second time, with the ability to increase or decrease these
numbers.

7. The number of routers that are marked as “unknown” is assumed to be greater and
less than that for the known devices to model the variability in the dataset for the
RF signatures of the unknown router. Table 1 shows the set values of the model
parameters.
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beacon frames by replicating the MAC address of a known router.

Table 1. The setting values of the model parameters.

Parameter Value Parameter Value

No. of Known Routers 4, and 7 Channel Number 153 (WLAN channel number)
No. of Unknown Routers 10, and 3 Channel Band 5 (GHz)

No. of Total Routers No. Known Routers + No. of
Unknown Routers Frame Length 160 (L-LTF sequence length in samples)

SNR 20 dB No. of total Frames Per Route 5000
No. of training Frames Per Router No. of Total Frames Per Router × 0.8 No. of test Frames Per Router No. of Total Frames Per Router × 0.1;
No. of Validation Frames Per Router No. of Total Frames Per Router × 0.1

For the considered dataset, the network training taking longer than 3 min with an
Intel® Xeon® @ 3.6 GHz W-2132CPU and about 34 s NVIDIA® 3080 GPU GeForce RTX.
The production of 5000 frames consumes about 153 min on a computer of W-2133CPU @
3.66 GHz Intel® Xeon® with 32 GB memory.

2.3. WLAN Waveforms Generation

Routers implementing 802.11a/g/ac Wi-Fi protocols send beacon brackets within
5 GHz bands to disclose their existence and abilities to use the non-HT OFDM layout.
The frame of the beacon includes two common elements: payload (DATA) and preamble
(SYNC), which in turn has two elements: long and short training.

This work includes a payload with the same bits excluding every router’s MAC
address. The CNN employs training units for the L-LTF element of the preamble. We
perform reprocessing the RF signature for the L-LTF signal to provide an overhead-free
signature explanation. To produce beacon frames for the WLAN the steps are implemented
according to the flowchart in Figure 4.

2.4. RF Impairments and Channel Configuration

This stage includes passing every frame throughout two channels: (1) AWGN and
Rayleigh multipath fading, and (2) Radio impairments, which may contain DC offset;
frequency offset, and phase noise.
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2.4.1. Rayleigh Multipath and AWGN

We assume an average pathway gain of [0, −2, −10] dB with corresponding delay
pattern samples of [0 1.81 3.41]. The signals are sent through a Rayleigh multipath fading
and static channel. Therefore, to ensure that there is no change in channel for the same
RF, we set the upper limit of Doppler shift to zero. Then we apply these settings with the
multipath channel and add awgn noise such that: Path Delays = [0 1.81 3.41]/fs, Average
Path Gains = [0, −2, −10], and the Maximum Doppler Shift = 0.

Simulating a static Rayleigh fading channel with a specific delay profile and average
path gains effectively applied a known transformation to the data. This introduced vari-
ations in the received signal characteristics while keeping the channel static. The fading
channel effectively acted as a data augmentation technique to create diversity within the
dataset. By introducing variations, we’ve generated additional samples for the minority
class and improved the performance of the deep-learning model when dealing with class
imbalance.

2.4.2. RF Impairments

The range of values and their corresponding radio impairments are DC offset = [−50,
−32] dBc, Frequency offset = [−4, 4] ppm, and Phase noise = [0.01, 0.3] degrees (RMS).
Then, we allocate arbitrary impairments to every simulated RF contained by the earlier
known ranges as in Algorithm 1.



Appl. Sci. 2023, 13, 11592 9 of 20

Algorithm 1. RF impairments

% each simulated radio is assigned with random impairments within the earlier defined ranges
Radio_Impairments = repmat (struct ('Phase_Noise', 0, 'DC_Offset', 0, 'Frequency_Offset', 0), ...

Num_Total_Routers, 1);
for router_Idx = 1:num_Total_Routers

radio_Impairments (router_Idx).Phase_Noise = rand*(phase_Noise_Range (2)-phase_Noise_Range (1)) +
phase_Noise_Range (1);

radio_Impairments (router_Idx).DC_Offset = rand*(dc_Offset_Range (2)-dc_Offset_Range (1)) + dc_Offset_Range (1);
radio_Impairments (router_Idx).Frequency_Offset = fc/1e6*(rand*(freq_Offset_Range (2)-freq_Offset_Range (1)) +

freq_Offset_Range (1));
end

2.5. Generating Data Frames for Training and Applying Channel Impairments

The generated data includes the generation of packets holding MAC beacon frames,
which is a kind of managing frames to identify a basic service set (BSS) produced by several
802.11 devices appropriate for baseband modeling. A platform called software-defined
radio (SDR) was used according to Section 9 IEEE standard [38]. Beacon frames consist
of; (1) a valid frame check sequence (FCS), (2) a beacon frame body, which carries data
that requests to transmit, and (3) a MAC header, which contains frame information. The
transmitter computes the FCS over the frame body and header. The receiver employs the
FCS to ensure that the frame body and header are properly created.

An experimental setup using USRP SDRs is conducted to acquire I/Q samples as
shown in Figure 5. We use several different devices with USRP B210 family as transmitter
devices, while a fixed USRP B210 is used for data collection at the receiver end.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 10 of 21 
 

 

 
Figure 5. SDR-based Data collection. 

On each transmitter SDR, we send several physical layer frames according to IEEE 
802.11ac standards. These frames are compliant with standards and produced using the 
MATLAB WLAN Systems toolbox. 

Since we want to communicate any data streams, the data frames that are generated 
are random. The chosen SDR receives these protocol frames and streams them for 
over-the-air wireless transmission. For WiFi, the receiving SDR samples the inbound 
signals at a central frequency of 2.45 GHz and at a rate of 1.92 MS/s. Complex I/Q samples 
are gathered and divided into subsequences. We used a fixed subsequence length of 128 
for our experimental study; further information is provided below. For each of the five 
SDRs, we gathered roughly 20 million samples in total. A general MAC frame diagram is 
shown in Figure 6 [39]. 

 
Figure 6. A general MAC frame diagram. 

Generating MAC beacon frames includes three main stages; the control frames 
(Block Ack, Ack, CTS, and RTS), data frames (QoS Null, QoS data, Null, Data), and 
management frames (beacon). The flow work stages of generating MAC beacon frames 
are demonstrated in Figure 7. 

Figure 5. SDR-based Data collection.

On each transmitter SDR, we send several physical layer frames according to IEEE
802.11ac standards. These frames are compliant with standards and produced using the
MATLAB WLAN Systems toolbox.

Since we want to communicate any data streams, the data frames that are generated
are random. The chosen SDR receives these protocol frames and streams them for over-
the-air wireless transmission. For WiFi, the receiving SDR samples the inbound signals
at a central frequency of 2.45 GHz and at a rate of 1.92 MS/s. Complex I/Q samples are
gathered and divided into subsequences. We used a fixed subsequence length of 128 for
our experimental study; further information is provided below. For each of the five SDRs,
we gathered roughly 20 million samples in total. A general MAC frame diagram is shown
in Figure 6 [39].

Generating MAC beacon frames includes three main stages; the control frames (Block
Ack, Ack, CTS, and RTS), data frames (QoS Null, QoS data, Null, Data), and management
frames (beacon). The flow work stages of generating MAC beacon frames are demonstrated
in Figure 7.
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Figure 7. Flow work stages of generating MAC beacon frames.

This stage consists of applying the channel impairments and RF defined before, gen-
erating an independent channel by resetting the channel object for each radio, processing
the received frames using RF_FingerprintingNonHT_Front_End function, performing L-LTF
extraction from each WLAN transmitted frame, and splitting the L-LTF received signal data
into test, validation and training parts. This process can be demonstrated in a flowchart
shown in Figure 8.
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2.6. Creating Input Matrices with Real-Values

Real numbers are necessary for performing the developed deep learning network.
Therefore, I/Q data is used as a representation of how an RF carrier is modulated in
frequency, amplitude, and phase. The terms “in-phase (I)” and “quadrature (Q)” refer to
the two amplitude-modulated sinusoids’ interactions with the carrier’s amplitude- and
phase-modulated signal, respectively. Therefore, Q and I are separated into two individual
vectors so that the deep learning network can deal with them, which is necessary to create
real-valued input matrices. In addition, we apply a mixing between the training dataset
and saving the variable of classes as conclusive data. This process can be demonstrated in
a flowchart shown in Figure 9.



Appl. Sci. 2023, 13, 11592 12 of 20Appl. Sci. 2023, 13, x FOR PEER REVIEW 13 of 21 
 

 

 
Figure 9. Creating Input Matrices with Real-Values. 

2.7. The Developed Neural Network Architecture 
IQ imbalance has been considered in this work due to that the quadrature mixers are 

usually degraded by the mismatch in phase and gain between the parallel RF chain 
branches handling the Q and I signal tracks. Phase imbalance comes from the quadrature 
signal’s phase divergence from 90 degrees, whereas amplitude imbalance is caused by 
the mismatch in their gains. Due to frequency-dependent low-pass filters, IQ imbalance 
only fluctuates with frequency, and as a result, it bears a particular transmitter signature 
for that frequency. 

This work develops a deep learning convolutional neural network (CNN) that con-
tains three fully connected and two convolutional layers. The training options have been 
configured to use a mini-batch size of 512 with the ADAM optimizer, which is the ex-
tended version of stochastic gradient descent and can be implemented in natural lan-
guage and computer vision processing. The perception behind this model is to learn 
features independently by the first layer in Q and I. The filter size is 1 × 7, while the size is 
2 × 7 at the next layer for extracting features that combine both Q and I. Lastly; the ex-
tracted features in the previous layers are classified by a final three fully connected layers 
[37]. To make sure that the applied CNN model generalizes successfully, the selection of 
network hyperparameters, such as the number of filters and their sizes in the convolution 
layers, and CNN depth, is crucial. These are carefully selected via cross-validation. We 
fixed the dropout rate for the dense layers to 50% in order to avoid overfitting. Addi-
tionally, we choose a regularization factor of = 0.0001. Adam optimizer is used to train the 
network’s weights, and its learning rate is set to lr = 0.0001. Back-propagation is used to 
minimize error prediction, with categorical cross-entropy computed on the classifier 
output serving as the loss function. The developed architecture is detailed in Table 2. 

  

Figure 9. Creating Input Matrices with Real-Values.

2.7. The Developed Neural Network Architecture

IQ imbalance has been considered in this work due to that the quadrature mixers
are usually degraded by the mismatch in phase and gain between the parallel RF chain
branches handling the Q and I signal tracks. Phase imbalance comes from the quadrature
signal’s phase divergence from 90 degrees, whereas amplitude imbalance is caused by the
mismatch in their gains. Due to frequency-dependent low-pass filters, IQ imbalance only
fluctuates with frequency, and as a result, it bears a particular transmitter signature for
that frequency.

This work develops a deep learning convolutional neural network (CNN) that con-
tains three fully connected and two convolutional layers. The training options have been
configured to use a mini-batch size of 512 with the ADAM optimizer, which is the ex-
tended version of stochastic gradient descent and can be implemented in natural language
and computer vision processing. The perception behind this model is to learn features
independently by the first layer in Q and I. The filter size is 1 × 7, while the size is 2 × 7
at the next layer for extracting features that combine both Q and I. Lastly; the extracted
features in the previous layers are classified by a final three fully connected layers [37]. To
make sure that the applied CNN model generalizes successfully, the selection of network
hyperparameters, such as the number of filters and their sizes in the convolution layers,
and CNN depth, is crucial. These are carefully selected via cross-validation. We fixed the
dropout rate for the dense layers to 50% in order to avoid overfitting. Additionally, we
choose a regularization factor of = 0.0001. Adam optimizer is used to train the network’s
weights, and its learning rate is set to lr = 0.0001. Back-propagation is used to minimize
error prediction, with categorical cross-entropy computed on the classifier output serving
as the loss function. The developed architecture is detailed in Table 2.
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Table 2. The layers of the developed architecture.

Name/Size Description Layer Label No

160 × 2 × 1 images Image Input ‘Input Layer’ 1
Stride padding [1 1 0 0] and [1 1] with 50 7 × 1 convolutions 2-D Convolution ‘CNN1’ 2
Batch normalization Batch Normalization ‘BN1’ 3
Leaky ReLU with a scale of 0.01 Leaky ReLU ‘LeakyReLu1’ 4
2 × 1 max pooling with stride [2 1] and padding [0 0 0 0] 2-D Max Pooling ‘MaxPool1’ 5
50 7 × 2 convolutions with stride [1 1] and padding [1 1 0 0] 2-D Convolution ‘CNN2’ 6
Batch normalization Batch Normalization ‘BN2’ 7
Leaky ReLU with a scale of 0.01 Leaky ReLU ‘LeakyReLu2’ 8
2 × 1 max pooling with stride [2 1] and padding [0 0 0 0] 2-D Max Pooling ‘MaxPool2’ 9
256 fully connected layer Fully Connected ‘FC1’ 10
Leaky ReLU with a scale of 0.01 Leaky ReLU ‘LeakyReLu3’ 11
50% dropout Dropout ‘DropOut1’ 12
80 fully connected layer Fully Connected ‘FC2’ 13
Leaky ReLU with a scale of 0.01 Leaky ReLU ‘LeakyReLu4’ 14
50% dropout Dropout ‘DropOut2’ 15
5 fully connected layer Fully Connected ‘FC3’ 16
Softmax Softmax ‘SoftMax’ 17
Crossentropyex Classification Output ‘Output’ 18

After setting the training options, network training is performed. Then, we loaded the
trained network, testing dataset, and the user-generated MAC Addresses. The accuracy
of the network architecture is computed, and the classification for the testing frames is
performed to detect router imitators.

For each unknown MAC address and all the known MAC addresses in iteration, a
generation of beacon frames is performed. Then, generating a new pack of multipath
channels and RF impairments is performed. The RF profile for these frames should be
categorized as “Unknown” because all of the impairments are unexplored. Beacon frames
of defined MAC addresses represent router imitators whereas those of undefined MAC
addresses are unknown devices. The impersonator detection algorithm can be represented
by Algorithm 2.

Algorithm 2. Impersonator detection algorithm

Frames_Per_Router = 4;
Known_MAC_Addresses = generated_MAC_Addresses (1: No_Known_Routers);
% each simulated radio is assigned as random impairments within the earlier defined ranges
For router_Idx = 1: No_Total_Routers

radio_Impairments (router_Idx).Phase_Noise = rand*( phase_Noise_Range (2)-phase_Noise_Range (1) ) +
phase_Noise_Range (1);
radio_Impairments (router_Idx).DC_Offset = rand*( DC_Offset_Range (2)-DC_Offset_Range (1) ) + DC_Offset_Range (1);
radio_Impairments (router_Idx).Frequency_Offset= fc/1e6*(rand*( freq_Offset_Range(2)-freq_Offset_Range(1) ) +
freq_Offset_Range(1));

end
% To generate a new static channel, Reset multipath_Channel object
Reset (multipath_Channel)
% Do for one unknown routers and all known
For mac_Index = 1:(No_Known_Routers + 1)

beacon_Frame_Config.Address2 = generated_MAC_Addresses(macIndex);
% produce Beacon frame bits
beacon = wlan_MAC_Frame(beacon_Frame_Config, ‘Output_Format’, 'bits');
tx_Waveform = wlan_Waveform_Generator(beacon, nonHT_Config);
tx_Waveform = helper_Normalize_Frame_Power (tx_Waveform);
% To account, add zeros for channel delays
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tx_Waveform = [tx_Waveform; zeros (160,1) ];
% generate unseen RF fingerprint or an undetected multipath channel.
Reset (multipath_Channel)
Frame_Count= 0;
while frame_Count < frames_Per_Router

rxMultipath = multipath_Channel(tx_Waveform);
rxImpairment = helperRFImpairments(rxMultipath, radio_Impairments(router_Idx), fs);
rxSig = awgn(rxImpairment,SNR,0);
% Detect the WLAN packet and return the received L-LTF signal using rf_Fingerprinting_NonHT_Front_End object

[payload_Full, cfgNonHT, rx_NonHT_Data, chanEst, noiseVar, LLTF] = rx_Front_End (rxSig);
If payload_Full
frame_Count = frameCount+1;
rec_Bits = wlan_NonHT_Data_Recover (rx_NonHT_Data, chanEst, noise_Var, cfg_NonHT, 'Equalization_Method', 'ZF');
% Evaluate and decode recovered bits
mpduCfg = wlan_MPDU_Decode (recBits, cfgNonHT);
% Reshape and Separate Q and I of neural network
LLTF= [ real (LLTF), imag (LLTF) ];
LLTF = permute (reshape (LLTF, frame_Length, [] , 2, 1), [1 3 4 2]);
ypred = classify(sim_Net, LLTF);
if sum (contains (known_MAC_Addresses, mpduCfg.Address2 )) ~= 0

if categorical (convert_Chars_To_Strings (mpduCfg.Address2))~=ypred
disp (strcat ( " MAC Address ", mpduCfg.Address2," is known, fingerprint mismatch, ROUTER IMPERSONATOR
DETECTED" ))

else
disp(strcat("MAC Address ", mpduCfg.Address2," is known, fingerprint match"))

end
else

disp(strcat("MAC_Address ", mpduCfg.Address2," is not recognized, unknown device"))
end

end
% To generate a new static channel, reset multipath_Channel object
Reset (multipath_Channel)

end
end

3. Results
3.1. Scenario 1, Generating AA. . .A MAC Address for the Unknown Devices

The operation of MAC address generation after applying channel impairments results
in data frames for the router of the WLAN, a photo of the generated data is shown in
Figure 10.
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There are four normally generated MAC addresses of the known routers, while A. . .A
MAC address for the remaining 10 unknown routers. The training options have been
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configured to use a mini-batch size of 512 with the ADAM optimizer, which is the extended
version of stochastic gradient descent and can be implemented in natural language and
computer vision processing. According to the network specifications in Table 2, the training
progress showing the accuracy and loss along with the iterations is shown in Figure 11.
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According to the results of the training progress graphic, the network converges to
around 100% accuracy within the first epoch.

For the test frames, we obtained the predicted classes and calculated the test accuracy.
The plotting of the confusion matrix for test data is shown in Figure 12. As was previously
noted, using the synthetic dataset, complete classification accuracy was attained.
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3.2. Scenario 2, Generating Random MAC Address for the Unknown Devices and
7 Known Routers

The operation of MAC address generation after applying channel impairments results
in data frames for the router of the WLAN, a photo of the generated data is shown in
Figure 13.
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(c) router intrusion detections.

There are also four normally generated MAC addresses for the known routers and
10 different other MAC addresses for the unknown routers. The training options have been
configured under the same conditions as scenario 1. According to the training progress of
this scenario, the developed CNN also achieved 100% accuracy within the first epoch.

3.3. Network Evaluation

The performance of the developed architecture has been tested, which is represented
by the obtained accuracy along with the number of devices used in the network as shown
in Figure 14.
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4. Discussion

According to this result, the performance of the proposed model is highly affected by
the number of devices on the network. The main issue of applying this approach, in terms
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of scalability, is that it is required to re-train the whole CNN when any additional device is
presented in the network.

Generalizability in deep learning is a critical concept to overcome the problem of
overfitting. Overfitting occurs when a model learns the training data too well and performs
poorly on unseen data because it has essentially memorized the training set. Therefore,
to improve generalization and mitigate overfitting in this study, we implemented the
following strategies:

• More data has been generated, where a 5000 Non-HT dataset of WLAN beacon frames
for each router in the network. More data allows the model to learn a broader range of
patterns and relationships.

• Monitor for early stopping, where monitoring the model’s performance on a validation
set during training and stopping when the performance starts to degrade. This
prevents the model from continuing to overfit.

• Applying Cross-Validation to assess the model’s performance on different subsets of
the data. This can help to estimate how well the model will perform on unseen data.

• Simpler and appropriate feature set, where fewer features are less prone to overfitting,
containing 6 parameters chosen to simplify the input representation while maintaining
appropriate architecture, such as the L-LTF sequence frame Length, WLAN channel
number, channel Band (Ghz), SNR (dB), and number of Known Routers and Unknown
Routers.

• Ensemble Learning, where the combination of the predictions of multiple models
was used to reduce overfitting helped to improve generalization as they can capture
patterns that may be missed by a single model especially when dealing with complex
I and Q datasets. The developed neural network architecture combines two (models)
convolutional layers followed by three fully connected layers for processing complex
data with both in-phase (I) and quadrature (Q) components, where the first layer
learns the features independently in I and Q, and the next layer extracts the features
combining I and Q together.

• Batch Normalization, the 7th layer of the developed architecture was Batch Normal-
ization one, it normalizes the activations in intermediate layers during training, which
can improve generalization and make the training process more stable.

• Using the Dropout layer in the 12th layer, where random neurons are “dropped out”
during each training step. This prevents the network from relying too heavily on any
one neuron.

Choosing the proper group of features is a challenging task that can cause scalability
troubles when an extensive number of instruments are present, guiding to extended compu-
tational complexity during training. Furthermore, the inexperienced process of presenting
arbitrary mixtures of impairments before training the CNN has three concerns:

(1) Communication effect: Naturally, adding impairments raises the BER. Therefore, to
limit any negative effects on BER, controlled and cautious addition is required.

(2) Accuracy: Demodulated samples from two separate transmitters that were previously
simple to distinguish may now seem clustered together due to changes made to where
they were placed on the IQ plane. The classifier’s performance can suffer as a result.

(3) Scalability: If an additional transceiver is presented in the network, then it is required
to re-train the whole CNN, which is a computation- and time-heavy operation.

5. Conclusions and Future Investigation

This work presented a CNN-based fingerprinting RF model with computer-generated
data and beacon frames to detect WLAN router impersonators. The developed deep CNN
enhanced by ADAM optimizer is used to detect router impersonations of a WLAN via
comparing the received signals, which includes a pair of MAC address/RF signature data
for known and unknown devices. The results throughout the confusion matrix for the
test data of the synthetic dataset demonstrated that the developed network architecture
accurately classified the four generated MAC addresses of the known routers and the MAC
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address for the remaining 10 unknown routers with 100% accuracy. This demonstrates that
even in the presence of random noise, the distinctive patterns produced by the impairments
can still be recognized.

The experiment parameters included 4 known Routers, 10 Unknown Routers, 20 dB
of SNR, 153 WLAN channel number, 5 Ghz channel Band, and 160 frame L-LTF Length
in samples. All these values affect the obtained results. The challenging issue was with
introducing impairments, which worsens the quality of service and raises the bit error rate
(BER). For radios operating at varied SNR levels, the deterioration of impairments also
varies [40]. The less degradation we must apply to radios to achieve the required BER,
the lower the SNR. Assuming the SNR readings at the receiver side are quasi-static for
duration T, enabling an average of SNR levels within each such time frame; we explore
how to tackle this problem in this section. Such difficulties might arise when dealing
with real-world noisy or dynamic environments. This study demonstrated how setting
parameters like the number of known routers, unknown routers, and SNR can increase
classification accuracy for comparable devices, further enhancing to account for new attack
strategies and vulnerabilities that might emerge in the future.

Future areas of improvements can be performed by modifying the network architec-
ture by changing: (1) the number of convolutional layers, (2) the number of fully connected
layers, and (3) the Convolutional layer parameters (padding, number of filters, and filter
size). The modification also can be done by testing the model under different RF impair-
ments and channels by adjusting the following: (1) RF impairments (dc Offset Range, freq
Offset Range, and phase Noise Range variables), (2) Channel noise level (SNR input of
“awgn” function), and (3) Multipath profile of Rayleigh channel (Average Path Gains and
Path Delays features object).
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