
Citation: Uyanık B.; Sayar A.

Developing Web-Based Process

Management with Automatic Code

Generation. Appl. Sci. 2023, 13, 11737.

https://doi.org/10.3390/app

132111737

Academic Editor: Luis

Javier Garcia Villalba

Received: 24 September 2023

Revised: 17 October 2023

Accepted: 22 October 2023

Published: 26 October 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

Developing Web-Based Process Management with Automatic
Code Generation
Burak Uyanık *,† and Ahmet Sayar †

Kocaeli University, Computer Engineering, Faculty of Engineering, Umuttepe Campus,
İzmit 41380, Türkiye; ahmet.sayar@kocaeli.edu.tr
* Correspondence: burak.uyanik@tei.com.tr; Tel.: +90-538-7478374
† These authors contributed equally to this work.

Abstract: Automated code generation and process flow management are central to web-based appli-
cation development today. This database-centric approach targets the form and process management
challenges faced by corporate companies. It minimizes the time losses caused by managing hundreds
of forms and processes, especially in large companies. Shortening development times, optimiz-
ing user interaction, and simplifying the code are critical advantages offered by this methodology.
These low-code systems accelerate development, allowing organizations to adapt to the market
quickly. This approach simplifies the development process with drag-and-drop features and enables
developers to produce more effective solutions with less code. Automatic code generation with
flow diagrams allows one to manage inter-page interactions and processes more intuitively. The
interactive Process Design Editor developed in this study makes code generation more user-friendly
and accessible. The case study results show that a 98.68% improvement in development processes, a
95.84% improvement in test conditions, and a 36.01% improvement in code size were achieved with
this system. In conclusion, automated code generation and process flow management represent a
significant evolution in web application development processes. This methodology both shortens
development times and improves code quality. In the future, the demand for these technologies is
expected to increase even more.

Keywords: automated code generation; process flow management; web-based application
development; dynamic process flow optimization; low-code platforms; flow-based programming
paradigms

1. Introduction

Automated code generation has witnessed remarkable advances in software engineer-
ing in the last five years. The main goal of this technology is to improve coding quality
and consistency in the software development process, thereby optimizing the developer’s
productivity and speeding up the development process. The concept of automatic code
generation has been the focus of growing interest in computer science and software engi-
neering. Prestigious academic platforms such as IEEE, Science Direct, and Springer Link
have critically disseminated these advancements. As a result of our literature review, we
have observed a sharp increase in studies on automatic code generation between 2019 and
2023 (Figure 1). Recently, the software engineering paradigm has seen in-depth analyses of
techniques for the efficient and fast development of web applications. The literature on
automated code generation suggests numerous methodologies and integration tools. These
methodologies and tools zero in on the critical success criteria of software engineering,
such as cost-effectiveness, code quality, and efficiency.

The advantages of automated code generation are geared towards optimizing software
development processes:

1. Thanks to the modular and scalable code structure, a single developer or team can
manage the user interface and server-side development processes more effectively.

Appl. Sci. 2023, 13, 11737. https://doi.org/10.3390/app132111737 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132111737
https://doi.org/10.3390/app132111737
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-6073-6667
https://orcid.org/0000-0002-6335-459X
https://doi.org/10.3390/app132111737
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132111737?type=check_update&version=3

Appl. Sci. 2023, 13, 11737 2 of 29

2. Using advanced templates and libraries reduces the complexity of user interface
design and enables rapid prototyping.

3. Predefined code templates optimize reuse and help avoid potential errors.
4. Standardized code structures and nomenclature increase consistency and traceability

in code generation processes.

Figure 1. Number of studies on automatic code production.

However, the disadvantages of automatic code generation should not be overlooked:

1. During code generation, complex code blocks automatically generated by the system
can make maintenance and update processes difficult.

2. Automatic code generation built around specific standards and templates may restrict
customization.

3. Automated code generation systems with intricacies and in-depth details can be
complex for novice software engineers; therefore, additional investments in training
and adaptation processes may be required.

This study uniquely integrates two separate systems: automatic code generation and
business process management. Our system integrates these two methodologies in a man-
ner that aims to explore their collaborative potential. Whereas conventional automatic
code generation methods often operate in isolation, our approach integrates them with
advanced business process modeling techniques, creating a more holistic development
environment. The “Process Design Editor” is a key component of our system, designed to
offer enhanced capabilities beyond traditional tools. The drag-and-drop methodology of
the “Process Design Editor” facilitates faster visual design and offers a different approach
for developers and business analysts in conceptualizing business processes. The ability to
visualize without coding is not just a convenience—it is a paradigm shift. By merging these
domains, our system promises speed, flexibility, and consistency and offers a methodology
greater than the sum of its parts. In this research, we build upon existing software engi-
neering methods and introduce a new methodology that offers a different perspective on
development approaches.

Appl. Sci. 2023, 13, 11737 3 of 29

This study introduces a novel system that integrates automatic code generation with
process management for web-based applications. At its core, the system employs an intri-
cate use of stored procedure patterns, plug-ins, HTML templates, and a template library.
These elements work in concert to produce a polished final product. Open-source compo-
nents, crafted in a standardized format, form the backbone of this initiative. They ensure
that the resultant application is customizable and aligns with industry benchmarks. This
process leans heavily on a well-defined database structure, instrumental in driving the
automatic generation of CRUD operations, a mainstay in most web applications. The em-
brace of open-source modules and a coherent database structure accentuates this approach.
There is a pronounced focus on industry-standard methodologies such as CRUD operations
and JSON-based data modeling. The discussion explores the intricacies of designing and
executing workflow processes tailored for web platforms. The "Process Design Editor," an
intuitive web application interface, is central to this narrative. Drag-and-drop capabilities
provide developers with a platform to craft intricate process visual flows. Illustrative
guides in the form of interactive flowchart diagrams elucidate the relationships between
various process tasks. From conditional flows activated by specific triggers to singular and
multi-task sequences, these diagrams capture the flexibility of workflows, accommodating
both straightforward and multifaceted operational needs. Moreover, this discourse delves
into the tools that actualize these workflows, the technical intricacies of translating these
visual flows into mxGraph models, and the pivotal role of robust databases and mapping
tables. Including RabbitMQ and the SAGA architectural model further guarantees system
efficiency and responsiveness. In light of these innovations, it is imperative to note that
automated code generation, albeit potent, is not the panacea. Business Process Modelling
Notation (BPMN) is pivotal for modeling business processes and ensuring the application’s
longevity. Our research tackles a BPMN-centric web application development approach
rooted in automated code generation [1]. The platform we introduce aims to vividly present
business processes to stakeholders. Notably, our drag-and-drop methodology facilitates
application development, even for those sans programming expertise. The consistency
in our database design further refines data integration processes. Standardization in the
database optimizes data integration processes. The system enables rapid modeling of
business processes, saves costs, and accelerates the development process. A major thrust
of our approach relies on open-source components and a cogently structured database,
emphasizing industry-standard methodologies such as CRUD operations and JSON-based
data modeling. Our vision, supported by preliminary findings, highlights a staggering
98.68% improvement in developmental processes, a 95.84% enhancement in test conditions,
and a 36.01% reduction in code size. Successful test scenarios confirm the effectiveness of
this system. The study includes a literature review, system introduction, test cases, and
results, aiming to shed light on the potent amalgamation of automated code generation and
business process modeling, setting the stage for subsequent sections of this research paper.

2. Related Work

In the last five years, many studies on automatic code generation have been carried
out, and code generation has been successfully applied in different fields. There are many
critical works in the literature on automatic code generation, business process management,
web application modeling, UML modeling, and database modeling. This section reviews
some critical works that have significantly contributed to these areas. Paolone et al. [2] pro-
pose a methodology that simplifies web application modeling and design by adopting the
Model-Driven Architecture (MDA) approach. This approach aligns with our focus on inte-
grating automated code generation and business process management. Durai et al. [3] have
developed a specific tool for converting UML models into XML Schema Definition (XSD)
format, which indicates the link between data modeling and code generation. Yongchareon
et al. [4] provide an in-depth analysis of the relationship between user interfaces and
business processes, highlighting the potential synergy between automated code generation
and business process management. In this context, Idrees et al. [5] consider the potential

Appl. Sci. 2023, 13, 11737 4 of 29

advantages of a visual programming language when adapting the automatic code genera-
tion process to different programming languages. The BPMN modeling approach has been
adopted by Mythily et al. in [6] and Zafar et al. in [7]; both groups studied the integration of
code generation within business processes. Núñez et al. in [8], based on the Model-Driven
Development (MDD) approach, elaborate on the transition from platform-independent to
platform-specific models. Sunitha et al. [9] and Simon et al. [10] investigated the effects
of UML-based modeling on code generation, while Apostol et al. [11] focused on the
costs and challenges of UML-derived code. In this framework, Sánchez-Morales et al. [12],
Chaber et al. [13], and Burak et al. [14] address automated code generation processes
and demonstrate the potential for integration with different platforms and paradigms.
Bocciarelli et al. in [15] explored the relationship between automatic code generation and
database modeling, while Dinkelbach et al. in [16] discussed optimizing code generation
processes using template engines. Sebastián et al. [17] and Ding et al. [18] have enriched
automated code generation processes by adopting template- and transformation-based
approaches. Hu et al. [19] discussed the impact of platform changes on code generation
and how to deal with these changes. Yang et al. in [20] presented open code generation
techniques with a template-based approach, showing how templates can be effectively
used in automated code generation processes. Anuar et al. [21] detailed the relationship
between automated code generation and web application development based on the MVC
paradigm. Sunitha et al. in [22] examined code generation from UML activity diagrams,
and this work provided important insights into how UML-based modeling can be consid-
ered in the context of code generation. This work has contributed significantly to a better
understanding of the relationship between automated code generation, business process
management, and modeling techniques and forms the basis for this research.

3. Architecture

This study proposes a system that covers both automatic code generation and process
management for web-based applications. The system includes the automatic generation
of web form pages, the definition of interactive flowcharts between the pages, and the
generation of the required code. The method proceeds in two main stages. In the first stage
(Section 3.1), tasks in specific formats are generated according to the set priorities. The
second stage (Section 3.2) presents a structure in which automatically generated web pages
are modeled in an interconnected process management framework. Figure 2 depicts the
system architecture for web-based process management with automatic code generation.

3.1. Automatic Code Generation to Create a Task

In order to implement this process effectively and efficiently, components such as
stored procedure patterns, JS functions for plug-ins, HTML patterns, JSON schema, and
the T4 Template library must be readily available. In addition, these components include
libraries, templates, plug-ins, and other HTML view patterns. These components are
open-source code written in a standardized way that conforms to standard form elements.

The functionality of the patterns encompasses components such as Plugin JS, HTML
templates, stored procedures, and JSON schema. Plugin JS allows users to interact with
JavaScript code that manages certain web features. HTML templates define the visual
presentation of web page elements. JSON schema is a data structure that determines how
data are stored and processed. These components can make the software development
process faster and easier. They are also customizable and can be adjusted by developers to
suit the project’s specifics. HTML plugins and plugins are available, including ready-made
JavaScript functions for each HTML element. Some examples of plugins are given in
Table 1.

Appl. Sci. 2023, 13, 11737 5 of 29

Table 1. HTML and JavaScript pattern templates.

Element JavaScript Plugin HTML Plugin

Element JavaScript Plugin HTML Plugin
Button button.js button.html

DatePicker datepicker.js datepicker.html
Form from.js form.html

Image Viewer image_viewer.js image_viewer.html
Selectbox selectbox.js selectbox.html

Input input.js input.html

Figure 2. Stages of automatic code generation for system architectures.

Figure 3 shows the database schema used for automatic code generation. This database
structure defines the main tables of Module, Plugin, Element, Function, Action, and Entity.
Establishing relationships between these main tables is undertaken by tables defined with
the suffix “Map”, for example, PluginFunctionMap and FunctionElementMap. However,
tables with the word “type” in their name represent properties or values associated with
the respective parent tables. In database management systems, the automatic generation of
CRUD (Create, Read, Update, Delete) operations that carry out essential data operations
provides efficiency gains in software development. Using ready-made stored procedure

Appl. Sci. 2023, 13, 11737 6 of 29

templates facilitates these automatic code-generation processes in this context. Ready-
stored procedure templates are given in Figure 4.

When the automatic code generation infrastructure is prepared, the first step is to add
database tables for code generation. The table shown in Figure 5 has “Column Name, Data
Type, and Allow Empty Values” columns. For example, in the “Leave” table, leave start
date, leave end date, and description parameters are defined under “Column Name”. The
relevant data types for these parameters are specified in the “Data Type” column. The
“Allow Empty Values” column indicates whether specific fields are mandatory.

Figure 3. Database class diagram.

Appl. Sci. 2023, 13, 11737 7 of 29

In the second stage, the automatic code generation process starts when the devel-
oper creates a data table. Based on the table name, the program automatically executes
standard stored procedures. In this process, the development efficiency is increased by
using predefined stored procedures. The pseudo-code below defines a connection string
based on a specified service name, initializes database connections, and classifies tables
according to specific criteria. This code generates SQL procedures for CRUD (Create, Read,
Update, Delete) operations and specific procedures for specific tables. These procedures
are automatically stored or updated in the database.

Figure 4. Stored Procedure Patterns.

Figure 5. Manually created database table attribute list.

In the framework of this work, a stored procedure pattern specific to the Create
operation is presented in Algorithm 1. This function creates a stored procedure that
performs a Create operation for a given table in the database. If the specified procedure
already exists, it is removed and redefined. SQL parameters are set based on the table
columns, and a record is inserted during creation. The function returns the full text of the
created procedure.

The function described in Algorithm 2 is used to manipulate columns in database
tables and plays a central role in all stored procedures.

Each table column identifies unique columns, which are determined with the help
of function, id, and meta, and then generates SQL parameter sequences based on this
information. The generated parameters are combined according to a specified delimiter
and returned as a result. The following function creates the specified database table’s
“SQL INSERT INTO” procedure. The function defines the required column names and
parameters for each table column, excluding unique columns and key columns specified
with the help of meta. Based on this information, the function creates the “INSERT INTO”
and “VALUES” expressions, concatenates them according to a specified delimiter, and
returns them as results. The generation of the stored procedure “Create” shown in the
example above follows a similar approach for other stored procedures such as “Update”,

Appl. Sci. 2023, 13, 11737 8 of 29

“Read”, “Select”, and “Delete”. It takes table fields from the database according to a specific
pattern and generates the stored procedure according to this pattern. Thanks to the “EXEC”
command it contains, it saves the generated stored procedure directly to the database. The
table in Figure 6 presents the details of the stored procedures generated automatically.
“SPName” specifies the name of the stored procedure. One of the most critical sections,
“SPGenerateScript”, contains the SQL code of the generated stored procedure. Finally,
“SpTypeName” defines the type of operation the procedure performs.

Algorithm 1: Stored procedure generation algorithm
Result: SQL procedures Created, Updated, Read, Delete, Save in the database
Initial start-up and adjustments;
Setting ConnectionString according to ServiceName;
Initializing Tool and Service DB connections (tcn, cn);
if NOT isDatabaseReady then

RETURN;
else

Refresh the database object;
Initialize pointer variables;
Filter CRUDTables, PoolTables, etc. tables by criteria;
if generate_CRUD then

Set all CRUD flags (generate_C, generate_R, etc.) to TRUE;
for Every table in CRUDTables do

if generate_C then
Initialize CREATEProcedureTemplate for table;
Create the SQL script for the creation;
Save or update the SQL script to the database;

end
if generate_R then

Initialize SELECTProcedureTemplate for table;
Create SQL script to read;
Save or update SQL script to database;

end
Something else can be done here (similar operations can continue for
Update, Delete, Save)

end
end similar loops may continue for other flags such as
generate_KEY_VALUE_LIST, generate_LOCK, etc.

end

Figure 6. List of generated stored procedures.

The stored procedures presented in Figure 7 are automatically added to the database
by triggering the “SPGenerateScript” codes in the SPGenerate table. This mechanism
provides fast and automatic preparation of the procedures required for CRUD operations.

Appl. Sci. 2023, 13, 11737 9 of 29

Figure 7. Stored procedures saved in the database.

Algorithm 2: TransformText
Result: GenerationEnvironment.ToString()
Initialization: Create a list named “columns” that includes unspecified columns
in the table;

Define texts as a string list;
Define columName as an empty string variable;
if “[table schema].[SP$[table name]CREATE]” object exists then

Create a new procedure delete command;
else

Execute “EXEC [table schema].[SP$[table name]CREATE]”;
end
foreach column in columns do

if column is Identity then
if identityWrite then

Add “@[column.Name]=NULL” to texties list;
else

if column name matches MetaHelp.CreateUserColumnName then
Set columName to MetaHelp.CreateUserParameter;

else
Set columName to “@[column.Name]”;
Add “[columName]=NULL” to texties list;

end
end

end
end
foreach column in columns do

if column is not primary key then
Add “[column.Name]” to insertSegment list;

end
if column name matches MetaHelp.CreateUserColumnName then

Set columName to MetaHelp.CreateUserParameter;
else

Set columName to “@[column.Name]”;
Add “[columName]” to paramsSegment list;

end
end
Add “INSERT INTO [table.Schema].[table.Name](joined insertSegment)” to result

list;
Add “VALUES(joined paramsSegment)” to result list;
Print joined result list using perLine delimiter;

Appl. Sci. 2023, 13, 11737 10 of 29

The third step is to save the table created in the database via the Web interface. This
process extracts the data, and the appropriate plugins are automatically created. These
plugins define the design and functionality of HTML components (buttons, text boxes, etc.)
in the user interface. In Figure 8, database tables are represented in a low-code platform.
The rows marked in red color indicate that they have not been registered. The “Register”
button at the end of each row allows the relevant record to be made.

Figure 8. List of database tables in the Low-Code Platform.

During this process, each element’s plugins, actions, and functions are produced
separately, and these productions are stored in the database. In the “Element” section, the
essential attributes of each column in the database table are determined in detail. Among
these attributes, “TypeName”, which defines the column’s data type, and “UITypeName”,
which represents the equivalent of this type in the user interface, are particularly prominent.

Based on the ElementDataType table in Figure 9, default values for a given data
type are stored in the Element table (Figure 10) . The purpose of this approach is to
systematically save the corresponding data type and default values for each element in the
interface in order to be able to generate the corresponding data type for each element.

Figure 9. DataType data table.

Figure 10. Element data table.

Appl. Sci. 2023, 13, 11737 11 of 29

In Figure 11, the “Function” section stores the stored procedure names associated
with the corresponding database table. The primary purpose of this section is to provide
a list of which stored procedures will be triggered as a result of actions performed in the
interface. For predefined operations such as Create, Update, and Delete, the relevant stored
procedure names are stored in the database in this section.

Figure 11. Function data table.

The “Plugin” section in Figure 12 offers the ability to create plugins for each element in
the interface. It supports the creation of forms and the integration of buttons with functions
such as “save” and “delete” automatically. Plugins are registered to specific ID values by
associating them with the “PluginElementID” value. For example, when the data type in
the data table “StudentName” is nvarchar, the appropriate HTML equivalent for this type is
defined as “input” in the table “PluginTemplate” (Figure 13). Based on this information, an
automatic plugin record is created. Plugins are prepared based on the predefined “Element”
table and then designed for integration with the HTML content in the interface.

Figure 12. Plugin data table.

Figure 13. PluginTemplate data table.

The “PluginFunctionMap” table (Figure 14) performs a critical association task be-
tween the “Plugin” and “Function” database tables. This table specifies how each plugin is
associated with a particular function, which ensures that actions in the interface are con-
sistently integrated with functions in the backend. A specially designed interface handler

Appl. Sci. 2023, 13, 11737 12 of 29

called “UICrt” is used for the “Create” operation. This handler is mapped to “FunctionId”
to trigger a specific “Function”. Thanks to this mechanism, the records specifying which
actions trigger a stored procedure are stored in the “PluginFunctionMap” table.

Figure 14. PluginFunctionMap data table.

“Action” (Figure 15) represents the actions of each plugin in the interface. It includes
operations or actions that occur as a result of user interactions.

Figure 15. PluginAction data table.

At the core of the automation process are sophisticated data tables that define pro-
duction parameters together with business rules. These data tables specify the directions
of code generation within the automation, which templates or structural elements are
preferred, and what kind of functionality the generated code will realize. In this context,
you can find examples of a few tables below.

• DefaultModuleWorkerTemplate: Defines the structure with which the module and the
worker template are associated. This table provides strategic information about how
the code structure of modules should be created.

• DefaultPluginAction: Defines the specific actions that plugins will perform. These
actions provide critical information about the functionality of the plugin.

• DefaultPluginFunctionType: Specifies the function types that plugins will contain.
This table provides information about what types of algorithmic functions plugins
should have.

• DefaultPluginListen: Defines the events that plugins should listen for. This spec-
ifies what kind of reaction mechanism the plugin should have in an event-based
architecture.

• DefaultPluginTemplate: Specifies the basic templates to be used for plugins. This
defines which template to reference during code generation.

• The functionality and configuration of plugins are often organized around specific
templates and rules. In this context, the PluginTemplate and Action tables are an
excellent example of this type of configuration.

The PluginTemplate table (Figure 16) defines the basic templates of plugins. For
example, a plugin with a PluginTemplateID value of 1 indicates a form-based structure. A
form-based structure is typically used to receive user input and process data. Therefore, it is
natural for a form plugin to require specific actions, such as submit, delete, lock, and unlock.

Appl. Sci. 2023, 13, 11737 13 of 29

Figure 16. PluginTemplate data table.

The Action table (Figure 17) identifies these actions. Each action has a unique ActionID
associated with the DefaultPluginAction table (Figure 18) to determine which plugin
template supports which actions. For example, the form template with PluginTemplateID 1
supports actions with ActionIDs 8, 9, 10, and 11.

Figure 17. Action data table.

Figure 18. DefaultPluginAction data table.

They automatically select the HTML template that best suits the user’s needs based
on specific business rules. In particular, when creating a data table, this automation
platform automatically selects a form-based HTML template to ensure consistent input
data collection. When the data set needs to be listed or queried, another listing-oriented
template is preferred to ensure the data are presented appropriately. Workflows defined
in the process editor also benefit from this automation. When a conditional workflow is
created, the platform automatically adapts an HTML template with functional buttons such
as “approved” or “not approved”. In short, these automated code generation platforms
select the most appropriate HTML template based on business rules, thus speeding up and
standardizing the software development process. Such a structure allows the software to be
modular and customizable. It also provides a framework for determining which software
components fulfill which functions. This allows the software to have consistency, ease
of maintenance, and scalability. In the fourth stage, JSON data modeling was adopted, a
popular approach in response to today’s data storage and cross-platform data transfer needs.
The JSON generation process, triggered from the web interface through the code generation
editor, automatically converts the data in the database into JSON format. As a result of
triggering the “Generate JSON” command through the code editor of the low-code platform,
the information of essential components such as Element, Plugin, Function, and Action is
automatically converted into JSON format. This conversion process is structured through

Appl. Sci. 2023, 13, 11737 14 of 29

the main sections of the JSON schema, namely Description, Plugins, and JobSpaceAction.
The detailed structure of the generated JSON schema is shown in Figure 19.

Figure 19. JSON Schema.

In the fifth stage, the JSON conversion performed through the web interface is in-
tegrated into the system. The HTML code generation process performs automatic code
generation based on JSON data sets. This coding is based on tags that define how the
documents interact and how the content (text and images) is positioned. For example,
for a button component, the relevant records in the database are automatically mapped
to the specified action functions and plug-ins. The HTML template example in Listing 1
illustrates a templating mechanism used in contemporary web applications for dynamic
data integration. The corresponding HTML element is decorated with different data-*
attributes. The {{ }} constructs inside these attributes represent variable or function calls of
the templating language.

Listing 1. HTML template example for the ’div’ section of a form-based workflow.

1 <div class="worker jobspaceaction-form worker-right-side"
2 data-workertype="jobspaceaction-form"
3 data-workerconnections="{{ toJSON WorkerConnections }}"
4 data-assetkey="{{ this. JobSpaceAction.Entity.Assetkey }}"
5 data-jobspaceactionid="{{this. JobSpaceAction.JobSpaceActionID }}"
6 data-jobspaceactionkey="{{this. JobSpaceAction.JobSpaceActionkey }}"
7 data-workername="{{ this.JobSpaceAction.JobSpaceActionName }}">
8 </div>

Appl. Sci. 2023, 13, 11737 15 of 29

The specified HTML segment reflects a typical component of process flow tem-
plates. This particular segment is directly associated with the JSON data structure in
the Root.JobSpaceAction scope. The “{{ }}” notation used facilitates dynamic data injection,
whereby the relevant JSON data elements are automatically injected into the template and
blended with the specific information of the process flow. As in Listing 2, these placeholders
are replaced with the corresponding values during templating, resulting in flexible and
dynamic content.

Listing 2. Generated HTML code for the “div” section of a form-based workflow.

1 <div class="worker jobspaceaction-form worker-right-side"
data-workertype="jobspaceaction-form" data-workerconnections=""
data-assetkey="StudentID" data-jobspaceactionid="69"
data-jobspaceactionkey="13 df19af-26cb-465d-a9f5

2 -be2b25ef1244" data-workername="test">

The specified code examples are parts of a templating mechanism used for dynamic
web content generation. The first code segment (Listing 3) reflects the Handlebars.js
templating language used to dynamically generate buttons for specific actions by browsing
plugins based on a given set of criteria. In particular, this segment creates buttons for the
“clear”, “delete”, and “save” types defined within a “form” plugin.

Listing 3. HTML template example for the “job–action–content” section of a form-based workflow.

1 <div class="job-action-content">
2 <div class="actions">
3 <div class="form-action">
4 {{# each Plugins }}
5 {{# if_eq this.Description.Name 'form'}}
6 {{# each this.Plugins }}
7 {{# if_eq this.Description. Type 'clear '}}
8 ({# button this}} {{/ button)}
9 {{/ if_eq}}

10 {{# if_eq this.Description. Type 'delete '}}
11 {{# button this}} {{/ button }}
12 {{/ if_eq}}
13 {{# if_eq this.Description. Type 'save'}}
14 {{# button this}} {{/ button }}
15 {{/ if_eq}}
16 {{/ each}}
17 {{/ if_eq}}
18 {{/ each}}
19 </div>
20 <div class="job-action">
21 <a class="btn btn-green jobactionlink"
22 data-key="{{ this.JobSpaceAction.JobSpaceActionkey }}">
23 <i class="fa fa-send-o"></i>
24 <span data-i18n="ui:jsallk
25 {{ this.JobSpaceAction.JobSpaceActionID }}">
26 {{ this.JobSpaceAction. JobSpaceActionName }} Send Request
27
28
29 </div>

The second code segment (Listing 4) extends this template. Here, static HTML buttons
are displayed for specific actions, while the properties and functionality of the buttons are
fed with JSON data used in the background. This dynamic data injection allows the quick
integration of customized interactive elements into the user interface in a suitable way.

Appl. Sci. 2023, 13, 11737 16 of 29

Listing 4. Generated HTML code for the “job–action–content” section of a form-based workflow.

1 <div class="job-action-content">
2 <div class="actions">
3 <div class="form-action">
4 <button type="button" class="btn btn default"
5 data-plugin="button" data-type="clear"
6 data-plugin-settings="{'Common ':{'color ':'btn-default ','icon ':'fa-recycle '},'

Definition ':{}}" data-plugin-listens="" data-plugin-module="'Student '" name="
Student_clear">

7 <i class="fa fa-recycle"></i>
8 Clear
9 </button>

10 <button type="button" class="btn btn default"
11 data-plugin="button" data-type="delete"
12 data-plugin-settings="{'Common ':{'color ':'btn-default '}, 'Definition ':{}}"
13 data-plugin-listens="" data-plugin-module="'Student '" name="Student_delete">

<i class="fa "></i>
14 Delete
15 </button>
16 <button type="button" class="btn btn default"
17 data-plugin="button" data-type="save"
18 data-plugin-settings="{'Common ':{'color ':'btn-default '}, 'Definition ':{}}"
19 data-plugin-listens="" data-plugin-module="'Student '" name "Student_save">
20 <i class="fa "> </i>
21 Save
22 </button>
23 </div>
24 <div class="job-action">
25 <a class="btn btn-green jobactionlink"
26 data-key="13 df19af-26cb-465d-a9f5-be2b25ef1244">
27 <i class="fa fa-send-o"></i>
28 Send Request
29
30
31 </div>
32 </div>
33 </div>

The first code fragment (Listing 5) represents a raw template containing some place-
holders. These placeholders are denoted by { } structures and are intended to be filled with
JSON data, usually retrieved from a server or generated on the client side.

Listing 5. HTML template example for the “entity–form” section of a form-based workflow.

1 <div class="entity-form-content form">
2 {{# each Plugins }}
3 {{# if_eq this.Description.Name 'form'}}
4 {{# form this}} {{/ form}}
5 {{/ if_eq}}
6 {{/ each}}
7 </div>

When applied in the second code block (Listing 6), the templating process of the
generated HTML generates the final HTML form of the dynamic content. In the second
block, we see a completed student form. While the form collects information such as the
student’s name, certain “handler" functions are used to process and store this information.
These functions are defined in the form’s data–plugin–proxies attribute and are used for
various operations such as creating, reading, updating, and deleting student information.
In addition, the data–plugin–listens attribute is used to specify the functions that should
be performed in response to specific events in the form (e.g., saving student information).
Figure 20 reflects an HTML view representing the final result of the automated code
generation process. This visualization is a typical example of what an automated web
interface can look like. This result is essential for developers and engineers to evaluate the
success of automated coding processes.

Appl. Sci. 2023, 13, 11737 17 of 29

Listing 6. Generated HTML code for the “entity–form” section of a form-based workflow.

1 <div class="entity-form-content form">
2 <form action="javascript:void (0)"
3 data-plugin="form"
4 name="Student_form"
5 data-plugin-settings="{'Common ':{},' Definition ':{}}"
6 data-plugin-proxies="[
7 {
8 'Handler ':'UICrt ',
9 'Service ':'StudentService ',

10 'Module ':'Student ',
11 'Function ':'Create ',
12 'Inputs ':['StudentName ','CreateUserID '],
13 'Require ':[]
14 },
15 {
16 'Handler ':'UISlct ',
17 'Service ':'StudentService ',
18 'Module ':'Student ',
19 'Function ':'Read ',
20 'Inputs ':['StudentID '],
21 'Require ':[]
22 },{
23 'Handler ':'UIUpdt ',
24 'Service ':'StudentService ',
25 'Module ':'Student ',
26 'Function ':'Update ',
27 'Inputs ':['StudentID ','StudentName ','CreateUserID '],
28 'Require ':[]},
29 {
30 'Handler ':'UIDlt ',
31 'Service ':'StudentService ',
32 'Module ':'Student ',
33 'Function ':'Delete ',
34 'Inputs ':['StudentID ','CreateUserID '],
35 'Require ':[]},
36 {
37 'Handler ':'UILck ',
38 'Service ':'StudentService ',
39 'Module ':'Student ',
40 'Function ':'Lock ','Inputs ':['StudentID '],
41 'Require ':[]
42 },
43 { 'Handler ':'UIUnLck ',
44 'Service ':'StudentService ',
45 'Module ':'Student ',
46 'Function ':'UnLock ',
47 'Inputs ':['StudentID '],
48 'Require ':[]
49 }]"
50 data-plugin-description="{'Name ':'form ','Type ':'form ','

Settings ':{'Common ':{},' Definition ':{}},
51 'Route ':{'ServiceName ':'StudentService ', 'ModuleName ':'

Student ',
52 'WorkerName ':'studenttalepformu2_10_09_2023_www '}}"
53 data-plugin-listens="[
54 {
55 'ActionFunction ':'lock ',
56 'ListenPlugin ':'lck ',
57 'ListenEvent ':'Student_lck_click '
58 },
59 {
60 'ActionFunction ':'unlock ',
61 'ListenPlugin ':'unlock ',
62 'ListenEvent ':'Student_unlock_click '
63 },
64 {
65 'ActionFunction ':'submit ',

Appl. Sci. 2023, 13, 11737 18 of 29

66 'ListenPlugin ':'save ',
67 'ListenEvent ':'Student_save_click '
68 },
69 {
70 'ActionFunction ':'delete ',
71 'ListenPlugin ':'delete ',
72 'ListenEvent ':'Student_delete_click '
73 },
74 {
75 'ActionFunction ':'clear ',
76 'ListenPlugin ':'clear ',
77 'ListenEvent ':'Student_clear_click '
78 }]"
79 class="fixed-height form-horizontal form-bordered

form-label-stripped">
80 <div class="form-body">
81 <div class="form-group form-md-line-input ">
82 <label for="StudentName" class="col-md-3 control-label"

data-i18n="Student:StudentName">StudentName</label>
83 <div class="col-md-9">
84 <div class="input-icon">
85 <textarea data-plugin="input" class="form-control

" id="StudentName" name="StudentName"
data-plugin-settings="{'Common ':{'type ':'
textarea ','icon ':'fa-pencil-square-o ','
icon_type ':'input '},'Definition ':{}}"
data-plugin-listens=""></textarea>

86 <div class="form-control-focus"></div> <span
class="help-block" data-i18n="
Student:StudentName_desc">
Student:StudentName_desc <i class="fa
fa-pencil-square-o "></i>

87 </div>
88 </div>
89 </div>
90 <input data-plugin="input" id="StudentID" type="hidden"

class="identity-class" name="StudentID"
data-plugin-settings="{'Common ':{'hidden ':'true ','Class
':'identity-class '},'Definition ':{}}"
data-plugin-proxies="" data-plugin-listens="">

91 </div>
92 </form>
93 </div>

Figure 20. GeneratedHTML web page view.

This templating approach illuminates how the data and presentation layer are ef-
fectively separated and integrated with dynamic web applications. This methodology
significantly facilitates code readability and maintainability while increasing the flexibility
of the application. In addition, we observe that dynamic HTML generation is possible in
just a few steps by incorporating a manually created database into the low-code platform
with the “Register” command and then using the “Generate JSON” and “Generate HTML”
commands. This dramatically increases the efficiency and speed of development processes.
The integration between the interface and the backend is realized using the RESTful web
service. This methodology unlocks the potential of automatically coding existing stored
procedures based on database tables. The generated code is compatible with RESTful
service protocols. Following the automated coding process, the resulting web service
code is compiled, and the DLL file generated due to this compilation must be hosted on
the target server. The automation process is presented in the pseudocode below. In this
pseudocode, the “Create” and “Update” methods are examples of the web service code

Appl. Sci. 2023, 13, 11737 19 of 29

pattern (Listing 7). We can observe that the CreateMethodName, MethodReturnType, table
name, and model variables are dynamically assigned; these variables are populated based
on the corresponding database table, thus enabling automatic code generation.

Listing 7. Web service code pattern.

1 [Route("<#=MetaHelp.CreateMethodName #>")]
2 [HttpPost]
3 public <#=MetaHelp.MethodReturnType#> <#=MetaHelp.CreateMethodName #>
4 (SP_<#=table.Name #>_SELECT_Result model)
5 {
6 return db.SP_<#=table.Name #>_CREATE(
7 <#=NETHelp.WriteCreateClause(table , "model") #>).FirstOrDefault ();
8 }
9 [Route("<#=MetaHelp.UpdateMethodName #>")]

10 [HttpPut]
11 public <#=MetaHelp.MethodReturnType#> <#=MetaHelp.UpdateMethodName #>
12 (SP_<#=table.Name #>_SELECT_Result model)
13 {
14 return db.SP _<#=table.Name #>_UPDATE(
15 <#=NETHelp.WriteUpdateValues(table , "model") #>).FirstOrDefault ();
16 }

The automatically generated code of the ASP.NET Web API is essential in data inte-
gration. However, it should be noted that this automatic process requires some manual
steps. In particular, the DLL obtained after compilation must be manually integrated into
the server. This is an indispensable step for efficient data transmission between the client
and the backend.

One of the notable advantages of our implementation is the method we have adopted
for data exchange. We have fragmented the delivery process rather than delivering all
assets in a single monolithic chunk. HTML, CSS, and data are retrieved separately, ensuring
swifter loading times. No matter the expansion of our site, each time a webpage is accessed,
it necessitates packets of JavaScript, HTML, CSS, and other data. Our pages load with
remarkable speed by fetching these assets individually from the server and database.
Moreover, our system works with a Content Delivery Network (CDN) methodology. It
verifies content versions and sends requests only for the changed assets. While this boosts
performance, it is pivotal to recognize that scalability presents its unique challenges, which
we tackle using distinct techniques.

In Figure 21, HTML and JSON codes in the Source field in the WorkerContent table
are integrated into these low-code platforms to support the dynamic content creation and
display process. Regarding the functioning, firstly, code fragments in HTML and JSON
format are saved in the specified database. These codes contain the structures and features
that the user will use in their applications on the web. These saved code fragments are
pulled from the database on demand by the platform and dynamically rendered on the
user’s interface. This process enables rapid prototyping, testing, and final release of the
application. At the same time, centralized storage of code in a database brings operational
advantages such as version control, backup, and deployment. As a result, this integration
capability of low-code platforms accelerates application development processes, minimizes
errors, and provides users with a more flexible development environment.

Figure 21. WorkerContent data table.

3.2. Creating a Workflow Process in a Web Environment

In the implementation of the process, firstly, the tasks are detailed. Then, using the Web
Application interface called “Process Design Editor”, the relationship and interaction flow

Appl. Sci. 2023, 13, 11737 20 of 29

between these tasks are designed. This editor supports drag and drop, providing developers
with an essential convenience in dynamically visualizing and editing the process. In
Figure 22, taken as a reference, we can examine how users interact with flowchart flow
diagrams to design a business process. Each symbol and flowchart represents a specific
functionality or part of a process.

Figure 22. Flow diagram elements.

The conditional flow, shown in Figure 23, enables the workflow to follow different
paths as a specific condition is fulfilled. This methodology supports dynamic routing in
the workflow based on specific conditions. Binary decision mechanisms typically evaluate
the conditions. This fulfills the requirements for branching and merging workflows so that
processes become more flexible and allow the flow to be managed accurately.

Figure 23. Condition flow diagram element.

Single Task Flow, depicted in Figure 24, is a workflow model in which each task is
sequenced based on the completion of the previous one. This model is ideal for simple,
low-complexity processes where tasks build on each other and occur sequentially. In
this structure, where each task has a specific priority, high efficiency is achieved with the
correct sequencing.

Figure 24. Single Task Flow elements in condition scenario.

The Multi-Task Flow presented in Figure 25 represents a workflow model in which
multiple tasks are performed in parallel. This model emphasizes the independence of tasks
within the process so that simultaneous progress is achieved without waiting for each task
to complete. This approach is preferred for complex processes where waiting times must be

Appl. Sci. 2023, 13, 11737 21 of 29

minimized. The creation of the workflow is realized using specific design tools. These tools
help place the workflow steps sequentially with “drag and drop” features. Workflow steps
represent specific actions, such as sending an e-mail or retrieving data from a database.
This process includes the following steps:

• The purpose of the workflow is defined.
• Specific steps and their dependencies are identified.
• A flow diagram is created showing the connections between the steps.
• The inputs and outputs of the workflow are defined.
• The workflow is validated by testing.

Figure 25. Multiple Task Flow elements in condition scenario.

Order reception, processing, dispatch, invoicing, and payment confirmation. These
steps proceed with specific inputs and are performed under predefined conditions. In
Figure 26, the process editor has a panel that defines the characteristics of each flow, the
associated service module, and the associated data package. The “Task Form” contains
information retrieved from the Service and Module databases, while the “Task Actions”
correspond to actions in the Flowchart.

Figure 26. Characteristics of a workflow.

Using the same example, the diagram in Figure 27, the process screen shows the
workflow process. In order to make a design, the design is realized by dragging and
dropping the elements in the panel in the design editor. An example of a “Leave Request
Form” is given in Figure 27. This means that students are associated with the Leave Request
Form module, and the data for each workflow are retrieved from the “Student” database.

Appl. Sci. 2023, 13, 11737 22 of 29

Figure 27. Work area of the Process Design Editor.

Definitions are made for manually added elements in the panel in the workspace. The
completed design is converted to the mxGraph model. mxGraph is a JavaScript library
for graphical interface designs and diagrams, enabling the creation of web-based visual
models. It is known for its customization and integration capabilities. Listing 8 presents an
example converted from workflow to mxGraph model; the “Confirmed” action indicates
the next steps.

The coded version of the workflow model shown in Figure 28 is given in Listing 8.
Each workflow element is identified with a unique identification number. The descriptions
of the fields in the code example are as follows:

Listing 8. The mxGraph model of a workflow given in Figure 28.

1 <mxCell
2 id="0353 db73-9856-4f8b-a4a3-a370c37d1502"
3 value="APPROVED"
4 <mxGeometry x="1"y="0.5"width="23"height="23"relative="1"
5 as="geometry">
6 <mxPoint x="-20"y="-12"as="offset"/>
7 </mxGeometry>
8 <JobConnectionDto as="data">
9 {

10 "obj":{
11 "AssetKey":"JobActionID",
12 "AssetValue":1767 ,
13 "Connect":"out",
14 "JobSpaceID":230,
15 "EventTypeID":2,
16 "Title":"Approved",
17 "TitleFull":"testonay",
18 "StyleFormater":"accept",
19 "_":{
20 "JobActionID":1767,
21 "JobPackageID":5521,
22 "JobActionName":"Approved",
23 "JobActionKey":"0353 db73-9856-4f8b-a4a3-a370c37d1502",
24 "IsBaseAction":true ,
25 "UserID":"4f7ae81d-96ce-4217-bfef-fd687328ca79",
26 "JobPackageName":"testonay",
27 "Durum":1,
28 "LogicValue":1,
29 "SortOrder":99
30 }
31 }
32 }
33 </JobConnectionDto>
34 </mxCell>

Appl. Sci. 2023, 13, 11737 23 of 29

Figure 28. A sample workflow created using workspace.

Here are some of the properties for workflow items:

• ID: The unique identification number of the items.
• Value: The name of the item, such as “Approved”.
• AssetKey: The unique identifier of the asset.
• JobSpaceID: The ID of the workspace.
• EventTypeID: Defined type of the event.
• JobActionID: ID of the action.
• JobPackageID: Number of the data package to use.

When the user operates, the relevant information is retrieved from the database in real
time. With this information, workflow processes are created using the graphical design
tool. Finally, the created model is transformed with mxGraph and saved in the database
(Figure 29) .

Figure 29. GraphEditor source data table.

Each flowchart is saved in the database after conversion into a Business Model. The
Business Model is essential for automating, coordinating, and scheduling business pro-
cesses. This model specifies the steps required by the work, the sequence of these steps,
the relevant data, and the actions to be performed at each step. This automation allows
operations to be performed quickly, efficiently, and without errors. The transformed Busi-
ness Model is stored and labeled in a separate database. This labeling is critical in defining
and guiding complex processes with multiple actions. The automatically generated HTML
element contains a fundamental property called “data-jobspaceactionkey”. This key is
directly related to the ReflectionEventKey in the database and is called JobActionKey. Re-
flectionEventID information is retrieved from the database through this specific key when
any action is triggered in the user interface. The resulting ID is used with the EntityID to
guide further process steps (Listing 9).

Listing 9. Generated HTML code with the job action key.

1 <div class="worker jobspaceaction-form worker-right-side"
data-workertype="jobspaceaction-form" data-workerconnections=""
data-assetkey="StudentID" data-jobspaceactionid="68"
data-jobspaceactionkey="111 a9f99-ecea-42e3-8e2d-51f8ae1e8a67"
data-workername="Student Request Form">

Appl. Sci. 2023, 13, 11737 24 of 29

Within the structure in which the processes are defined, the relational data expressing
the transitions from one process to another are already stored in the database and are
retrieved from this database. This relational data set is stored in the ReflectionEvent table
(Figure 30). In the example, jobspaceactionkey on the HTML side and ReflectionEventKey
in the data table are the same.

Figure 30. ReflectionEvent data table.

When switching to the next screen, the required screen information is retrieved through
a specific ReflectionEventKey and presented to the user (Figure 31).

Figure 31. ReflectionMap data table.

The “ReflectionMap" table is a critical mapping table for centralized management of
the automation processes of information systems. The primary function of this table is to
determine which process or screen will be activated according to the results of user actions.

• ReflectionMapID: Unique identifier of the record.
• JobSpaceName: The name of the process space.
• SourceJobPackageName: The name of the starting package from which the action is

started.
• ReflectionEventName: Identifies the triggered event, usually indicating which phase

the form is in.
• JobPackageName: Indicates which package will be activated after the triggered action.
• JobSpaceID: Unique ID of the process space.
• EntityID: Indicates the screen or process step to be activated.
• ReflectionEventID: The unique ID of the triggered event.

This table is designed to effectively manage the processes corresponding to user
actions in the automation process. It determines which process or screen is activated
when a user performs a specific action. It also provides a mapping between actions and
results, which allows the automation processes within the system to proceed smoothly. This
integrated structure allows the system to manage automation processes more efficiently
while allowing the user a more fluid and seamless experience. User actions on the screen or
form are instantly processed through the RabbitMQ messaging infrastructure. RabbitMQ
is frequently used in microservice architectures with its flexible and secure protocols. For
example, in an educational institution, the permission form filled out by the student is
immediately notified to both the administration and the relevant teachers via RabbitMQ.
This process occurs thanks to RabbitMQ’s publish/subscribe model, where messages are
usually packaged in JSON or XML format (Listing 10).

Listing 10. RabbitMQ: publish/subscribe messaging with JSON and XML.

1 data = {
2 "Name": "John Smith",
3 "permission_type": "sickleave",
4 "start_date": "2023 -04-18",
5 "end_date": "2023 -04-25"
6 }

Appl. Sci. 2023, 13, 11737 25 of 29

The third step is to send the data packet to a specific queue:

Specify the queue name and the data packet
queue_name = ’permission_form’ message = json.dumps(data)
Send message to queue
channel.basic_publish(exchange=”’, routing_key=queue_name, body=message)
Close the connection connection.close()

Messages are sent in JSON format to the permission_form queue using the basic_publish
function and distributed to connected consumers. This communication is coordinated
under the SAGA architecture and state machine. SAGA is an architectural model for
microservice-based, autonomous, and decentralized applications. While each microservice
runs on its database, the SAGA transaction execution manager ensures data consistency.
This manager maintains data integrity when an error occurs by rolling back transactions.
This architecture supports the independent development and scaling of microservices.
Concurrent interaction is realized through the SignalR framework. The basic steps followed
in the process of construction are as follows:

• Data Modelling: this is essential to design database structures. The database schema
is visualized with the data modeling tools provided by the software used.

• Process Definition: tools such as MxGraph are used to design business processes
graphically.

• Interface Design: the application’s user interface is prepared with the visual interface
design module provided by the software.

• Determination of Business Rules: rules regarding business logic are defined with the
relevant software modules.

• Testing and Execution: the prepared process is tested to check its accuracy and func-
tioning.

• These steps are carried out with software tools that enable processes to be built
effectively.

4. Experimental Method and Evaluation

In the first phase of the experiments, web application design was performed manually.
Then, web application design was realized using automatic coding. The experiments’
evaluation criteria were determined, and are presented in Table 2.

Table 2. Evaluation criteria and explanations.

Name Description

Development Process Time Time spent in web application development
Number of Test Runs Number of test runs performed during implementation

Number of Errors Number of errors made during implementation
Number of Code Lines Number of lines of code (LOC) of the generated HTML file

Below are the items for manual and automated processes:
Manual Process Stages:

• Database Design: this stage is where the database foundations, which are at the heart
of the software, are laid.

– Defining Tables: the phase in which the structure in which the information to be
stored in the database will be stored is determined.

– Creating Stored Procedures: functions and commands prepared to perform
database operations faster and more effectively.

• Front End Development: at this stage, the software’s user interface is designed.

– Creating HTML: the part where the basic visual structure of the website is created.
– CSS Integration: the stage where the visual features of the website are stylized.

Appl. Sci. 2023, 13, 11737 26 of 29

– JavaScript Coding: coding language used to interact with the user and add
dynamic features.

• Server Side Development: server-related operations and optimizations are performed
in this stage.

– Receiving the Preliminary Workflow Data Package: receiving and processing the
data packets of the first steps in the workflow.

– Server Side Programming: writing the codes that process the user’s requests and
interact with the database.

– Model Compatible Transformation and Packaging: packaging the data following
the workflow model.

– API Development: designing interfaces to optimize data exchange.
– API File Compilation and Server Integration: integration of the prepared API

into the server.
– Stored Procedures and Database Operations: development of queries and proce-

dures used to interact with the database.
– Dynamic Screen Orientation Coding: coding allows the screen to be orientated

according to user interaction.

Automated Process Stages:

• Table Definition: manual definition of database tables.
• Running Functions for CRUD: functions that automatically perform CRUD operations

(“Create”, “Read”, “Update”, and “Delete” stored procedures) are created automati-
cally by clicking a button to run the function that allows you to create them quickly
and error-free.

• Selecting and Saving a Data Table from the Low-Code Platform: After logging in to
the low-code platform, users select the relevant data table in the database. This table
is displayed with an automatically generated user interface (UI). After selecting the
data table, users click a “register” button. This triggers database transactions.

• Running the Function to Automatically Generate API Codes: Automatic generation of
API codes that enable data exchange between the server and the client. This automatic
generation process is performed only once for a single data table. It is performed only
once for several tasks in a given process.

• Opening the Process Editor on the Low-Code Platform: on the low-code platform,
opening the process editor and selecting the desired workflow and adding it to the
process editor.

• JSON and HTML Generation: Using the code editor available on the low-code platform
for the selected workflow, users click the “Generate JSON” and then “Generate HTML”
buttons. These steps automatically generate how the data will be displayed in JSON
and HTML.

• Saving JSON and HTML Codes Generated from Low-Code Platform to the Database:
storing the generated codes in the database.

• Establishing Workflow Connection in Process Editor: establishing the connection of
workflows.

In the implementation of automated processes, the process can take approximately
2 min longer at the beginning of each new process due to the need to generate the API and
put the generated compiled file (DLL) on the server. This additional time occurs in the first
workflow due to the data import used in this process. However, there is no need for such a
wait in the following workflows, because we use the same database table. According to
the workflows defined in the process editor, the HTML configuration is also automatically
shaped. For example, when you add a “form” workflow, the necessary input elements are
automatically added with buttons such as “save”, “delete”, and “clear”. However, special
buttons such as “approved” or “not approved” are added for a conditional workflow.
This automatic configuration enables the process to be highly optimized and ensures that
transactions are carried out quickly and efficiently.

Appl. Sci. 2023, 13, 11737 27 of 29

The metrics of the development process directly affect the effectiveness of the process.
The metrics mentioned by Akbulut and Toprak [23] and Possatto and Lucrédio [24] have
contributed significantly to the efficiency of this process. In particular, the bug count metric
is directly linked to the developer’s productivity, and the code size metric reflects the
system’s performance. At the same time, it is also known that increasing the code size
increases the potential for errors. A practical scenario is as follows. This scenario was
implemented with both manual and automated methods. The data collected during the
implementation were analyzed according to the evaluation metrics. The analysis results
show that the automatic code generation method can offer developers a faster and more
effective process than the manual method. This advantage of automated methods increases
the effectiveness of the process. The results of the experiment reveal the following essential
findings in the comparison of automated and manual code development processes:

• Development Process: The average manual development time was 227.6 min, but the
automated process reduced this to 3 min. This represents an efficiency increase of
98.68% in the development process.

• Number of Test Runs: Automated code and process generation requires only two test
runs, while the manual process requires many more test runs. This corresponds to
an improvement of 95.84%. In the manual method, this number is increased due to
correctness testing of different stages, potential bug fixes, and repeated testing. The
main advantages of automating the tests are shortening the development process and
reducing the use of the central processor.

• Number of Bugs: When the error rates of the automated and manual code generation
processes were compared, it was found that various errors occurred in the manual
process, but the error rate in the automated process was zero. The detection of these
errors is based on the sum of the user-related errors specified in the “error" section
when run in the Visual Studio IDE environment. This indicates that the automated
process is more reliable than the manual one. Furthermore, this finding implies that
the number of errors is directly related to the number of test runs. A high defect rate
is a factor that drives continuous test execution due to the need to fix defects.

• Code Size: The automatic code generation process was found to have a 36.01% more
compact code size than the manual process. This is due to the efficient management
of repetitive code blocks in the automated process. This optimization increases the
speed of the process and prevents unnecessary code redundancy.

The findings show that automatic code generation offers more advantages than manual
approaches. Based on these data, it is observed that automated code generation saves
both time and cost in development processes. Furthermore, this automation approach
significantly reduces error rates, with fewer iterations required in the testing process. From
a computer engineering perspective, this is a critical method to increase efficiency and
reliability in software development processes.

5. Conclusions and Comments

Automated code generation is receiving increasing attention in the software engi-
neering discipline. Developers and researchers are adopting automated code-generation
strategies to improve code quality and implementation efficiency. Especially in large-scale
projects, manual code-writing processes can be time consuming and more prone to errors.

In our experiments, we compared the efficiency and accuracy of manual (Man) and
automated (Auto) coding processes for various tasks, as illustrated in Table 3. Our results
show that automated code generation significantly reduces development time; for instance,
the Permission Request Process that took 960 min manually was reduced to just 13 min
using the automated approach. The number of test runs required also reduced significantly
with automated code generation, with the average number decreasing from 20.8 in manual
processes to 2 in automated processes. The number of errors dropped to zero in all
automated processes, whereas manual coding had an average of 14.9 errors across the tasks.

Appl. Sci. 2023, 13, 11737 28 of 29

Finally, the number of code lines was also optimized with automation, with an average
reduction from 176.75 lines in manual coding to 113.1 lines in automated coding.

However, the advantages of automated code generation are accompanied by specific
challenges. For one, complex code blocks automatically generated by the system can
pose challenges during maintenance and update processes. There is also the concern that
automation, built around specific standards and templates, could limit customization.
Furthermore, the intricacies and in-depth details of some automated code generation
systems might overwhelm novice software engineers, necessitating additional investments
in training and adaptation processes.

Table 3. Experiment table.

Process Name

Development
Process Time

(min)

Number of
Test Runs

(#)

Number
of Errors

(#)

Number of
Code Lines

(#)
Man Auto Man Auto Man Auto Man Auto

1. Permission Request Process 960 13 82 8 59 0 751 429
1.1. Permission Request Form 522 6 40 2 32 0 422 218
1.2. Permission Approval Form 312 3 27 2 21 0 249 151
1.3. Permission Approval Notification Form 63 2 6 2 2 0 40 30
1.4. Permission Refusal Notification Form 63 2 6 2 2 0 40 30
2. Service Request Process 1772 23 168 16 120 0 1370 929
2.1. Service Request Form 495 5 37 2 34 0 358 186
2.2. Task Notification Form 70 2 11 2 6 0 54 36
2.3. Service Manager Job Assignment Form 347 4 35 2 22 0 241 182
2.4. Request Closure Form 241 3 24 2 19 0 206 161
2.5. Request Editing Form 211 2 16 2 11 0 211 153
2.6. Service Manager Request Closure Approval
Form

294 3 33 2 24 0 208 148

2.7. Request Closure Approval Notification Form 55 2 7 2 3 0 45 33
2.8. Request Closure Rejection Notification Form 59 2 5 2 1 0 47 30
Average Values 227.6 3 20.8 2 14.9 0 176.75 113.1

No-code and low-code approaches take automated code generation to a more abstract
level. These approaches include drag-and-drop editors and component-based design
techniques. The proposed methodology synthesizes these approaches and provides a
comprehensive platform for automated code generation. Extending this approach may
bring technical challenges, like the need for deeper analyses in database management,
security, and authentication. In light of our implementation strategy and the integration
of CDN technology, the optimized data exchange method accelerates performance. It
solidifies our system’s scalability, showcasing the possibility of seamlessly blending speed
with expansive growth in software systems. In summary, while automated code generation
offers significant advantages regarding development time, test runs, error rates, and code
optimization, it is crucial to be mindful of the challenges presented, especially when
considering its broad adoption. Future research should focus on mitigating these challenges
while refining and expanding the techniques to cater to industry needs.

In subsequent research, a pivotal focus will be on deploying and optimizing automated
code generation techniques in enterprise-scale infrastructures, where numerous forms,
complex workflows, and intricate integration processes necessitate advanced algorithmic
solutions and software paradigms.

Author Contributions: Conceptualization, B.U. and A.S.; Methodology, B.U. and A.S.; Software,
B.U.; Formal analysis, B.U. and A.S.; Investigation, A.S.; Resources, B.U. and A.S.; Writing—original
draft preparation, B.U. and A.S.; Writing—review and editing, B.U. and A.S.; Visualization, B.U. All
authors have read and agreed to the published version of the manuscript.

Appl. Sci. 2023, 13, 11737 29 of 29

Funding: This research received no external funding.

Data Availability Statement: The data presented in this study are included within the article in the
form of tables.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Dijkman, R.M.; Dumas, M.; Ouyang, C. Semantics and analysis of business process models in BPMN. Inf. Softw. Technol. 2008, 50,

1281–1294. [CrossRef]
2. Paolone, G.; Marinelli, M.; Paesani, R.; DiFelice, P. Automatic Code Generation of MVC Web Applications. Computers 2020, 9, 56.

[CrossRef]
3. Durai, A.D.; Ganesh, M.; Mathew, R.M.; Anguraj, D.K. A novel approach with an extensive case study and experiment for

automatic code generation from the XMI schema Of UML models. J. Supercomput. 2022, 78, 7677–7699. [CrossRef]
4. Yongchareon, S.; Liu, C.; Zhao, X.; Yu, J.; Ngamakeur, K.; Xu, J. Deriving user interface flow models for artifact-centric business

processes. Comput. Ind. 2018, 96, 66–85. [CrossRef]
5. Idrees, M.; Aslam, F. A Comprehensive Survey and Analysis of Diverse Visual Programming. Vfast Trans. Softw. Eng. 2022, 10,

47–60. [CrossRef]
6. Mythily, M.; Valarmathi, M.L.; Durai, C.A.D. Model transformation using logical prediction from sequence diagram: An

Experimental approach. Clust. Comput. 2019, 22, 12351–12362. [CrossRef]
7. Zafar, I.; Azam, F.; Anwar, M.W.; Maqbool, B.; Butt, W.H.; Nazir, A. A Novel Framework to Automatically Generate Executable

Web Services From BPMN Models. IEEE Access 2019, 7, 93653–93677. [CrossRef]
8. Núñez, M.; Bonhaure, D.; González, M.; Cernuzzi, L. A model-driven approach for the development of native mobile applications

focusing on the data layer. J. Syst. Softw. 2020, 161, 110489. [CrossRef]
9. Sunitha E.V.; Samuel, P. Automatic Code Generation From UML State Chart Diagrams. IEEE Access 2019, 7, 8591–8608. [CrossRef]
10. Tragatschnig, S.; Stevanetic, S.; Zdun, U. Supporting the evolution of event-driven service-oriented architectures using change

patterns. Inf. Softw. Technol. 2018, 100, 133–146. [CrossRef]
11. Apostol, D.; Rusovan, P.; Marcu, M. UML to code, and code to UML, a view inside implementation challenges and cost. In

Proceedings of the 26th International Conference on System Theory, Control and Computing (ICSTCC), Sinaia, Romania, 19–21
October 2022; pp. 140–145. [CrossRef]

12. Sánchez-Morales, L.N.; Alor-Hernández, G.; Rosales-Morales, V.Y.; Cortes-Camarillo, C.A.; Sánchez-Cervantes, J.L. Generating
educational mobile applications using UIDPs identified by artificial intelligence techniques. Comput. Stand. Interfaces 2020, 70,
103407. [CrossRef]

13. Chaber, P.; Ławryńczuk, M. AutoMATiC: Code Generation of Model Predictive Control Algorithms for Microcontrollers. IEEE
Trans. Ind. Inform. 2020, 16, 4547–4556. [CrossRef]

14. Uyanık, B.; Şahin, V.H. A Template-based Code Generator for Web Applications. Turk. J. Electr. Eng. Comput. Sci. 2020, 28,
1747–1762. [CrossRef]

15. Bocciarelli, P.; D’Ambrogio, A.; Panetti, T.; Giglio, E. MDAV: A Framework for Developing Data-Intensive Web Applications.
Informatics 2022, 9, 12. [CrossRef]

16. Dinkelbach, J.; Razik, L.; Mirz, M.; Benigni, A.; Monti, A. Template-based generation of programming language specific code for
smart grid modelling compliant with CIM and CGMES. J. Eng. 2023, 1, e12208. [CrossRef]

17. Sebastián, G.; Tesoriero, R.; Gallud, J.A. Automatic Code Generation for Language-Learning Applications. IEEE Lat. Am. Trans.
2020, 18, 1433–1440. [CrossRef]

18. Ding, J.; Lu, J.; Wang, G.; Ma, J.; Kiritsis, D.; Yan, Y. Code Generation Approach Supporting Complex System Modeling based on
Graph Pattern Matching. IFAC-PapersOnLine 2022, 55, 3004–3009. [CrossRef]

19. Hu, K.; Duan, Z.; Wang, J.; Gao, L.; Shang, L. Template-based AADL automatic code generation. Front. Comput. Sci. 2019, 13,
698–714. [CrossRef]

20. Yang, G.; Zhou, Y.; Chen, X.; Zhang, X.; Han, T.; Chen, T. ExploitGen: Template-augmented exploit code generation based on
CodeBERT. J. Syst. Softw. 2023, 197, 111577. [CrossRef]

21. Anuar, A.W.; Kama, N.; Azmi, A.; Rusli, H.M. Revisiting Web Application Development with Integrated Records Management
Important Aspectusing Re-CRUD. J. Inf. Knowl. Manag. 2022, 12, 31–54.

22. Sunitha, E.V.; Samuel, P. Object constraint language for code generation from activity models. Inf. Softw. Technol. 2018, 103, 92–111.
[CrossRef]

23. Akbulut, A.; Toprak, S. Code generator framework for smart TV platforms. IET Softw. 2019, 13, 268–279. [CrossRef]
24. Possatto, M.A.; Lucrédio, D. Automatically propagating changes from reference implementations to code generation templates.

Inf. Softw. Technol. 2015, 67, 65–78. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1016/j.infsof.2008.02.006
http://dx.doi.org/10.3390/computers9030056
http://dx.doi.org/10.1007/s11227-021-04164-x
http://dx.doi.org/10.1016/j.compind.2017.11.001
http://dx.doi.org/10.21015/vtse.v10i2.1009
http://dx.doi.org/10.1007/s10586-017-1618-5
http://dx.doi.org/10.1109/ACCESS.2019.2927785
http://dx.doi.org/10.1016/j.jss.2019.110489
http://dx.doi.org/10.1109/ACCESS.2018.2890791
http://dx.doi.org/10.1016/j.infsof.2018.04.005
http://dx.doi.org/10.1109/ICSTCC55426.2022.9931871
http://dx.doi.org/10.1016/j.csi.2019.103407
http://dx.doi.org/10.1109/TII.2019.2946842
http://dx.doi.org/10.3906/elk-1910-44
http://dx.doi.org/10.3390/informatics9010012
http://dx.doi.org/10.1049/tje2.12208
http://dx.doi.org/10.1109/TLA.2020.9111679
http://dx.doi.org/10.1016/j.ifacol.2022.10.189
http://dx.doi.org/10.1007/s11704-017-6477-y
http://dx.doi.org/10.1016/j.jss.2022.111577
http://dx.doi.org/10.1016/j.infsof.2018.06.010
http://dx.doi.org/10.1049/iet-sen.2018.5157
http://dx.doi.org/10.1016/j.infsof.2015.06.009

	Introduction
	Related Work
	Architecture
	Automatic Code Generation to Create a Task
	Creating a Workflow Process in a Web Environment

	Experimental Method and Evaluation
	Conclusions and Comments
	References

