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Abstract: Due to the numerous objects with regular structures in indoor environments, identifying
and modeling the regular objects in scenes aids indoor robots in sensing unknown environments.
Typically, point cloud preprocessing can obtain highly complete object segmentation results in scenes
which can be utilized as the objects for geometric analysis and modeling, thus ensuring modeling
accuracy and speed. However, due to the lack of a complete object model, it is not possible to recognize
and model segmented objects through matching methods. To achieve a greater understanding of
scene point clouds, this paper proposes a direct geometric modeling algorithm based on segmentation
results, which focuses on extracting regular geometries in the scene, rather than objects with geometric
details or combinations of multiple primitives. This paper suggests using simpler geometric models
to describe the corresponding point cloud data. By fully utilizing the surface structure information of
segmented objects, the paper analyzes the types of faces and their relationships to classify regular
geometric objects into two categories: planar and curved. Different types of geometric objects
are fitted using random sampling consistency algorithms with type classification results as prior
knowledge, and segmented results are modeled through a combination of size information associated
with directed bounding boxes. For indoor scenes with occlusion and stacking, utilizing a higher-level
semantic expression can effectively simplify the scene, complete scene abstraction and structural
modeling, and aid indoor robots’ understanding and further operation in unknown environments.

Keywords: object segmentation; face recognition; oriented bounding box; geometric modeling

1. Introduction

With the continuous advancement of point cloud data acquisition technology and
processing algorithms, more and more researchers are paying attention to the application
and optimization methods of point cloud scene geometric modeling. For example, point
cloud scene geometric modeling can be applied in areas such as virtual reality [1], au-
tonomous driving [2], environment detection [3], and robotics [4], providing more efficient
and safe experiences and services. In daily work, there are a large number of geometric
primitives involved, such as planes, spheres, cylinders, and cones. Many complex objects
can also be seen as composed of these geometric primitives, and these primitives have
mathematical models. By representing the collected three-dimensional point cloud with
basic model parameters, the storage space is greatly reduced, compressing the model.
Geometric modeling of three-dimensional point clouds [5] not only enhances the auton-
omy of industrial robot grasping but also provides more information for the field of 3D
reconstruction [6], helping to make the reconstruction results more in line with real scenes.
This is particularly important in virtual reality applications as it provides more support for
virtual and real-world integration. In addition, geometric modeling techniques are also
very important in the field of surveying and mapping. They not only enable automatic
surveying and mapping, reducing human workload, but also provide security guarantees
in certain dangerous measurement environments.
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Solving the problem of automatically identifying geometric primitives, such as planes,
spheres, cylinders, and cones, from three-dimensional point clouds is a fundamental
problem in robot perception of the environment. Solving this problem can reduce the
difficulty of robot perception of the environment and bridge the semantic gap between
high-level semantics and low-level visual features. Many existing point cloud registration
techniques and point cloud polygon mesh reconstruction techniques can reconstruct the
collected 3D information well, but these techniques only reconstruct the surrounding
environment or study the topology of objects, without recognizing the objects semantically.
Therefore, using segmentation results as input is beneficial for achieving comprehensive
scene analysis. Typically, the operating scenes of indoor robots consist of objects with
regular structures, and with the gradual application of mathematical models in three-
dimensional space, combining point cloud segmentation and geometric analysis can achieve
modeling of regular objects, which helps reduce the perception difficulty of robots in
unknown environments [7].

The main contributions of this paper are as follows: (1) Introducing multiscale neigh-
borhood search to address the instability of feature value computation at a single scale,
enabling accurate determination of planar and curved surface types based on dimensional
features and curvature features. (2) Utilizing the normal vector relationship between planes
or surfaces as prior knowledge, using the Random Sample Consensus (RANSAC) algorithm
to verify and extract parameters of known types of geometric primitives. The entire process
does not require a training dataset and can quickly and accurately complete the geometric
parsing and modeling of indoor scenes.

2. Related Work

In order to understand the scene and reconstruct individual objects or the entire scene
using the segmented 3D data, usually only a few simple geometric primitives are needed,
such as planes, cylinders, and spheres [8]. However, acquiring complete object models
from real scenes can be challenging, making some matching-based methods unsuitable.
Therefore, methods that combine object segmentation and geometric modeling have been
proposed, mainly categorized into two types: entity-based modeling and surface-based
modeling [9].

Entity-based modeling methods directly operate on the segmented objects, identifying
geometries and fitting parameters based on extracted features of the entire object [10].
For example, Zhao et al. [11] proposed an approach based on iterative Gaussian mapping,
reconstructing geometric objects in indoor scenes based on the distribution of normals on
the Gaussian sphere and using improved RANSAC. In addition to traditional algorithms,
Li et al. [12] combined deep neural networks and proposed the BAGSFit framework,
which uses a fully convolutional neural network to achieve scene instance segmentation.
The framework estimates the probabilities of associated geometric types based on the
boundary of the entire object, enabling the modeling of three-dimensional primitives with
multiple modes. Entity-based modeling methods do not depend on accurate segmentation
results but are only suitable for modeling simple shapes.

Surface-based modeling methods, on the other hand, utilize different surface character-
istics of geometric primitives to accurately fit the segmented point cloud data with different
surfaces. This is followed by operations such as intersection, extension, and merging to
obtain complete geometric models [13]. Sun et al. [14] also extract surface features from
the scene to identify geometric primitives and construct a graph model based on the color
and geometric features of the primitives. They perform graph segmentation to achieve
scene segmentation and modeling. Stanescu et al. [15] proposed a method for semantic
segmentation and structure modeling of dense point clouds. They utilize an improved
RANSAC approach for fitting and refining the geometric primitives, combined with convex
hull and support vector machines for classification and merging of the primitives, resulting
in structural modeling of indoor scenes. Surface-based modeling methods can reconstruct
complex shapes, but the results depend on the accuracy of surface extraction and fitting.
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3. Methods

Firstly, we perform initial segmentation of the objects based on the superpixel cluster-
ing algorithm. After obtaining the complete object segmentation results, the composition of
each object’s super-voxels and facets, as well as the connection relationships between each
component, can be synchronously obtained. Based on this premise, we use the simplest
logic to analyze the geometric types of objects, extract the geometric parameters of objects,
and model them as prior knowledge. Firstly, according to the covariance eigenvectors, the
probabilities of panels belonging to planes and surfaces are calculated, and the types of
panels constituting the object surface are initially determined. Then, based on the combina-
tion of different planes and surfaces, the geometric models of basic geometric bodies are
constructed, and the geometric bodies are divided into two categories: planar geometric
bodies and curved surface geometric bodies. In each category, the specific geometric body
type is determined based on the relationship between the main matching surface and its
adjacent facets. The parameters of the specified type of surface are extracted using the
random sample consensus algorithm, and the size of the object is obtained by combining
the directed bounding box for modeling.

The entire algorithm process is shown in Figure 1, where the input is the segmentation
result of the synthesized desktop scene, and the output is the complete point cloud data
generated based on the geometric parameters.

Figure 1. Algorithm process.

3.1. Determining the Type of Planar or Curved Surface

Common surfaces can be simply classified into two main categories: plane and
curved surfaces. Curved surfaces include cylindrical, conical, and spherical surfaces.
Different combinations of plane and curved surfaces can form simple geometric shapes.
Therefore, before analyzing the specific geometric type of an object, it is helpful to roughly
classify its constituent surfaces, which facilitates quick determination of their respective
types. This paper focuses on the judgment of planar and curved surfaces, including the
selection of neighboring areas and feature calculation based on the covariance matrix.

3.1.1. Selection of Search Neighborhood

Currently, the neighborhood of a given three-dimensional point can be divided into
a spherical neighborhood, a cylindrical neighborhood, and a fixed-point neighborhood.
Spherical neighborhood and cylindrical neighborhood refer to searching for points within
the corresponding shape around the given point as neighbors. The neighborhood shape
is simple and symmetric. On the other hand, fixed-point neighborhood refers to finding
the specified number of points closest to the given point as neighbors, so the obtained
neighborhood shape is not fixed. For different point cloud data, neighborhood selection
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is generally carried out through empirical or heuristic methods. In addition, considering
the three-dimensional structure of the point cloud and the local point density, some single-
scale and multi-scale neighborhood search methods have been proposed to meet the
demand for accurately extracting geometric features. For single-scale neighborhood search,
geometric features calculated using points within a smaller radius range lack stability
and are susceptible to noise and outliers. Points within a larger radius range lead to
over-smoothing of calculated geometric features, making them unable to reflect the true
shape [16].

In this study, in order to quickly and simply determine the type of the current face,
while considering point cloud noise and uneven density, the stable characteristics of the
central region of the segmented face are fully utilized, and a spherical neighborhood is
defined with the center of the face as the center of the sphere. Based on this, a multi-scale
spherical neighborhood search is performed to calculate subsequent covariance features,
which can accurately and stably determine the type of the face.

The schematic diagram of the multi-scale spherical neighborhood search region for
a single face is shown in Figure 2. The red dots in the figure represent the centers of the
face, which are used as the centers of the spherical neighborhoods. Three radius values
are uniformly selected as search radii, with the minimum width of the face as the upper
limit of the radius. The arrows of different colors in the figure indicate the selected radii.
By organizing and managing the points within the face using KD trees, the spherical
neighborhoods of the current face under different search radii can be quickly obtained for
the subsequent calculation of covariance features.

Figure 2. Multi-scale search neighborhood plane schematic diagram.

3.1.2. Feature Calculation Based on Covariance Matrix

To construct the covariance matrix using the points within the centroid and its search
neighborhood, the eigenvalues λ1 > λ2 > λ3 > 0 of the covariance matrix are calculated
through principal component analysis. Based on the different quantity relationships be-
tween the eigenvalues, the corresponding dimensional features can be derived. The specific
calculation formula is as follows:

Lλ =

√
λ1 −

√
λ2√

λ1

Pλ =

√
λ2 −

√
λ3√

λ1

Sλ =

√
λ3√
λ1

,

(1)

where Lλ represents the one-dimensional linear degree, Pλ represents the two-dimensional
planar degree, and Sλ represents the three-dimensional scattering degree, satisfying Lλ +
Pλ + Sλ = 1. Pλ can be used to estimate the similarity between the local shape of the face
and a plane. A higher value indicates a smoother face, thus, it can be used to distinguish
between planes and curved surfaces [17].
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For curved surfaces, taking a sphere as an example, the degree of curvature of the
sphere varies with different radius values. A sphere with a larger radius corresponds to
a smaller curvature, indicating that the local shape is closer to a plane. The calculation
formula for estimating surface curvature using eigenvalues is as follows:

Cλ =

√
λ3√

λ1 +
√

λ2 +
√

λ3
. (2)

When the Cλ value is larger, it indicates that the shape of the face is more curved.
In order to achieve a more uniform expression, the curvature of the local shape is defined
based on Cλ as follows:

b = (1− Cλ)
2. (3)

When the value of b is larger, the current face is closer to being a plane. The probability
of the current face belonging to a plane or curved surface is described by combining the
planarity Pλ and curvature b. The calculation formula is as follows:

c f = Pλ × b. (4)

For a face, the corresponding c f values are calculated based on the points within the
spherical neighborhood at different scales as discussed in the previous section, and then
they are fused using a weighted approach. The weighted formula is as follows:

CF =
3

∑
i=1

wi · c fi, (5)

where c fi represents the calculation results at different scales and wi represents the corre-
sponding weight values. The results of the spherical neighborhood calculation at three
scales are weighted using the average noise of the point cloud. The definition formula for
wi is as follows: 

w1 = e−t

w2 = 1− e−t

w3 = 2
(
1− e−t). (6)

Among them, t represents the average noise amplitude of the point cloud, which is
generally set based on the average density of the point cloud. In the case of high point cloud
noise, the value of w3 is larger, which can balance the final value obtained by the larger
radius. Conversely, when the point cloud noise is low, the value of w1 is larger, which can
use more locally stable features to ensure the accuracy of the results. For a given threshold
CFth for judging planar and curved surfaces, when CF > CFth, it indicates that the current
face is classified as a plane; otherwise, it is classified as a curved surface. The proposed
method of combining multi-scale neighborhoods with covariance matrix eigenvalues can
effectively make preliminary judgments on face types in the presence of noise and outliers
in point cloud data [18].

3.2. Recognition and Modeling of Regular Geometric Shapes

The surfaces of objects in real indoor scenes are mostly composed of geometric primi-
tives such as planes, cylinders, cones, and spheres. The Random Sampling Consistency
Algorithm (RANSAC) can be used to search for the basic geometric primitives mentioned
above in 3D point clouds, as well as to extract parameters from specified types of geometric
primitives. RANSAC is a hypothesis- and validation-based method that generates hypothe-
sis model parameters based on the minimum number of sample points, and uses all data
points to validate and update model parameters. Compared to the process of fitting model
parameters using all data points using the least squares method, the model parameters
estimated by RANSAC using the minimum subset and local points method are more robust,
especially suitable for processing point cloud data with more outliers.
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For known geometric primitive types, first the minimum subset required for fitting
is determined, such as determining at least three non collinear points on a plane in space.
Then, the minimum subset is randomly selected to estimate the parameters of geometric
primitives. By determining whether all other data points comply with the current model,
the data points are divided into local and external points. Update the model parameters
using local points and continue to iterate the above process for the remaining points until
the local points are no longer amplified and meet the set threshold requirements [19]. At
this point, the optimal parameters of the geometric primitive model are obtained. If the
optimal model parameters cannot be obtained in the end, it indicates that the current
patch does not match the specified type, thus achieving verification of geometric primitive
type judgment.

This paper mainly focuses on the study of simple geometric objects, including cuboids,
cylinders, cones, and spheres. By determining the geometric type and extracting parameters
of segmented objects, the modeling of regular objects in the original scene is achieved.
The surface of a geometric object is composed of geometric primitives, and the Random
Sample Consensus algorithm can be used to verify and extract parameters of known
geometric primitives, providing a theoretical basis for subsequent geometric modeling.
Based on the judgment results of internal faces of various objects mentioned earlier, a
basic geometric model graph is established, categorizing geometric objects into planar and
curved ones. For different types of geometric objects, their specific types are determined
based on the combination information of internal face patches and the relationship of
surface mean curvatures, combined with geometric primitive parameters and geometric
shape parameters to perform the modeling.

3.2.1. Basic Geometric Model Graph

Several geometric primitives can be combined to form some basic geometric shapes,
such as rectangular cuboids, cylinders, cones, and spheres, etc. After the initial type
judgment of the surfaces composing an object, i.e., determining whether they are planar
or curved, the following standard geometric models are defined based on the normal
vector relationship of the planar and curved surfaces within the basic geometric shapes,
as shown in Figure 3. In the figure, P represents a plane, C represents a curved surface, ⊥
represents the perpendicularity between the normal vectors of adjacent surfaces, and the
absence of notation indicates that there is no clear relationship between the normal vectors
of adjacent surfaces.

Considering the phenomenon of excessive segmentation on object surfaces during the
region-growing process, as well as various factors such as single-viewpoint acquisition and
varying degrees of occlusion among objects, in order to quickly determine the geometric
type of an object, the object can be divided into two main categories: planar geometry and
curved geometry based on the combination of surface types within the object. Next, specific
situations that appear in different categories will be discussed and processed separately in
order to complete the reconstruction of regular objects in the scene.
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Figure 3. Schematic diagram of basic geometric models.

3.2.2. Recognition and Modeling of Planar Geometric Objects

The most common indoor scenes are dominated by flat structures such as desktops,
floors, and boxes. Using flat surfaces as the main matching surfaces allows for quick recog-
nition of geometric objects that contain flat structures. For objects with only flat surfaces,
the largest face is first identified by finding the largest visible face in the current perspective.
This face is considered as the main matching surface. The relationship between the face
normal vector and the adjacent face normal vectors is then determined. If the normal
vectors are perpendicular to each other, the object is considered as a cuboid, corresponding
to packaging boxes and other similar structures in the scene. If the normal vectors are
parallel to each other, further fusion of the faces is needed, using a larger flat surface as a
whole, corresponding to desktops, walls, or floors in the scene.

The initial parameters of a flat surface can be calculated from the center and normal
vector of the face. Based on this, the RANSAC algorithm is utilized to fit the parameters of
the plane, which speeds up the fitting process of optimal parameters. After determining the
specific type of the flat geometric object and the parameters of each face, direct modeling of
the geometric object is not feasible without knowing the object’s dimensions. To address
this problem, the minimum oriented bounding box is computed for the segmented object,
according to the construction method of the bounding box. For a cuboid, two perpendicular
plane normal vectors can be used as the first and second principal axes, and the third
principal axis can be obtained by utilizing the property of mutually orthogonal coordinate
axes. Then, the point cloud of the object is projected onto the three directions to obtain the
maximum and minimum values of coordinates in each direction. This can determine the
length, width, and height of the cuboid, and also obtain the center of the bounding box to
determine the object’s position in the scene.

Modeling of segmented objects is performed by combining the geometric parame-
ters of the internal planes of flat geometric objects with the dimensions of the oriented
bounding boxes. To visually display the modeling results, point cloud data corresponding
to the generated geometric objects are obtained using known parameters, representing
the reconstruction results. The reconstruction results of flat surfaces and cuboids in the
scene are shown in Figure 4. Figure 4a shows the original point cloud data with certain
missing parts. The green-bordered box in Figure 4b represents the oriented bounding box
for the object. Figure 4c shows the overlaid result of the reconstruction and the original
point cloud data, from which we can observe that the reconstruction effectively fills in the
missing original data on the flat objects [20].
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Figure 4. Reconstructed result diagram of planar objects.

3.2.3. Recognition and Modeling of Curved Geometric Objects

Common curved geometric objects include cylinders, cones, and spheres. Due to
factors such as the capturing angle and object occlusion, cylinders and cones exist in two
forms in actual capturing scenes, namely planar-surfaces combination and curved-surfaces
combination. Due to their different manifestations, the logical processing of recognition
and parameter extraction for each curved geometric object is also different.

When the segmented object belongs to the planar-surfaces combination type, the
relationship between the plane and the adjacent curved surfaces’ normal vectors is deter-
mined by using the plane as the auxiliary matching surface. If the normal vectors of the
two are perpendicular to each other, it is a cylinder, corresponding to objects like cups or
other cylindrical objects. If there is no perpendicular relationship between the two normal
vectors, and the angle with the normal vector of the adjacent surface remains unchanged, it
is a cone.

Due to occlusion or capturing angle, cylinders or cones may also exist with only the
curvature of surfaces being captured, in which case, all faces of the object are curved sur-
faces. In addition to this, spheres are also considered, as they are natural geometric objects
consisting only of curved faces. For objects with only curved surfaces, the identification
of cylindrical surfaces, conical surfaces, and spherical surfaces is done by analyzing the
relative magnitude of the principal curvatures at each point in the object’s point cloud
data. The values of the principal curvatures can be obtained using the calculation formula,
assuming the maximum principal curvature is denoted by k1 and the minimum principal
curvature is denoted by k2. The geometric primitive type of the curved surface object can be
determined based on the relationship between the extrema of the principal curvatures using
the following criteria: (1) Cylinder: k1 = 0, k2 > 0, and k2 remains unchanged. (2) Cone:
k1 = 0, k2 > 0, and k2 varies. (3) Sphere: k1 = k2, and both k1 and k2 are positive constants.

After determining the initial geometric primitive type of the segmented object using
the aforementioned method, as prior knowledge for the RANSAC algorithm, the corre-
sponding geometric primitives are used for parameter extraction. For spheres, the modeling
can be directly accomplished by using the sphere center and radius. However, for cylinders
and cones, after obtaining the parameter equations of the cylindrical surface and conical
surface, the point cloud of the objects needs to be projected onto the corresponding axis,
and the distance between the two farthest projected points is taken as the height of the
cylinder and cone.

To visually demonstrate the modeling effectiveness of curved geometric objects, point
cloud data of the corresponding surfaces of known geometric parameters and dimensions
are generated. The reconstruction result of a single curved surface object in the scene is
shown in Figure 5, where Figure 5b represents the oriented bounding box established for
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the original point cloud. As can be seen from Figure 5c, for different types of curved surface
objects, the reconstructed geometric point cloud fits well with the original point cloud and
effectively fills in the missing data based on the obtained 3D model.

Figure 5. Reconstructed result diagram of curved objects.

4. Experiments

To verify the accuracy of the algorithm proposed in this paper for recognizing and mod-
eling regular geometric objects, experiments were conducted using synthetic datasets to ana-
lyze the errors between the estimated and real values of the dimensions.
Moreover, to validate the effectiveness and practicality of the algorithm, experiments
were conducted on both public datasets and self-collected datasets, and the reconstruction
results of the scenes were visualized. The experiments were conducted in an environment
equipped with an Intel i7-10710U CPU @ 1.10 GHz with 16 GB RAM.

4.1. Analysis of Experimental Results in Synthetic Dataset

To validate the feasibility of the algorithm proposed in this paper, C++ programming
was used to simulate noise-free desktop scene point cloud data generated by a depth
camera. Since the accurate dimensions and geometric parameters of different geometric
objects cannot be obtained in real-world scenarios, three desktop scenes were synthesized
with randomly placed objects of different shapes. The desktop was represented by a plane
abstraction, and the desktop objects were represented by a cuboid, cylinder, cone, and
sphere. The size of each object in the synthesized scene is known and used to estimate
the error between the extracted parameters and the true values. Scene 1 consists of planar
objects composed of cuboids with different poses and dimensions. Scene 2 consists of
curved objects composed of spheres, cylinders, and cones. Scene 3 is a mixed scene
composed of cuboids, spheres, cylinders, and cones.



Appl. Sci. 2023, 13, 11779 10 of 14

Figure 6 shows the experimental results of Scene 1, where the input point cloud
data contain 372,344 points with an average density of 0.469 mm. From the figure, it
can be observed that the plane and four cuboids with different poses and sizes were
successfully segmented and labeled with different colors. The segmented objects were
further evaluated for their corresponding types and geometric parameters. Based on the
extracted parameters, the point cloud data with a specified density were generated as
shown in Figure 6c, revealing the recovery of missing data and consistent orientations and
positional relationships with the scene point cloud data [21].

Figure 6. Experimental results of plane object scene.

Figure 7 shows the experimental results of Scene 2. The input point cloud data contain
361,218 points, with an average point cloud density of 0.485 mm. From the figure, it can
be observed that the various regular objects on the table are segmented accurately and
displayed with different colors. Based on the segmentation results, the types of objects are
determined and their parameters are extracted. The reconstruction results, based on the
extracted parameters and estimated sizes, are shown in Figure 7c. It can be seen from the
figure that our algorithm can effectively recognize and model objects of different sizes, such
as spheres, and different orientations, such as cylinders. This algorithm can also complete
missing data [21].

Figure 7. Experimental results of curved object scene.

The experimental results of Scene 3 are shown in Figure 8. The input point cloud data
consist of 371,724 points, with an average point cloud density of 0.497 mm. From the graph,
it can be observed that both planar and curved objects are completely segmented, and
the object reconstruction results are consistent with the positions and orientations of the
objects in the original scene point cloud. The experimental results demonstrate that, as the
complexity of the scene increases, the algorithm still maintains a high accuracy in object
segmentation and geometric parameter extraction.

Figure 8. Experimental results of mixed object scene.

To verify the accuracy of the algorithm proposed in this paper for geometric recon-
struction, a more complex scenario, referred to as Scenario 3, is taken as an example.
The geometric parameters and size values of each object in the scenario are shown in
Figure 9. In the figure, the parameter c represents the center point, ~n represents the
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normal vector, ~l represents the axial direction, and p represents a point on the axis.
These parameters are used to determine the position or orientation of the geometric object
in three-dimensional space. The dimensions L, W, and H represent length, width, and
height, respectively, while r represents the radius, which is used to determine the size of
the geometric object in three-dimensional space. Since the sizes of the geometric objects
are known when generating synthetic scenes, these known sizes are used as ground truth
values to estimate the errors with the sizes estimated by the algorithm in this chapter.
From the size errors shown in the figure, it can be observed that the reconstruction ac-
curacy of the algorithm in this chapter is high, with size errors not exceeding 0.5 mm.
Compared to the average density of the scene’s point cloud [22], the error between the
estimated values and the actual values is small, indicating that the algorithm proposed
in this paper can effectively model regular geometric objects. Although not reaching zero
error, the error is very small.

Figure 9. Estimation results of geometric parameters and dimension errors in mixed scene.

To evaluate the efficiency of the algorithm in this paper, Table 1 shows the time required
for object segmentation and geometric parameter extraction in different synthetic scenes,
including the number of objects on the tabletop. Due to the varying size and complexity of
the scene point clouds, the time required for object segmentation and parameter extraction
also varies. However, the total time required for a single scene is usually within 3.0 s, which
meets the requirements for some real-time operations of indoor robots.
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Table 1. Running time of the synthetic dataset scenario.

Dataset Scenes Points Number of Objects Object Segmentation Time (s) Parameter Extraction Time (s)

Scene1 372,344 5 2.372 0.171
Scene2 361,218 6 2.256 0.223
Scene3 371,724 8 2.425 0.282

4.2. Analysis of Experimental Results from Self-Generated Dataset

To verify the universality of the algorithm proposed in this paper, experiments were
conducted using Microsoft Azure Kinect cameras to capture tabletop and ground scenes
in the laboratory. The scenes were composed of multiple randomly arranged rule-based
objects and everyday items, and the point cloud data contained a significant amount of noise
and holes. The experimental results for each scene are shown in Figure 10, which includes
the object segmentation results, reconstruction results, and the overlay display of the scene
point cloud and reconstruction results. From the figure, it can be seen that for different
indoor scenes, the algorithm proposed in this paper can accurately and completely segment
various objects. For segmented rule-based objects, point cloud reconstruction is performed
based on the extracted geometric parameters. As can be seen from the reconstruction
results, regardless of whether it is a planar or curved geometry, the algorithm proposed in
this paper is not limited by object pose and size, and can accurately reconstruct point cloud
data models that fit the real surface of the objects. The experiments have demonstrated that
the proposed algorithm is also applicable to self-captured data, and it exhibits robustness to
missing and noisy point cloud data, which has practical application significance for indoor
robot perception in unknown environments [23].

Figure 10. Experimental results of self-collected dataset.

5. Conclusions

In this paper, we have presented a geometric modeling algorithm based on known
segmentation results, aiming to enrich semantic information for robot understanding in
unknown indoor environments. Our algorithm utilizes a flatness criterion to judge surface
types within each segmented object. To ensure accurate and stable judgment of flatness,
we employ a multi-scale neighborhood approach to calculate curvature and covariance
matrix eigenvalues. Furthermore, our algorithm establishes a geometric model based on
various combinations of flat surfaces, distinguishing between two major types: flat and
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curved surfaces. We apply different analysis and processing methods according to the type
of surface present. While our algorithm demonstrates its effectiveness, robustness, and
efficiency in accurately modeling regular geometric objects, we acknowledge that it may
not be accurately applicable to objects with irregular shapes or combinations of different
geometric elements. In addition, in scenarios where low-quality data hinders precise point
cloud segmentation or correct classification of objects as planar or curved, the algorithm’s
performance may be compromised. We conducted experiments using synthetic datasets,
public datasets, and self-collected datasets, which confirmed the small error in geometric
body size estimation and validated the efficacy and robustness of our proposed algorithm.
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