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Abstract: In recent years, the number of deaths and injuries resulting from traffic accidents has
been increasing dramatically all over the world due to distracted drivers. Thus, a key element in
developing intelligent vehicles and safe roads is monitoring driver behaviors. In this paper, we modify
and extend the U-net convolutional neural network so that it provides deep layers to represent image
features and yields more precise classification results. It is the basis of a very deep convolution neural
network, called U2-net, to detect distracted drivers. The U2-net model has two paths (contracting
and expanding) in addition to a fully-connected dense layer. The contracting path is used to extract
the context around the objects to provide better object representation while the symmetric expanding
path enables precise localization. The motivation behind this model is that it provides precise object
features to provide a better object representation and classification. We used two public datasets:
MI-AUC and State Farm, to evaluate the U2 model in detecting distracted driving. The accuracy of
U2-net on MI-AUC and State Farm is 98.34 % and 99.64%, respectively. These evaluation results show
higher accuracy than achieved by many other state-of-the-art methods.

Keywords: convolutional neural networks; deep learning; distracted drivers; object detection

1. Introduction and Background

Driving is a common activity for many people, it provides social interactions with
other people on the road, facilitates human independence, and offers a significant chance
for exploring the world [1]. The Department of Motor Vehicles reported that there are
currently around 228.2 million driving licenses in the United States and the Road, and
Highway construction in the United States (U.S.) has been increasing by 0.7% from 2021 [2].
Moreover, there are over 284 million vehicles operating on roads throughout the United
States. Therefore, making driving as safe as possible is an important issue in every day life.

Despite the safety improvements in road construction and vehicle manufacturing, the
total number of vehicle crashes is still increasing. The National Highway Traffic Safety
Administration (NHTSA) reported that 90% of road accidents in the U.S. are due to human
errors and 20% of traffic accidents are caused by distracted drivers. In 2020, 3142 people
were killed by distracted driving in the U.S [3]. Using a mobile phone while driving has
become one of the biggest factors responsible for accidental injuries and deaths in the U.S.

Distracted driving is any activity that diverts attention from driving including eating,
drinking, talking to passengers, texting, adjusting the radio, or using navigation [3]. Dis-
tracted driving can cause serious safety concerns for drivers as well as passengers. Among
several activities taking the driver’s attention off the road, it is observed that a high-level
distraction is caused by using mobile phones. The National Safety Council reported that
texting while driving leads to 1.6 million crashes and nearly 390,000 injuries [1]. If driver
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distraction is detected in real-time, and if an early warning is given, this can avoid traffic
accidents. The focus of this study is to automatically detect driver’s distraction caused
by using mobile phones. According to a report by the National Safety Council in U.S.,
using mobile phones while driving is considered a high-level distraction that leads to
millions of crashes and thousands of injuries. A driver’s behaviors of “adjusting radio”
or “talking with passengers” are considered as distraction behaviors in two benchmark
datasets involved in this research. Currently, Driver Assistance Technologies (DAT) hold
the potential to reduce traffic crashes and save thousands of lives each year [3]. DAT
are groups of electronic technologies that assist drivers in driving and parking functions
such as avoiding collisions, pedestrian detection, and lane change warning. DAT use
various sensors, computer vision, and machine learning algorithms to monitor the vehicle’s
surroundings and make driving tasks easier and safer.

There have been many efforts to detect distracted drivers due to use of mobile phones
while driving. Research shows that drivers on phone calls were not able to perceive
risks. In fact, people who drive on phone calls increase the risk of a crash by about 4 and
6 times [2]. Detecting drivers using mobile phones can be done in several ways, such as:
using surveillance cameras, smart technologies, and mobile applications. Using image
and video processing algorithms to detect the usage of mobile phones is considered the
most reliable and widespread method due to several factors, such as: the accuracy of their
results, concrete evidence when required, and it is easy to keep the data generated for long
periods of time.

Traffic management systems, local governments, and traffic enforcement systems
currently use cameras that are already installed and distributed all around the roadways for
security, monitoring, and object detection purposes. Object detection deals with detecting
instances of semantic objects of a certain class in digital images and videos. Object detection
is an active and well-researched domain that includes face detection, pedestrian detection,
distracted driver detection, vehicle detection, and more. Artificial Intelligence (AI) and
Machine Learning (ML) applications are increasing daily. Deep Neural Networks (DNN)
are an important topic in the field of artificial intelligence. Image and video processing
uses AI and ML in several applications, such as in object detection. Using AI, ML, and
DNN algorithms and techniques for object detection increases the accuracy of the detection
and expands its applications. Deep learning can play a significant role by detecting the
distracted driver activity and notifying the driver to stop while these activities occur to
prevent accidents.

While U-Net may not be a suitable choice for object tracking on its own, it is worth
mentioning that features extracted by U-Net architecture can be valuable for object detection
tasks [4]. Object tracking requires algorithms and architectures that are specifically designed
to handle the temporal continuity and identity maintenance of objects across video frames.
The U2-net architecture does not handle the temporal information and object identity
across video frames. However, considering the temporal continuity of objects between
frames will be considered when dealing with videos, and represents a future work that
is outside the scope of this research. In this research, we develop a model called U2-net
that automatically detects distracted drivers, especially those who are using mobile phones.
The U2-net is a modified version of the original U-net architecture. U-Net is a convolutional
neural network (CNN) architecture that consists of an encoding path and a corresponding
decoding path, with skip connections that bridge the encoding and decoding paths at
multiple resolutions. The encoding path is a series of convolutional and pooling layers
that gradually reduce the spatial resolution of the input image, while the decoding path
consists of transposed convolutional layers that progressively up-sample the feature maps
to the original resolution. The skip connections combine the low-level feature maps from
the encoding path with the high-level feature maps from the decoding path to capture both
local and global information in the image. U-Net is a 2D CNN architecture that is widely
used for image segmentation [4,5].
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We modify the original U-net architecture by adding four convolution layers, two max
pooling layers, and dropout layers to the contracting path. additionally, in the expanding
path, we add four transpose convolution layers, two max pooling layers, and dropout
layers. These new layers add more spatial information and context to the classifier and
avoid model overfitting. Moreover, we use full-color images to provide more information
to the classifier and educe the size of each input image to reduce the training time and
minimize the model complexity. The dense layer is used to predict the output result that is
formed by a weighted average function of its input. The U2-net model provides deep layers
to represent image features and yields more precise classification results. The motivation
behind this model is that it captures the context around the objects in order to provide a
better object representation and classification.

The U2-net uses input images collected from cameras that capture frontal views from
inside the vehicle. Many existing methods have some limitations, such as being locally
integrated inside the vehicle, and therefore cannot prohibit distracted drivers. Additionally,
their accuracy drops if the driver changes his behavior, Moreover, they do not provide
concrete evidence. The U2-net model addresses some of these limitations by providing
a dynamic and adaptive system that provides efficient results regardless of the driver
behavior. It achieves 2.75% higher accuracy results than the D-HCNN [6] on the MI-AUC
dataset and 1.52% higher accuracy results than the MobileNetV2 [7] on the State Farm
dataset. The U2-net model can also help increase the drivers’ awareness of their driving
habits and associated risks, promote safe driving practices, and help vehicle manufacturers
improve the safety levels in vehicles and minimize the driver distraction. In addition, it
can be integrated with smart surveillance cameras that are available on roadways and
controlled by the Central Traffic Department. Additionally, the U2-net model is responsible
for saving the captured images/video for the distracted driver, especially those who use
their phone while driving, and send captured images to the main database for manual
confirmation to take the correct action.

The main contribution of our work can be summarized as follows:

1. We develop a new model called U2-net that automatically detects distracted drivers,
especially those who are using mobile phones;

2. We modify the original U-net model by adding more layers to both contracting and
expanding paths, which can capture more intricate features and patterns in the data.
Additionally, we add a flattened layer along a dense layer, which helps in the detection
and classification process;

3. We update the regularization technique, optimization technique, and the loss function
to improve the performance and avoid model overfitting;

4. We apply the U2-net into the image classification domain and evaluate it using two
datasets: MI-AUC and State Farm datasets;

5. The evaluation results show that the U2-net model achieves higher accuracy, recall,
precision, IoU, and F-score than what is achieved by many other state-of-the-art models.

2. Related Work

There are active efforts in developing methods for detecting distracted drivers. Be-
cause of the impact of distraction while driving on public safety and property, several
governments and countries have enacted regulations that prohibit any cause of distraction
while driving, especially mobile phone usage. These regulations have created a need for a
smart system to detect mobile phone usage while driving for law enforcement. Currently,
the driver’s use of mobile phones is mainly supervised by law enforcement officials through
direct observation. It is time-consuming, inefficient, and almost impossible to cover all
roadways. So, the challenge is to develop a smart system that automatically detects the
usage of mobile phones while driving. There are different ways to solve such problems.
First, we review detection methods that are different from visual-based methods. Then, we
review visual-based methods that use AI and machine learning algorithms.
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Detection using Sensors and Equipment: There are different ways to solve such
problems. For example, one system uses sensors and equipment inside the vehicle, such
as Hands on the Steering Wheel [8], which block any notification on a smartphone for
some period while the driver is conducting the vehicle. However, this system cannot
avoid misuse. Another approach of Yang et al. [9] used software running on the phone for
capturing and processing high frequency sound signals sent by the car sound equipment.
The sound signals are used to measure the position of the mobile phone and when the driver
is talking on it [10]. However, it depends on the mobile phone brand and the software
must be continually enabled by the driver. A general and efficient way is to develop an
image-based system that considers all different types of vehicles, gestures, positions, and
mobile sizes. In addition, it should handle different weather conditions. All these situations
make detection hard. The positions of cameras also affect the detection accuracy, which
is either inside or outside the vehicle. Vehicle manufactures equip vehicles with inside
cameras to enhance the safety level while driving, while the outside cameras are generally
installed to detect illegal behaviors.

Detection using Deep Learning: Hesham Eraaqi et al. [11] proposed a reliable deep
leaning-based solution that achieves 90% accuracy. Additionally, the authors presented a
genetically weighted ensemble of convolutional neural network for image classification
that achieves 84.64% classification accuracy. Celaya-Padilla et al. [12] proposed a novel
approach to detect distracted drivers using mobile phones while driving. The authors used
a ceiling-mounted wide angle camera coupled to a deep learning-convolutional neural
network (CNN) to detect distracted drivers. The authors used Inception V3 deep neural
network, which was trained to detect “texting and driving” subjects. The final CNN was
trained and validated on a dataset of 85,401 images, achieving an area under the curve
(AUC) of 0.891 in the training set, an AUC of 0.86 on a blind test, and a sensitivity value of
0.97 on the blind test.

Uzzol Hossain et al. [7] developed a CNN-based method to detect distracted drivers
and identify the cause of distractions such as talking, sleeping, or eating by means of
face and hand localization. Four architectures, namely CNN, VGG-16, ResNet50, and
MobileNetV2 have been adopted for transfer learning. The proposed model was trained
with thousands of images from the state farm dataset containing 10 different postures
or conditions of a distracted driver and analyzed the results using various performance
metrics. The performance results showed that the pre-trained ResNet50 and Mo-bileNetV2
provide the best classification accuracy of 94.5% and 98.12%, respectively.

Detection using Combination Methods: Mohammed S. Majdi et.al. [13] presented
an automated supervised learning method called Drive-Net for driver distraction detection.
The authors used a combination of a convolutional network (CN) and a random decision
forest for classifying images of a driver. The authors compared the performance of the Drive-
Net with two other popular machine-learning approaches: Recurrent Neural Network
(RNN), and a multi-layer perceptron (MLP). Using about 22,425 acquired images under a
controlled environment that are publicly available and manually annotated by an expert,
Drive-Net achieves a detection accuracy of 95%.

Binbin Qin et al. [6] proposed a new D-HCNN model based on a decreasing filter
size with a smaller number of parameters than that used by models in many other studies.
D-HCNN uses HOG feature images, L2 weight regularization, dropout and batch nor-
malization to improve the performance. The authors conducted experimental evaluations
on two public datasets: MI-AUC [7] and State Farm [14] with an accuracy of 95.59% and
99.87%, respectively, which represent higher accuracy values than those achieved by many
other state-of-the-art methods.

There are several other attempts to develop efficient deep learning frameworks to
detect distracted drivers such as EfficientDet [15] and other models, described in Ref. [16].
These attempts have analyzed the static characteristics of images. Other attempts, described
in Ref. [17] discover the temporal–spatial characteristics of images. Some of these attempts
were done by fusing the attention features extracted from the dynamic optical flow in-
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formation and the spatial feature of the single video frame to recognize the distracted
driving posture [17]. Others have combined the handcrafted features and fusion features in
a hybrid scheme [18].

Wang et al. [19] developed an algorithm that uses input data generated from a camera
inside the car. Such a system is not useful in all vehicles because drivers may easily block it
while using a mobile phone and one cannot prohibit the driver from doing it.

Another study was done by Artan et al. [20] that intended to get pictures from a front
windshield view of the vehicle. First, the driver’s face was detected, then Region of Interest
(ROI) was identified, and finally mobile phone usage gestures were detected. The detection
approach was done by training the system with positive and negative pictures. Positive
pictures are with mobile phone usage and negative pictures are without. They proposed
two classification architectures, used full and half face images, and the performance in
terms of accuracy, specificity, and sensitivity was compared. The evaluation results showed
that the performances of two architectures are similar, above 86% for the mobile phone
usage detection task.

A neural network-based application was developed to detect mobile phone usage [21].
Sample positive (with phone) and negative pictures (without phone) were used for training
and testing the cascade object detector on MATLAB. Initial evaluation results showed that
the quality of the captured image and the number of images used for training play a major
role in the detection accuracy, which was 75%.

Berri et al. [22] used Support Vector Machine (SVM) with Polynomial kernel clas-
sification to develop an algorithm for extracting characteristics allowing mobile phone
identification while driving a vehicle. They used sets of images with 100 positive and other
100 negative images containing frontal images of the driver. The evaluation results showed
a success rate of 91.57% for the vision system.

For a 3D vision system, Berri and Osorio [23] proposed a solution that uses Short-
Term (ST) and Long-Term (LT) pattern recognition subsystems to analyze the positions
of the driver’s hands. The system has three levels of alarms: no alarm, lowest alarm,
and highest alarm. ST detects between no alarm or some level alarm. LT is responsible
for determining the risk level, either low or high. The classifiers are based on ML and
Artificial Neural Networks (ANN). Furthermore, the values set to adjust input features,
neuron activation functions, and network topology/training parameters were optimized
and selected using a Genetic Algorithm. The experiments achieved 95% accuracy as the
best system performance results.

Aljohani [24] proposed a model called “DenseNet-GA” that combines artificial deep
learning and machine learning models with genetic algorithm for actions detection of
drivers from input images. Two dense layers, K nearest neighbor, random forest, sup-
port vector machine, and extreme boost algorithms have been used as classifiers. The
DenseNet-GA model was developed with the use of a state farm dataset that contains
information of one safe driving class and nine dangerous behaviors. Experimental results
show that the classification accuracy of the DenseNet-GA is 99.80% when using the state
farm dataset. However, it is highly recommend that the proposed model is evaluated using
another dataset.

Detection using U-net Model: One of the most efficient CNN approaches is U-Net,
which is mainly used for medical image segmentation. U-Net contains a shrinking path
for deriving information and a corresponding expansion path for restoration and has
high accuracy for image segmentation [25]. Many researchers have investigated U-Net
because of its popularity and efficiency in image segmentation in several domains such
as cytology [5], geology [26], and microorganisms [27]. Although the original U-Net has a
strong versatility in achieving good results in image segmentation, many variant network
structures have been proposed to improve the segmentation effect [28]. To the best of our
knowledge, no research has previously investigated the U-Net to address the problem of
detecting and classifying the driver’s state of distraction while driving, which might be
used to alert the driver. This paper introduces an improved version of U-Net model that
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uses deep feature maps, dense layers, more convolution, max pooling, and dropout layers
to add more spatial information and context to the classifier, which enhances the accuracy
of the classification results.

There is a similar attempt that extends the U-Net architecture for volumetric medical
image segmentation tasks called V-Net, which is a 3D CNN architecture that uses a similar
encoding-decoding structure to U-Net but incorporates 3D convolutional layers instead of
2D convolutional layers. V-Net also uses residual connections to improve the gradient flow
and speed up the convergence during training [29]. Table 1 summarizes the related work
in terms of the proposed method, architecture, dataset, and resulted accuracy.

Table 1. Comparison between the related work in terms of architecture, dataset, accuracy, limitation,
and research gap.

Reference Method Architecture Dataset Accuracy

[6] HOG, L2, dropout, and batch normalization HOG + CNN MI-AUC and State-Farm 95.59% 99.87%
[7] CNN, VGG-16, ResNet50, MobileNetV2 Transfer Learning State-Farm 97.45%, 94.01%, 94.28%, 98.12%, respectively
[11] Deep Learning Ensemble CNN MI-AUC 90%
[12] Deep CNN Inception V3 MI-AUC 89.1%
[13] Drive-Net CNN with Random Forest State-Farm 95%
[17] TSD-DLN and C-AOG Deep Learning MI-AUC 88.3%
[30] Deep CNN VGG16 and VGG19 State-Farm 98.98%
[24] DenseNet-GA Genetic Algorithm with Deep NN State-Farm 99.80%
[31] CAT-CapsNet Capsule network with attention module and convolution filters State-Farm and MI-AUC 99.88%, 96.78%

3. The U2-Net Architecture

In this paper, we adjust and prolong the U-net architecture [5] in a way that yields more
precise image classification results. The U-net architecture was initially used to enhance
image segmentation. It offers a training technique that greatly hinges on data augmentation
and uses the prevailing annotated models well. The characteristics of the U-Net architecture,
such as skip connections, fully convolutional design, and efficient training, have made it
adaptable to a wide range of computer vision tasks beyond medical imaging. It has been
successfully used in applications such as satellite image segmentation, road segmentation
in autonomous driving, and more. Generally, the Fully Convolutional Networks (FCNs)
enable end-to-end learning for pixel-wise predictions and capture local and global context
information through convolutional layers. The U-Net architecture builds on the concept of
(FCNs), which has shown promise in image segmentation tasks. The U-shape architecture
allows high-level features and fine-grained details. The skip connections help preserve
spatial information and enable the model to recover details lost during the down-sampling
process and enhance accuracy. U-Net was designed with computational efficiency in mind,
making it feasible for real-time or near-real-time applications. This efficiency is crucial in
detecting distracted drivers, where quick results can have a significant impact on people
who are using the road. In summary, the U-net architecture along with its innovative
design and adaptability have made it a widely adopted and influential model in the field
of image classification.

There are different neural network structures that have been used to detect distracted
drivers such as VGGNet [30], ResNet [32], and EfficientNet [33]. However, these structures
do not preserve image spatial information nor concatenate image features, which are critical
in our task. The strengths of U-Net lie in its suitability for recovering fine-grained details
and spatial information [34]. The novelty of the U2-net model are its structure, ability
to adapt to different domains, and its ability to customize the loss function. Adding the
color information to the model along with creating new different convolutional layers
and aggregating them with dense and flattened layers allows the U2-net model to capture
distinct visual cues of distracted driving and enhance the classification results. U2-net
increases the depth of the whole U-net architecture without significantly increasing the
computational cost because of the pooling operations.

The original U-net architecture is made up of two paths: expanding and contracting
path. The encoder (contracting path) captures the image’s context, whereas the uniform,
increasing path (the decoder) allows for exact location [5]. The contracting route consists of
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max pooling and convolution layers, whereas the expanding path consists of transpose con-
volution operation and fully connected layers. The contracting path catches the information
around the objects to offer a more accurate representation of the object, which is the reason
behind this design. The U-Net design serves as the foundation for our U2-net. Figure 1
shows the architecture design of the U2-net model, which is created to automatically
identify distracted drivers using input image.

In the U2-net model, we modify the unique U-net architecture by adding four con-
volution layers and two max pooling coatings to the contracting pathway. In addition, in
the escalating path, we add four up-sampling (transpose convolution) layers and two max
pooling layers. These new convolution layers add more spatial information and context
to the classifier. Additionally, we use full-color images (RGB color channels) instead of
gray-scale images, as in the U-net architecture. The transpose convolution layers upsurge
the tenacity of the output. To keep sound localization and reduce the time set for training,
we decrease the dimension of each input picture, making them 256 × 256 pixels in size and
fodder as the input to the proposed architecture.

For each input image, convolutional operations are performed to extract image fea-
tures, followed by pooling operators to reduce the image dimension. These convolutions
and pooling operators are performed for the successive layers to reach the minimum image
dimension that is full of features. Then the transpose convolution is accomplished to
up-sample the input feature map to an anticipated output feature map. After that, con-
catenating the layers generated from the pooling operators with layers generated from the
up-sampling operators is performed to increase the resolution of the results and to help
extract the prevailing features that are essential for operational arrangement and exposure.
A significant array of feature systems enable the web to transmit contextual data to more
excellent firmness layers during the up-sampling process. The U2-net design, such as the
U-net architecture, has both a contracting route (Figure 1: left side) and an expanding path
(Figure 1: right side). The narrowing path is measured in the manner of a convolutional
system. It comprises two 3 × 3 convolution layers applied repeatedly and one max pooling
process. Each convolution employs the same Rectified Linear Unit (ReLU) and buffering.
The stride of 2 is used for down-sampling using the identical buffer in the 2 × 2 max
pooling procedure.

Figure 1. The architecture for the U2-net model, starting from the input image (left side) to the
output classifier (right side). Figure 2 provides more details about these layers.

The U2-net architecture takes a set of images as input to generate a list of probabilities
based on the number of classes as an output. Each image from each dataset represents an
input to the contracting operation. The contracting operation begins with 16 filters (feature
channels) and ends with 1024 filters, while the expansive operation begins with 1024 filters
and ends with 16 filters. At each step in the contracting path, we drop 10% to avoid model
overfitting and we double the number of feature channels to reach 1024 feature channels.
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The feature map’s up-sampling (transpose convolutions) is the first stage in the ex-
panding path. This is monitored by a 2 × 2 convolution, which cuts the number of feature
channels in half, a concatenation with the corresponding feature map from the contracting
path, and two 3 × 3 convolutions, each followed by ReLU activation function with the
stride of 1 and with the same padding. In addition, we drop 10% each time to avoid model
overfitting. A successive dense layer is used to gather a correct output, enhancing the
accuracy. In total, the U2-net architecture has 1 input layer, 32 convolutional layers, 6 max-
pooling layers, 6 transpose convolution layers, 6 concatenating operations, 12 dropout
layers, and 1 dense layer, as follows and shown in Figure 2.

Figure 2. The architecture for the U2-net model, starting from the top-left layer.

1. Input layer. Each image from the dataset represents an input to the U2-model. We
reprocess each input image by reducing the dimension to 256 × 256 × 3 with RGB color
channels using a bi-cubic interpolation algorithm. Resizing plays a major role to train any
Machine Learning (ML) or Deep Learning (DL) models.

2. Convolutional layer. We use the typical convolutional layer in the U-net architecture
generated by applying the convolution operation using a kernel of different sizes, number of
filters, stride, padding, and activation function. This layer contains all the vital topographies
of an image, such as color and gradient orientation. The input to the convolution layer is a
matrix containing image information, while the output is a map full of image features. We
used nested convolution operation along with the ReLU as an activation function. It is the
most used initiation task in DL replicas that proposes supplementing and strengthening
the nonlinearity properties of the neural system. Each image has a set of channels. We start
with 16 different channels as an initial step and then duplicate it for each next layer in the
encoding path, as described in Figure 1 to reach out to 1024 channels. while in the decoding
path, we start with 1024 and reduce this number by dividing it by 2 for each level to reach
out to the original number 16. We use the Conv2D function provided by tensorflow.Keras to
perform the convolution step. For any given input x, the ReLU is defined as follows [35,36]:

RelU(x) =

{
x, if x > 0
0, otherwise

(1)

3. Max pooling layer. The down-sampling layer is another name for this layer. It is the
layer handled after the convolution layer in the CNN design. The feature maps’ height
and breadth are reduced while maintaining the same depth by the max pooling layer. To
prevent model overfitting, reducing the map’s size, the amount of computation required,
and the number of factors, is helpful. The down-sampling operation can be performed
by using either maximum pooling or average pooling. Maximum pooling extracts the
maximum value of the elements within a receptive field, and average pooling calculates
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the mean value. We used the maximum pooling as a pooling layer because it preserves
the features in the input feature map in a better way in terms of object representation
during the down-sampling process [31,37]. We use the MaxPooling2D function provided by
tensorflow.Keras to perform the max pooling step.

4. Transpose convolution layer. This layer is also known as the up-sampling or decon-
volutional layer. We use this layer in the decoding path to precisely restore and locate
features. It represents standard convolutions defined by the padding and stride and is
usually carried out for up-sampling to generate an output feature map that has a spatial
dimension greater than that of the input feature map. We use the Conv2DTranspose function
provided by tensorflow.Keras to perform the transpose convolution step. For a given size of
the input i, kernel k, padding p, and stride s, the size of the output feature map o generated
is given by:

o = (i − 1)s + k − 2p (2)

5. Dropout layer. The dropout layer randomly deletes inputs based on the rate (we
use 10%) at each update during training time, which helps prevent overfitting. We used
the dropout operation after each first convolution when the max pooling, or up-sample
operation, is completed. We use the Dropout function provided by tensorflow.Keras to
perform the dropout step.

6. Dense layer (fully connected layer). In any neural network, a dense layer is a layer
that is fully connected with its preceding layer. It analyses the features obtained from
the fully connected preceding layers and predicts the output result that is formed by
a weighted average function of its input. The weighted average is passed through an
activation function that generates the output score of that neuron. Similarly, the process is
carried out for all neurons of all layers.

For multi-class classification problems, the soft-max function is the most commonly
used activation function. The number of dense layers depends on the problem requirement
and number of output classes. Each neuron in the last dense layer has a vector that contains
all the probabilities of an element belonging to each class as a classification result. The
predicting class is the class that has the highest probability value. We used one Flatten layer
and one Dense layer along with the Soft-max function [38] provided by tensorflow.Keras to
represent the output score value as:

yi =
e(Wxi+B)

∑N
i=1 e(Wxi+B)

(3)

where W and B stand for the amount of weight and biases in the preceding layer, respec-
tively, and yi gives the clustering likelihood for the specific class i. The overall amount of
courses is N. In this paper, we use N = 10.

7. Loss function. The value disparity between the expected and actual outcomes is the
loss function. It evaluates how effectively the neural network simulates the training set of
data. The algorithm performs better when the number is lower. Any model’s training goal
is to reduce the loss value as much as possible. Cross entropy is a popular function of loss
for classification algorithms. An optimization function known as the cross-entropy loss
function is employed when building a classification model to categorize data by estimating
the likelihood that the data will pertain to one class or another. For binary classification,
binary cross entropy is frequently used as a loss function, and for multi-class classification,
categorical and sparse categorical cross-entropy are commonly used. In the U2-net model,
we used the categorical_crossentropy categorical cross entropy supported by TensorFlow.Keras.

8. Optimizer. An optimizer is a program or function that modifies the training rate
and weights of the neural network. As a result, it enhances precision and reduces overall
waste. The optimizer is utilized from the software. we use adam optimizer provided by
TensorFlow deep learning framework, which provides proven effectiveness and optimized
implementations. The adam optimizer changes how the model’s parameters should be
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modified and adapts the learning rate to allow for efficient input processing when combined
with the momentum idea [39]. TensorFlow also provides adam optimizer under Keras.

9. Concatenation. The concatenate layers play a crucial role in merging the outputs of
different layers into a single layer. This allows the model to learn shared features across
tasks, leading to improved performance, efficient training, and better generalization [5].
We used the concatenate function supported by TensorFlow.Keras.

4. Experimental Results and Analysis

We evaluated and verified the U2-Net using a Google Colab Pro with 32 GB of RAM,
an NVIDIA P100 Tensor GPU, and two virtual CPUs. Figure 3 shows the flowchart of the
recommended methodology. It shows the development and evaluation processes we follow
to reach the results. It shows four general steps: the Datasets step focuses on the dataset we
have selected to evaluate the U2-net model; more details will be presented in Section 4.1.
The Data Pre-processing step shows our operations to prepare the data as an input to the
U2-net mode. It is designated in Section 4.2. Section 4.3 depicts the Model Training step in
which we describe how we use the datasets to train the U2-net model along with the model
structure, layers, input, and output. The final step is the Model Evaluation step, in which
we describe the evaluation metrics we used, and this step is described more in Section 4.4.

Figure 3. The general structure of the research methodology.

4.1. Datasets

Table 2 shows sample images from the two datasets we have used to evaluate the
efficiency of the U2-net model. The Machine Intelligence group generated the first dataset
from the American University in Cairo (MI-AUC) [11]. We contacted the authors, who
generously provided us with the link to download it. It contains 14,478 images distributed
over 10 different class postures of the distracted driver (Co: Safe Driving, C1: Phone Right,
C2: Phone Left, C3: Text Right, C4: Text Left, C5: Adjusting Radio, C6: Drinking, C7: Hair
or Makeup, C8: Reaching behind, C9: Talking to Passengers). These images were extracted
from videos captured by a camera installed on the car’s roof on top of the passenger’s
seat. Each captured image is either 1920 × 1080 pixels or 640 × 480 pixels with RGB color
model. The second dataset is the first publicly available dataset generated by State Farm’s
distracted driver competition on Kaggle [14]. It contains 22,424 images distributed over the
same 10 classes. These images were captured by a camera installed on the car dashboard.
Each captured image is 640 × 480 pixels with an RGB color model. Table 3 shows the total
number of images (32,833) used from both datasets to train and test the U2 model.
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Table 2. Sample images from the two datasets used in this study.

Class Number of Images Dataset1-MI-AUC [11] Dataset2–State Farm [14]

C0 Dataset 1: 2986 Dataset 2: 2489

C1 Dataset 1: 1256 Dataset 2: 2267

C2 Dataset 1: 1718 Dataset 2: 2317

C3 Dataset 1: 1718 Dataset 2: 2346

C4 Dataset 1: 1124 Database 2: 2326

C5 Dataset 1: 1123 Database 2: 2312

C6 Dataset 1: 1076 Database 2: 2325

C7 Dataset 1: 1044 Database 2: 2002

C8 Dataset 1: 1034 Database 2: 1911

C9 Dataset 1: 1797 Database 2: 2129

Table 3. The number of images used for training and testing.

Dataset Training Data Testing Data Total

State Farm [14] 17,829 4458 22,278

MI-AUC [11] 8444 2111 10,555

4.2. Data Preprocessing

Processing the images before fitting them into the learning model is essential to attain
more accurate results. We extract the RGB channels from each image to provide better
spatial resolution. The original U-net model deals with only one channel from each input
image. Color images contain more information that provides better classification results
and high-resolution feature maps [40]. Each image is then resized into 256 × 256 pixels
using the bi-cubic interpolation algorithm to facilitate the batch learning process and reduce
the computational complexity.

4.3. Model Training

Each dataset is used to train the U2-net design. A total of 80% and 20% of the
overall sample amount comprises training and test specimens from each dataset, which are
randomly selected. The quantity of images used for model testing and training across the
two datasets is displayed in Table 3. Each input image is subjected to a set of filters in the U2-
net design, which produces a feature map that lists the existence of any identified features.
The U2-Net is designed for detecting distracted drivers without using any pre-trained
backbones from image classification. Hence, all of our convolutional layers are initialized
and trained from scratch to achieve competitive performance. One significant change we
made to the original U-net design was to have the network transmit numerous feature
channels to higher-density layers during the increased sampling process. These layers
could learn the model and produce a more accurate final result. The U2-net architecture has
a fully connected dense layer following the final convolution layer, as shown in Figure 1,
which normalizes the data in the feature space and displays the classification results as
probabilities, unlike the original U-net architecture, which only utilizes the legitimate part
of each convolution. We use the the Softmax activation function as logistic regression layer
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to achieve classification, which is based on the principle of regression, and its loss function
is a probabilistic model considering global data. It normalizes the data in the feature space
and presents the classification results in the form of probabilities. Each neuron in the final
dense layer in U2-net model has the value Y= Y1, Y2, Y3, ..., YN as a vector, where Yi is the
possibility that the input image Y fits to a class i. The highest probability value is selected
as a label of the input image Y. Note that the total number of clusters is N = 10. Adam
optimizer is used to train the U2-net network and its hyper parameters are set to default
(initial learning rate lr = 1 ×10−3, betas = (0.9, 0.999), eps = 1 ×10−8, weight decay = 0). We
train the network at a batch size of 64, verbose = 1, and epochs = 50 until the loss converges
without using the validation set, which follows the original U-net model. The training loss
converges at early stopping (mode = max) and the whole training process takes about 20 h.

For the convolution operation, the kernel size is 3 × 3, number of filters = (16, 32,
64, 128, 256, 512, 1024), stride = 2, padding = same, activation function = ‘relu’, kernel
initializer = ’he_normal’. For the transpose convolution operation, filters = (512, 256, 128,
64, 32, 16), kernel size = 2 × 2, strides = (2,2), padding = same. To minimize the processing
complexity, the pooling layer (stride = 2 and pool size of 2 × 2 with no padding) is in
charge of lowering the size of the recovered vectors and dimensionality. Additionally, it
can locate and retrieve the main features required for a classification or detection method
to work effectively.

4.4. Model Evaluation

We used the accuracy metrics provided by TensorFlow.Keras. The accuracy represents
how often the predicted values match the labels. Figure 4 shows the evaluation results in
terms of accuracy and loss percentages for the MI-AUC and State Farm datasets. While the
test accuracy shows how well the model matches the testing data, the training accuracy
shows how well it fits the training data. The testing loss evaluates the inaccurate prediction
of the model on the testing set and shows the disparity between the model and the testing
data. The training loss evaluates the inaccuracy of the models, it demonstrates the disparity
between the model and the training set. Note that the training set represents 80% of the
dataset initially used to train the model. The testing accuracy curve is close enough to the
training accuracy curve. In addition, we can notice that the U2-net model achieves high
training and testing accuracy values. Further, the U2-net model achieves better results
when using the State Farm datasets. Moreover, we notice that the U2-Net model starts to
converge at early stages (i.e., when epochs < 5).

Table 4 shows the training accuracy, testing loss, training loss, and testing accuracy for
U2-net compared to other architectures using the State Farm datasets. The results in the
first four rows are collected from Ref. [7]. The authors in Ref. [7] have implemented and
evaluated these architectures using the same datasets that we used—State Farm. They also
used the same training and testing ratios (80% for training and 20% for testing). The last
row shows the evaluation results of the U2-net on the State Farm datasets. We notice that
the U2-net achieves the best results regarding accuracy and loss values. It achieves 100%
training accuracy and 99.64% testing accuracy (1.52 higher than MobileNetV2 [7]).

Table 4. Training and testing accuracy for U2-NET compared to other architectures using the State
Farm dataset [7].

Model Training Loss Training Accuracy Testing Loss Testing Accuracy

Simple CNN [7] 0.147 96.09% 0.1348 96.76%
VGG-16 [7] 0.00185 97.68% 0.2424 93.23%
ResNet50 [7] 0.0597 98.62% 0.26795 94.69%
MobileNetV2 0.0035 99.83% 0.2057 98.12%
U2-net (proposed model) 0.0000081 100.0% 0.02 99.64%
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Figure 4. Accuracy and loss percentages for the U2-net model. (a,b) show the “training and testing
loss”, “training and testing accuracy” for the MI-AUC dataset, respectively. (c,d) show the “training
and testing loss”, “training and testing accuracy” for the State Farm data set, respectively.

We also compare the U2-net model’s outcomes with the state-of-art CNN architec-
tures from collected works, as shown in Table 4. The U2-net model achieves the best
performance—98.34% (2.75%, 2.36%, and 2.03% higher accuracy than D-HCNN [6], GA-
Weighted Ensemble, and VGG- with Regularization, respectively). In addition, Table 4
shows the approximate number of parameters for each model; the D-HCNN [6] has the
lowest number of parameters (0.76 million). However, the U2-net achieves 2.75% higher
accuracy than the D-HCNN model. This research focuses on enhancing the performance in
terms of accuracy while enhancing the performance in terms of time complexity (considered
as future work).

Suppose we observe the accuracy results from Tables 4 and 5. In that case, we can
notice a gap between results generated from applying the U2-net on MI-AUC and results
generated from applying the U2-net on the State Farm dataset. This gap is due to the
incorrect training labels and testing data provided in the MI-AUC dataset, while the data
in the State Farm dataset is accurately labeled [41].

The confusion matrix is a particular design that makes it possible to see how well
a classification performs. Examples in a real class are represented in each row of the
matrix, whereas those in a predicted class are represented in each column. Since the
matrix’s diagonal contains all the accurate predictions, it is simple to examine the accuracy
directly: the numbers outside the diagonal correspond to the incorrect predictions [42].
For 10 classes of the MI-AUC and State Farm distracted driver detection datasets, an exact
and comprehensive measure for the analysis of findings is presented in Figure 5 in the
shape of a confusion matrix. It displays the U2-net model’s categorization results. Since a
large portion of the information is in the matrix’s diagonal section, and there are not many
misclassification mistakes, Figure 5 demonstrates the U2-net model’s strong classification
performance. For each class, we compute the Intersection over Union (IoU) using the
confusion matrix in the manner described below. Given a confusion matrix c for N number
of classes, the IoUi for a class i is given as follows:
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IoUi =
Area of Overlap
Area of Union

= (4)

Table 5. Training and testing accuracy for the U2-Net compared to other architectures using the
MI-AUC dataset [6].

Model Image Source Approximate No. of Parameters (in Millions) [41] Accuracy

AlexNet [13]

Original 62 93.65%
Skin Segmented 62 93.60%
Face 62 86.68%
Hands 62 89.52%
Face + Hands 62 86.68%

Inception V3 [11]

Original 24 95.17%
Skin Segmented 24 94.57%
Face 24 88.82%
Hands 24 91.62%
Face + Hands 24 90.88%

Majority Voting Ensemble [11] – 120 95.77%
GA-Weighted Ensemble [11] – 120 95.98%
Original VGG [41] Original 140 94.44%
VGG with Regularization [41] Original 140 96.31%
Modified VGG [41] Original 15 95.54%
Original VGG16 [43] Original – 79.86%
VGG16 one attention [43] Original – 84.82%
VGG16 two-way attention [43] Original – 87.74%
DenseNet + Latent + Pose [44] Original 8.06 94.2%
MobileNet [41] Original 4.2 94.67%
MobileNetV2 [41] Original 3.5 94.74%
NasNet Mobile [41] Original 5.3 94.69%
SqueezeNet [41] Original 1.25 93.21%
Mobile VGG [41] Original 2.2 95.24%
D-HCNN [6] Original 0.76 95.59%
U2-net (proposed model) Original 41.6 98.34%
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Figure 5. The confusion matrix for the U2-net model. (A,B) show the confusion matrix for the testing
and training data generated from the state farm dataset, respectively. (C,D) show the confusion
matrix for the testing and training data generated from the MI-AUC dataset, respectively.

Further, we use the confusion matrix to calculate the Precision, Recall, Accuracy, and
F-score for each class i as follows. Given a confusion matrix c for N number of classes:

Precision =
TP

TP + FP
(5)

Recall =
TP

TP + FN
(6)

F-score =
2 ∗ Precision ∗ Recall

Precision + Recall
=

2 ∗ TP
2 ∗ TP + FP + FN

(7)

Tables 6 and 7 show the class-wise evaluation results for the U2-net model in terms of
intersection over union, precision, recall (sensitivity), f-score, and accuracy scores for the
testing data using the MI-AUC and State Farm datasets, respectively.

Table 6. Class-wise evaluation results in terms if intersection over union (IOU), Precision, Recall,
Accuracy, and F-score scores using the testing part from the MI-AUC dataset.

Class IoU Precision Recall Sensitivity F-Score Accuracy

Co—Safe Driving 94.80% 94.80% 100% 97.33% 100%
C1—Phone Right 98.85% 99.23% 99.62% 99.42% 99.62%
C2—Phone Left 99.42% 100% 99.42% 99.71% 100%
C3—Text Right 98.65% 98.65% 100% 99.32% 100%
C4—Text Left 98.44% 100% 98.44% 99.21% 98.44%
C5—Adjusting Radio 97.44% 99.35% 98.06% 98.70% 98.06%
C6—Drinking 96.15% 99.34% 96.77% 98.04% 96.77%
C7—Hair or Makeup 95.52% 99.22% 96.24% 97.71% 96.24%
C8—Reaching behind 98.05% 98.69% 99.34% 99.01% 99.34%
C9—Talking to Passengers 94.14% 99.64% 94.46% 96.98% 94.46%
Average 97.15% 98.89% 98.24% 98.54% 98.29%
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Table 7. Class-wise evaluation results in terms if intersection over union (IOU), Precision, Recall,
Accuracy, and F-score scores using the testing part from the State-Farm dataset.

Class IoU Precision Recall/Sensitivity F-Score Accuracy

Co—Safe Driving 98.34% 98.52% 99.81% 99.16% 99.81%
C1—Phone Right 99.76% 99.76% 100% 99.88% 100%
C2—Phone Left 99.16% 99.58% 99.58% 99.58% 99.58%
C3—Text Right 99.38% 99.58% 99.79% 99.68% 99.79%
C4—Text Left 99.09% 99.54% 99.54% 99.54% 99.54%
C5—Adjusting Radio 99.36% 99.56% 99.79% 99.67% 99.79%
C6—Drinking 99.36% 100% 99.36% 99.68% 99.36%
C7—Hair or Makeup 99.24% 100% 99.24% 99.62% 99.24%
C8—Reaching behind 97.91% 98.68% 99.21% 98.94% 99.21%
C9 Talking to Passengers 98.06% 99.75% 98.30% 99.02% 98.30%
Average 98.97% 99.50% 99.46% 99.48% 99.46%

It is clear that the evaluation results of the U2-net model using the State Farm dataset
achieve better performance results. As we mentioned earlier, this discrepancy results from
some erroneous training and testing data labels given in the MI-AUC dataset, whereas the
information contained in the State Farm dataset is correctly labeled [41].

Table 8 displays the assessment findings for the most cutting-edge CNN designs using
the State Farm dataset in terms of the estimated total number of parameters (in millions)
and accuracy. It is important to note that the U2-net paradigm outperforms these designs.
It can equal and come close to the precision of D-HCNN, VGG16, and MobileVGG.

Table 8. Comparison results with the state-of-the-art approaches from literature on State-Farm
dataset [6,41].

Model Approximate No. of Parameters (in Millions) Accuracy %

VGG16 with pretrained weights [30] 140 99.57%
VGG16 without pretrained weights [30] 140 99.43%
VGG19 with pretrained weights [30] 142 98.98%
VGG19 without pretrained weights [30] 142 99.39%
MobileVGG [41] 2.2 99.75%
D-HCNN [6] 0.76 99.86%
VGG GAP [45] 140 98.7%
CAT-CapsNet [31] 8.5 99.88%
DenseNet + GA [24] – 99.80%
U2-net (proposed model) 41.6 99.64%

5. Conclusions

One of the most dangerous problems that face traffic worldwide is distracted driving.
It causes a large number of fatality road accidents. We propose a new architecture, called
U2-net, for detecting and classifying the state of the distracted driver while driving. The U2-
net model is an extended version from the original U-net architecture [5] to automatically
detect distracted drivers—especially those who are using mobile phones. The motivation
behind this model is that the U2-net model uses computer vision algorithms and a deep
convolutional neural network to capture the context around the objects and provide deep
layers to represent image features that yield more precise classification results. It has two
paths (contracting and expanding) along with a fully connected dense layer. These new
paths and layers add more spatial information and context to the classifier and avoid
model overfitting. To evaluate the ability of the U2 model to detect distracted drivers, we
conduct experimental evaluations on two image datasets: MI-AUC and State Farm. The
accuracy on MI-AUC is 98.34% and 99.64% on State Farm, which is higher than what is
achieved by many other state-of-the-art models. This paper covers the distracted driver
with special focus on different postures for mobile phone usage while driving. It serves
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as a warning tool that alerts the driver to be aware of their behavior and make efforts to
reduce distractions.

6. Future Directions

The next phases of future projects might cover detecting different postures or several
causes of driver distractions, such as driver fatigue and sleepy or drowsy drivers. Addi-
tionally, another future direction might be developing more efficient models with a smaller
number of training parameters to reduce the computational complexity and increase the
performance accuracy. This model used images generated from inside the vehicle. Using
images that are generated from outside the vehicles will be another future work or direction.
Such a model might be used to alert the driver in case of distraction, which increases the
drivers’ awareness and their driving habits and associated risks. It also promotes safe
driving practices, which in turn minimizes driver distraction and the number of crashes,
therefore saving lives.

To evaluate the U2-net model, we use images generated from cameras that are inside
the vehicle; however, it might be extended to accept data generated from cameras that are
outside the vehicle.

Existing research gaps and challenges are:

1. Current research does not comprehensively analyze the time complexity (required
time duration) to develop the system either online or offline;

2. Spatial/temporal relations should be considered. Spatial features of the current frame
along with the temporal features between frames represent a crucial clue to decide the
drivers’ detail action. Combining the temporal and spatial information will generate
higher accuracy results;

3. There is no comprehensive dataset that contains images and videos captured from
different angles of driver;

4. Distracted classes are limited to some existing behaviors, New or unseen distracted
behaviors that are not well-represented in the training data might result in a false
positive. Adding more distracted classes and behaviors to the available datasets
represents another future research direction.
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