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Abstract: The evaluation of the semantic similarity of concepts organized according to taxonomies is
a long-standing problem in computer science and has attracted great attention from researchers over
the decades. In this regard, the notion of information content plays a key role, and semantic similarity
measures based on it are still on the rise. In this review, we address the methods for evaluating the
semantic similarity between either concepts or sets of concepts belonging to a taxonomy that, often,
in the literature, adopt different notations and formalisms. The results of this systematic literature
review provide researchers and academics with insight into the notions that the methods discussed
have in common through the use of the same notation, as well as their differences, overlaps, and
dependencies, and, in particular, the role of the notion of information content in the evaluation of
semantic similarity. Furthermore, in this review, a comparative analysis of the methods for evaluating
the semantic similarity between sets of concepts is provided.

Keywords: semantic similarity; knowledge-based methods; taxonomy; information content

1. Introduction

In the literature, we are assisting a growing interest in the problem of evaluating the
semantic similarity between concepts, words, digital resources, etc., not only in computer
science but also in the social sciences, medicine, biology, etc. [1]. Semantic similarity, i.e., the
identification of different entities that are semantically close, is used in many research areas,
such as bioinformatics [2,3], natural language processing [4,5], semantic web search [6,7],
geographic information systems [8,9], and business process management [10,11], often by
using different notations, overlapping definitions, etc., and, currently, it is still a challenge.

In the literature, there are at least two dimensions along which semantic similarity
methods are organized. They are the type of resources that are used to accomplish this
task and the type of entities that are compared. On the basis of the type of used resources,
most of the approaches fall into one of the following categories: corpus-based methods, that
use large corpora of natural language texts and leverage co-occurrences of words [12];
knowledge-based methods that rely on structured resources [13]; and hybrid methods that are a
mixture of both the mentioned approaches [14].

In the last ten years, many methods have used machine learning and deep learning
techniques to compute semantic similarity by encoding the available resources as numerical
vectors. When these resources are in the form of textual documents, this step is referred to
as word embedding, whereas, when dealing with graph-shaped knowledge, such as graph
embedding (e.g., [15]). Therefore, even if in some cases they are presented as a further
category (e.g., [1]), depending on the type of used resources, they fit in one of the three
above categories.

This work focuses on the second category, i.e., on knowledge-based methods, and in
particular on methods that exploit a taxonomy, which is a set of concepts organized accord-
ing to the well-known is-a relationship [16]. In the framework of taxonomy-based similarity
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methods, the types of entities to be compared are usually concepts or sets of concepts. In
particular, semantic annotations of real-world resources, for instance, commercial products
and scientific papers, are in general sets of concepts. Furthermore, in many cases, resources
are tagged with sets of concepts belonging to a taxonomy. The approach of evaluating
the similarity of resources by using semantic annotations is particularly useful in the case
the content of the resources is not available. For instance, many scientific journals require
categorizing articles with keywords from a classification system organized according to a
taxonomy like the Association for Computing Machinery (ACM) Computing Classifica-
tion System (https://dl.acm.org/ccs, accessed on 29 October 2023), or the Physics Subject
Headings classification system (https://physh.org/browse, accessed on 29 October 2023).
But while the keywords associated with the articles and classification systems are publicly
available, the articles’ contents are not. Then, in order to search for an article addressing
given topics, taxonomy-based semantic similarity is a significant opportunity.

Therefore, the objective of this paper is to provide an overview of taxonomy-based
methods for computing the semantic similarity between either concepts or sets of concepts.
Also, it has shown that taxonomy-based methods for computing the semantic similarity
between sets of concepts rely on the ones to compute the similarity between concepts.
Furthermore, since many of these methods use an information theoretic approach, the
notion of information content for deriving the informativeness of a concept in a taxonomy,
and methods for computing it are also introduced. The results of this review aim to provide
researchers and academics with an insight into the notions that the methods proposed in
the literature have in common, using the same notation, the differences of these methods,
their overlaps and dependencies, and in particular the role of the notion of information
content in assessing semantic similarity.

The work is organized as follows. Section 2 introduces the reader to the notion of
information content and the methods for computing its value. Sections 3 and 4 show
the taxonomy-based methods for computing the similarity between concepts and sets
of concepts, respectively. Section 5 focuses on one of the methods for evaluating the
semantic similarity between sets of concepts, which, according to the current literature,
outperforms the other mentioned approaches. Section 6 provides a discussion about the
illustrated methods and also about the results of a recent experiment. Section 7 presents
the conclusions and future directions.

2. Methods for Computing the Information Content of a Concept in a Taxonomy

The notion of the information content (IC) of a concept to compute semantic similarity
was introduced for the first time by Resnik [17]. Based on the standard argumentation of
information theory, it is defined as the negative log of the likelihood of the concept (see
Equation (A1) in Appendix A). This is an extensional, or corpus-based, method as the
likelihood of a concept is computed as the relative frequency of that concept in a corpus
of documents. Another extensional method is annotation frequency IC [18], which exploits
the inverse document frequency (IDF) of a concept in a corpus of textual resources [19]. In
particular, in [18], this method is applied to annotation vectors, i.e., sets of concepts of a
taxonomy that are used to semantically annotate digital resources.

However, most of the methods in the literature for computing IC are intensional or
intrinsic. In fact, they compute it by considering only the structure of the taxonomy and do
not need external resources. Indeed, extensional methods require the analysis of documents
whose dimensions are statistically significant. And this amount of textual resources is not
always available, especially in the case of very specific application domains. Therefore,
intensional methods aim at overcoming these limits and avoiding additional efforts by
exploiting the sole topology of the taxonomy. In particular, intensional methods leverage
the following features of the taxonomy (see Table 1, where the fundamental definitions are
recalled):

• The number of hyponyms of the concept, where the greater it is, the less the IC. This is
due to the assumption that the more general a concept, the less its informativeness.

https://dl.acm.org/ccs
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This feature is used by Seco et al. IC [20], Zhou et al. IC [21], and Sanchez and Batet 2
IC [22]. Taieb et al. IC [23] considers the hyponyms of the hypernyms of the concept,
but the basic assumption continues to be applied.

• The depth of the concept, where the greater it is, the greater the IC. Again, this is
in line with the general assumption regarding the specificity of a concept and its
informativeness. This feature is used by Zhou et al. IC [21] and Meng et al. IC [24], who
also consider the depth of the hyponyms, and Yuan et al. IC [25] and Taieb et al. IC [23],
who also consider the depth of the hypernyms.

• The number of the hypernyms of the concept, which again take into consideration the
assumption above. In fact, the greater the number of the hypernyms, the greater the
IC. This feature is used by Yuan et al. IC [25] and Taieb et al. IC [23], who consider the
hypernyms of the hypernyms, and Sanchez and Batet 1 IC [26].

• The number of the leaves of the concept, where the greater it is, the less the IC. This is
again in accordance with the general assumption that correlates the specificity of a
concept with its informativeness. This feature is used by Sanchez and Batet 2 IC [22]
and Yuan et al. IC [25].

• The number of siblings of the concept, where the greater it is, the greater the IC. Here,
the underlying assumption is that the greater the number of siblings of a concept, the
greater its peculiarity and its informativeness, too. This assumption is exploited in the
top down IC found in [27] and by Sebti and Barfroush IC [28]. However, in the latter, the
siblings of hypernyms are also considered.

Table 1. Basic definitions.

Notation Description

Taxonomy T T = (C, E), where C is a set of nodes or concepts, and E is a set of edges,
i.e., concept pairs, (ci, cj), such that ci, cj ∈ C, and ci is-a cj holds

hyper(c) The set of the hypernyms (or subsumers) of the concept c

hypo(c) The set of the hyponyms (or subsumes) of the concept c

directHyper(c) The set of hypernyms of c directly linked to it, i.e., the set of concepts
{ci}, such that (c, ci) ∈ E

directHypo(c) The set of hyponyms of c directly linked to it, i.e., the set of concepts
{ci} such that (ci, c) ∈ E

lcs(ci, cj) The least common subsumer, i.e., one of the most specific common hypernyms
of ci and cj (that, in a tree-shaped taxonomy, is unique)

len(ci, cj) The shortest path length between ci and cj, i.e, the length of the path
with the minimum number of edges connecting ci, cj

depth(c) The shortest path length between c and the root of the taxonomy

height(T) The maximum depth that a concept can have in T

leaves(T) The set of all the leaves in T, i.e., the concepts without hyponyms

leaves(c) The set of leaves having c as an hypernym

siblings(c) The set of concepts {ci} such that directHyper(ci) ∩ directHyper(c) 6= ∅

In general, the number of hyponyms and the number of hypernyms of a concept are
normalized by the total number of the concepts in the taxonomy, whereas the depth of the
concept is normalized by the height of the whole taxonomy.

The main features of the above recalled methods are summarized in Table 2.
Additional methods for computing the IC of concepts are, for instance, the ones

proposed in [29], which exploits not only the is-a relationship but also the synonymy and
polysemy contained in semantic structures such as WordNet, and in [30], which computes
the IC of events in a process model. However, they are not further detailed in the present
work since they are not based solely on a taxonomy.
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Table 2. Methods for computing the IC of a concept c in a taxonomy.

Method Year Features

Resnik IC [17] 1995 Frequency of c in a corpus of documents
Seco et al. IC [20] 2004 Hyponyms of c

Zhou et al. IC [21] 2008
Hyponyms and depth of c, and height of T,
and tuning parameter

Sebti and Barfroush IC [28] 2008 Siblings of c and of its hypernyms
Meng et al. IC [31] 2012 Depth of c and of its hyponyms, and height of T
Sanchez and Batet 1 IC [26] 2012 Hypernyms of c and of its leaves
Sanchez and Batet 2 IC [22] 2013 Hyponyms and leaves of c, and leaves of T
Top Down IC [27] 2013 Direct hypernyms and siblings of c

Yuan et al. IC [25] 2013
Hypernyms, depth, and leaves of c, and
height and leaves of T

Taieb et al. IC [23] 2014
Hypernyms and depth of c, hyponyms,
and depth of the hypernyms

Adhikari et al. IC [32] 2015
Depth, leaves and hypernyms of c,
depth of hyponyms of c, height and leaves of T

Zhang et al. IC [33] 2018
Hypernyms and hyponyms of c,
siblings of hypernyms of c

Annotation Frequency IC [18] 2023 IDF of c in a corpus of documents

3. Methods for Computing Semantic Similarity between Concepts

This section is dedicated to presenting the methods for evaluating a similarity degree
between concepts in a taxonomy. They are organized into two groups, which distinguish
between methods that are based on the IC of the concepts (Section 3.1) and methods that
are not (Section 3.2). It is worth mentioning that IC-based semantic similarity has been
extensively experimented in the literature, relying both on statistical information from a
large-scale corpus (the Resnik’s approach [17]) or on the intrinsic knowledge contained in
the hierarchical structure of the taxonomy (Seco’s [20] or Zhang 1 et al.’s [33] formulations),
and the experimental results overall show a higher correlation with human judgment than
non-IC-based approaches [33].

3.1. Information Content-Based Methods

To compute the similarity between concepts in a taxonomy, a substantial group of
methods relies on the IC of concepts. They are briefly described in the following.

• Resnik similarity (simres) [17] (see Equation (1)), which assumes that the more informa-
tion two concepts share, the more similar they are. Then, the information shared by
two concepts is provided by the IC of the concepts that subsume them in the taxonomy:

simres(c1, c2) = maxci∈hyper(c1)∩hyper(c2)
ic(ci) (1)

where the maximum value is obtained for ci is one of the lcs(c1, c2).
• Jiang and Conrath similarity (simj&c) [34] (see Equation (2)), which depends on the

IC of three nodes in the taxonomy, i.e, the two compared concepts, and their least
common subsumer:

simj&c(c1, c2) =
1

ic(c1) + ic(c2)− 2 ∗ ic(lcs(c1, c2))
. (2)

• Lin similarity (simlin) [35] (see Equation (3)), which, analogously to [34], is based on
the ICs of the two compared concepts and their lcs:

simlin(c1, c2) =
2 ∗ ic(lcs(c1, c2))

ic(c1) + ic(c2)
. (3)
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• P&S similarity (simP&S) [36], inspired by Tversky’s set-theoretic formulation of similar-
ity [37], which is based on both the ICs of the two compared concepts and the one of
their lcs (see Equation (4)):

simp&s(c1, c2) = 3 ∗ ic(lcs(c1, c2))− ic(c1)− ic(c2). (4)

• Meng and Zhou similarity [24], based on the IC and shortest path length, as shown in
Equation (5):

simm&z(c1, c2) =

(
2 ∗ ic(lcs(c1, c2))

ic(c1) + ic(c2)

)( 1−e−k∗len(c1,c2)

e−k∗len(c1,c2)

)
(5)

where k is a factor, which is manually computed to improve the performance of
the method.

• wpath similarity (simwpath) [38], defined in terms of the shortest path distance between
the compared concepts and the ICs of their lcs (see Equation (6)):

simwpath(c1, c2) =
1

1 + len(ci, cj) ∗ kic(lcs(c))
(6)

where k is the parameter that weighs the contribution of the IC of the lcs.
• Zhang 1 similarity (simzhang_1) [33] (see Equation (7)), which uses the Lin similarity [35],

as expressed by the argument of the logarithm function. However, differently from
Lin, Zhang’s similarity, in its original version, it adopts the work of Zhang et al. IC [33]
to compute the IC of a concept:

simzhang_1(c1, c2) = 1− log
(

2− 2 ∗ ic(lcs(c1, c2))

ic(c1) + ic(c2)

)
. (7)

• Dk similarity, proposed in [39] for IC-based similarity measures, which addresses the
concept intended senses in a given context Dk (or application domain). In particular,
the semantic similarity of the concepts c1, c2, indicated as simDk (c1, c2), is defined by
Equation (8):

simDk (c1, c2) = sim(c1, c2) ∗ (1−ωk) + sim(SDk (c1),SDk (c2))) ∗ωk (8)

where sim, in the original proposal, is any similarity measure between concepts based
on IC, ωk is a weight, 0 ≤ ωk ≤ 1, defined by the domain expert according to Dk, and
SDk is a function, referred to as the intended sense function, associating a concept with
its meaning according to Dk (which can be another concept or itself).

• Hierarchical semantic similarity (simHSS) [40], which was originally conceived for com-
puting the similarity between words. Due to polysemy, one word can refer to different
concepts, each representing a sense of that word. Then, if we assume that a word can
refer to only one concept in the taxonomy, the complexity of the method decreases.
However, we present it according to its original formulation, in which w1 and w2 are
the compared words (see Equation (9)):

simHSS(w1, w2) = ∑
l∈L

(
S<w1,w2>∈l

|hypo(l)|2 ∗
|hypo(l) + 1|

|C|

)
∗ 1

∑k∈L S<w1,w2>∈k

|hypo(k)|2
(9)

where S<w1,w2>∈ci is the number of pairs of senses of w1 and w2, i.e., concepts in
the taxonomy having ci as the lcs, and L is the set of the lcs of pairs of concepts
representing senses of w1 and w2, respectively.
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3.2. Non-Information Content-Based Methods

• Rada distance. In the literature, many proposals compute semantic similarity by using
the notion of conceptual distance between concepts in a taxonomy as defined by
Rada [41], as reported in Equation (10)

Drada(c1, c2) = len(c1, c2) (10)

i.e., the minimum number of edges separating c1 and c2 in the taxonomy. In particular,
the smaller the distance between concepts, the more similar the concepts are (con-
ceptual distance is a decreasing function of similarity). In the mentioned paper, the
authors show that conceptual distance satisfies the properties of a metric:

- len(c1, c1) = 0 (zero property);
- len(c1, c2) = len(c2, c1) (symmetric property);
- len(c1, c2) ≥ 0 (positive property);
- len(c1, c2) + len(c2, c3) ≥ len(c1, c3) (triangular inequality).
However, in general, symmetry and triangular inequality are not satisfied by semantic
similarity.

• Wu and Palmer similarity [42] is based on the depth of the least common subsumer
of the concepts and the conceptual distance of the concepts from it, as defined by
Equation (11):

simw&p(c1, c2) =
2 ∗ depth(lcs(c1, c2))

len(c1, lcs(c1, c2)) + len(c2, lcs(c1, c2)) + 2 ∗ depth(lcs(c1, c2))
. (11)

• Leacock and Chodorow similarity [43] is based on the shortest path between the two
concepts. It also considers the maximum depth of the taxonomy T, i.e., its height, as
in Equation (12)

siml&c(c1, c2) = −log
(

len(c1, c2)

2 ∗ height(T)

)
. (12)

• Li similarity (simli) [44] is based on the shortest path distance between the compared
concepts and the depth of their lcs, according to Equation (13)

simli(c1, c2) = eα∗len(c1,c2) ∗ eβ∗depth(lcs(c1,c2)) − e−β∗depth(lcs(c1,c2))

eβ∗depth(lcs(c1,c2)) + e−β∗depth(lcs(c1,c2))
(13)

where e is Euler’s number, and α, β are parameters that contribute to the path length
and depth, respectively. According to the experiment in [44], the empirical optimal
parameters are α = 0.2 and β = 0.6.

• Al-Mubaid similarity [45] (see Equation (14)) is based on the height of the taxonomy,
the depth of the lcs, and the shortest path length:

simalmubaid(c1, c2) = log((len(c1, c2)− 1)α ∗ (CSpec(c1, c2)
β + k) (14)

where CSpec(c1, c2) = height(T) − depth(lcs(c1, c2)), α, β > 0, and k ≥ 0 (in their
experiments k = 1).

• Rezaei and Fränti similarity [46] is based on the depth of the compared concepts and of
their lcs, as shown in Equation (15):

simr& f (c1, c2) =
2 ∗ depth(lcs(c1, c2))

depth(c1) + depth(c2)
(15)

which, in a tree-shaped taxonomy coincides, with the Wu and Palmer similarity (see
Equation (11)).
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• Zhang 2 similarity [47] is based on the hyponyms of the concepts and their lcs, i.e.,
the desc function according to the notation above. In particular, such a measure is
computed according to Equation (16):

simzhang_2(c1, c2) =
2 ∗ log(|C|)− log(|hypo(lcs(c1, c2))|+ 1)

2 ∗ log(|C|)− log(|hypo(c1)|+ 1)− log(|hypo(c2)|+ 1)
. (16)

Furthermore, the method proposed in [48] relies on the Wikipedia Category Graph
(WCG), a hierarchical knowledge structure used to categorize Wikipedia articles. However,
the WCG is not a proper taxonomy as it is built by volunteers who link the categories
without explicitly specifying the nature of the relation. For this reason, the method is not
considered in this review.

Table 3 recaps the main features of the recalled proposals and the methods they use
for computing the IC that are described in detail in Section 6.

Table 3. Methods for computing the semantic similarity between concepts in a taxonomy.

Depth Height len lcs Hypo Hyper IC Further Info

simrada [41] 1989 X distance

simw&p [42] 1994 X X X

simres [17] 1995 X X Resnik [17]

simj&c [34] 1997 X Resnik [17]

siml&c [43] 1998 X X

simlin [35] 1998 X Resnik [17]

simli [49] 2006 X X X

simalmubaid [45] 2006 X X X X

simp&s [36] 2009 X Seco et al. [20]

simm&z [24] 2012 X X Seco et al. [20] tuning param.

simr& f [46] 2014 X X

simwpath [38] 2017 X X Resnik [17] tuning param.

simzhang_1 [33] 2018 X Zhang 1 et al. [33]

simzhang_2 [47] 2018 X X

simDk [39] 2021 any tuning param.
words senses

simHSS [40] 2022 X X Resnik [17] words senses

4. Methods for Computing Semantic Similarity between Sets of Concepts

In the literature, traditionally, the semantic similarity between sets of concepts is
evaluated according to the well-known Tversky model [37], such as Dice [50], Jaccard [51],
and Sigmoid [52], just to mention a few. However, these are set-theoretic methods that
are not addressed in this review as they do not rely on a given taxonomy of concepts.
With regard to the taxonomy-based similarity measures, in this section, we recall five
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methods: the WNSim similarity [53], the measures introduced by Rezaei and Fränti [46],
Haase et al. [54], and Wang et al. [55], and the SemSimp similarity [18].

Let an annotation vector, av, be a set of concepts from the taxonomy T = (C, E),
defined as av = (c1, .., cn), ci ∈ C, i = 1, .., n.

In the following, let av1, av2 be two annotation vectors from the taxonomy T = (C, E).

• WNSim similarity [53] is a method for computing semantic similarity between sets
of concepts representing sentences in documents, which leverages the Leacock and
Chodorow similarity siml&c [43] defined in the previous section (see Equation (17)):

SIMWN(av1, av2) =

∑
ci∈av1

maxcj∈av2(siml&c(ci, cj)) ∗ IDF(ci)

∑
ci∈av1

IDF(ci)
. (17)

• Rezaei and Fränti similarity [46] is a similarity measure between sets of concepts based
on matching the individual concepts of the sets by applying the simr& f defined above
(see Equation (15)):

SIMR&F(av1, av2) =

∑
ci∈av1

simr& f (ci, cj)

|av1|
(18)

where |av1| is the cardinality of the set av1.
• Haase et al. similarity [54] computes the similarity of pairs of concepts belonging

to different sets by using the method proposed by Li et al. simli recalled above,
which combines the shortest path length between the concepts and the depths of their
subsumers in the taxonomy non-linearly (see Equation (19)):

SIMHaase(av1, av2) =
1
|av1| ∑

ci∈av1

maxcj∈av2 S(ci, cj) (19)

where |av1| is the cardinality of the set av1, and

S(ci, cj) =

{
simli(ci, cj) if ci 6= cj
1 otherwise.

• Wang et al. similarity [55] computes the similarity between two sets of concepts av1
and av2 by considering, for each pair of concepts, one from av1 and one from av2, the
IC of their lcs (see Equation (20)):

SIMWang(av1, av2) =
1

|av1| ∗ |av2| ∑
ci∈av1

∑
cj∈av2

ic(lcs(ci, cj)) (20)

where the IC is computed according to the Resnik IC (see Section 2).
• SemSimp similarity [18] is derived from the SemSim method [27], which has been con-

ceived for evaluating the semantic similarity of resources (i.e., real-world entities)
annotated by sets of concepts taken from a taxonomy. It is a parametric measure
depending on a weight associated with the concepts of the taxonomy, and a nor-
malization factor is used when the two compared annotation vectors have different
cardinalities.

Our latest experimentation, which is shown in Section 6, confirms the results of
the comparative assessment presented in [18], i.e., SemSimp, which, when configured
according to a specific selection of parameters, improves the performance of the four
methods mentioned above. For this reason, it is recalled in the next section in detail.
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5. The Parametric Semantic Similarity Method SemSimp

Given two annotation vectors, the SemSimp method [18] allows the evaluation of their
semantic similarity degree by relying on the method SemSim [27]. SemSimp is based on two
parametric functions, simlin,h and semsimh,µ, the former used to compute the similarity of
pairs of concepts, whereas the latter was conceived to evaluate the similarity of pairs of
annotation vectors, as formally defined below.

Let simlin,h be the parametric Lin similarity defined by Equation (3) (see Equation (21))

simlin,h(c1, c2) =
2 ∗ ich(lcs(c1, c2))

ich(c1) + ich(c2)
(21)

where ich is the IC computed according to one among the approaches of Resnik, Annotation
Frequency, Top Down, and Seco, as recalled in Section 2, which are formally defined in
Appendix A (in particular h = {resnik, af, td, seco}, Formulas (A1), (A9), (A14) and (A2),
respectively).

Consider now two annotation vectors, say av1 = (c11, . . . , c1n) and av2 = (c21, . . . , c2m)
and the Cartesian product of av1, and av2, say S = av1 × av2. We borrow the matching
approach from the graph theory in line with the maximum weighted matching problem in
bipartite graphs [56]. Accordingly, P(av1, av2) is the set of sets of pairs, defined as follows:

P(av1, av2) = {P ⊂ S|∀(c1i, c2j), (c1q, c2k) ∈ P, c1i 6= c1q, c2j 6= c2k, |P| = min{n, m}}. (22)

Formally, the semsimh,µ function identifies the set of pairs of concepts of av1 and av2
that maximizes the sum of the consimh values, as follows:

semsimh,µ(av1, av2) =

max
P∈P(av1,av2)

{
∑

(c1i ,c2j)∈P
simlin,h(c1i, c2j)

}
µ(n, m)

(23)

where µ, named the similarity normalization factor, is defined below:

µ(n, m) =


max(n, m)

min(n, m)

ave(n, m) = n+m
2 (arithmetic aver.)

gav(n, m) =
√

nm (geometric aver.)

(24)

In the following, the rationale for the choice of similarity normalization factor is briefly
explained.

When calculating the degree of similarity of the two sets av1 and av2, composed of n1
and n2 concepts, respectively, two cases can be distinguished: either the two annotation
vectors have the same cardinality or different cardinalities.

In the former case, i.e., n1 = n2, each concept in av1 can be matched with one concept
in av2 and vice-versa. Hence, the four options lead to the same normalization factor, and
the degree of similarity is calculated by considering the entire semantic description of both
resources. In the latter case, assuming for instance n1 > n2, part of the information about
av1 (i.e., n1− n2 concepts) is ignored when computing the similarity value. The effects of the
four proposed normalization factors are illustrated below when n1 6= n2, for instance with
n1 > n2. In the case the normalization factor is chosen as the maximum between n1 and n2,
that is n1, we intend to favor richer annotations, and thus the “missing information” in av2
weakens the similarity between the resources. If the normalization factor is chosen as the
minimum between n1 and n2, i.e., n2, we assume that a more “compact” annotation vector
contains the essence of the resource r1 and that the remaining concepts are redundant.

In particular, the choice of the normalization factor as the maximum considers the
missing information (in the shorter annotation) as a deficiency. Conversely, the choice of
the normalization factor as the minimum deems the additional information (in the longer
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annotation) as a redundancy. Hence, the choice of maximum or minimum emphasizes the
differences and commonalities between the compared annotation vectors, respectively.

The choice of the normalization factor as the arithmetic mean implies a compromise
between the two previous cases. This case takes missing and redundant information into
account to some extent when comparing resources in the same way. Finally, the geometric
mean behaves essentially like the arithmetic mean but is more sensitive to small values.

In accordance with the computational complexity of the Hungarian algorithm, the
SemSimp method is polynomial in the size of n, specifically O(n3), where n is the cardinality
of the larger of av1 and av2.

6. Discussion

In Section 3, the methods for computing the semantic similarity between concepts in a
taxonomy have been introduced and summarized in Table 3. They have been partitioned
into methods relying on the IC and methods that do not use the IC.

All the methods based on the IC for computing similarity between concepts consider
the least common subsumer (lcs) of the compared concepts. In particular, they consider
the IC of the lcs, i.e., the amount of informativeness shared by the two concepts. In fact,
in simres, the contributing hypernym is also the lcs. In the Dk similarity, the lcs does not
appear explicitly in the formula, but since the method uses an IC-based function, it exploits
this feature, indirectly. Therefore, the IC of the lcs can be recognized as the characteristic
typical of these methods.

Besides the Meng and Zhou similarity [24] and the wpath similarity [38], which address
the len of the compared concepts, and the hierarchical semantic similarity [40], which considers
hyponyms, the other IC-based methods do not use further features. This can be explained
because, indeed, the properties of the taxonomy are used in the computation of the IC.

Furthermore, it is worth mentioning that the Lin similarity [35] has inspired at least
two other methods, which are the Meng and Zhou similarity [24] and the Zhang 1 similar-
ity [33]. In fact, the former, according to Equation (5), is Lin’s formulation multiplied by
an expression that is inversely proportional to the len between the compared concepts,
whereas the latter, according to Equation (7) is Lin’s formulation re-scaled by the logarithm
function.

Analogously, the methods that are not based on the IC notion mainly consider the
lcs between the compared concepts, even if in different manners. In particular, the Wu
and Palmer similarity [42], Li similarity [49], Al-Mubaid similarity [45], and Rezaei and Fränti
similarity [46] consider the depth of the lcs, whereas the Zhang 2 similarity [47] considers the
number of hyponyms of the lcs.

The Rezaei and Fränti similarity can be considered as the non-IC version of the Lin
similarity. In fact, the former resembles the latter but considers the depth instead of the
IC. Furthermore, in the case the taxonomy is a tree, this similarity metric is equivalent
to the Wu and Palmer similarity. In fact, in a tree-shaped taxonomy, given two concepts
c1 and c2, depth(c1) and depth(c2) are equal to depth(lcs(c1, c2)) + len(c1, lcs(c1, c2)) and
depth(lcs(c1, c2)) + len(c2, lcs(c1, c2)), respectively.

In Section 4, some of the most representative methods for computing taxonomy-based
semantic similarity between sets of concepts were illustrated. In particular, WNSim [53],
the method defined by Rezaei and Fränti [46], the one introduced by Haase et al. [54], the
measure proposed by Wang et al. [55], and SemSimp [18].

Figure 1 shows the dependencies among the recalled methods. In the following, the
experimentation presented in [18] is briefly recalled and updated by including the latest
results, as explained below.
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Figure 1. Dependencies among the methods to compute the IC of a concept, the semantic similarity
between concepts, and sets of concepts.

The evaluation has been performed by carrying out two experiments. They are based
on a taxonomy derived from the ACM Computing Classification System (CCS) and a
large dataset of about 1K articles from the ACM Digital Library, each associated with an
annotation vector of concepts from such a taxonomy.

In general, the semantic similarity between concepts is evaluated by asking a group of
people to express similarity values between pairs of concepts belonging to golden datasets
(such as for instance M&C [57], R122 [58], and R&G [59]), which represent benchmarks
in the evaluation and comparison of different similarity methods. However, there is no
golden dataset that includes similarity scores for any possible pair of concepts defined
in the ACM domain, and it is unrealistic to ask a group of people to check thousands of
annotation vectors in pairs, producing millions of similarity scores. Therefore, the key
idea of the experimentation was to use some special issues of the ACM as a benchmark
because they contain articles whose semantic similarity, on average, should be greater
than that of a randomly selected set of papers. In fact, such articles are gathered by the
editor according to the research topic indicated in the call for papers. Hence, on the one
hand, we performed traditional experimentation based on expert evaluation, in which we
computed Pearson’s correlation between the compared methods and human judgment
(HJ). On the other hand, we performed a statistical analysis in which we computed the
degree of confidence in detecting the semantic cohesion (i.e., the average mutual similarity)
of papers belonging to some special issues [18]. In particular, SemSimp has been assessed
by contrasting it against six of the most popular similarity methods for comparing sets of
concepts. These methods were organized according to two groups. The first group relies
on set-theoretic methods, i.e., which allow the similarity scores to be derived by applying
set-theoretic operations on the annotation vectors, and contains Dice [50], Jaccard [51],
and Sigmoid [52]. The second group includes the taxonomy-based methods recalled in
the previous sections, namely WNSim [53], Rezaei and Fränti [46], and Haase et al. [54].
According to the scope of the present manuscript, here we considered the second group
enriched with the recent Wang et al. similarity method [55], which was not considered
in [18].

The results of the experiments are presented in Table 4 where, for each method, the
column labeled correlation with HJ refers to the average correlation between the method
and human judgment, whereas the column labeled degree of confidence refers to the results
of the statistical experiment. In line with [18], the results of the latest experiment show
that SemSimp, when the parameter h = a f (i.e., in the case of the annotation frequency
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IC) and µ = gav (i.e., the geometric average similarity normalization factor), exhibits the
best performance with respect to the other above-mentioned methods for evaluating the
semantic similarity between sets of concepts.

Table 4. Methods for computing semantic similarity between sets of concepts: experimental results.

Correlation with HJ Degree of Confidence

WNSim similarity 0.61 84.33%
Rezaei and Fränti similarity 0.46 74.73%
Haase et al. similarity 0.69 77.89%
Wang et al. similarity 0.04 74.09%
SemSimp similarity 0.69 85.67%

7. Conclusions and Future Directions

This review shows the methods for computing the semantic similarity between either
concepts or sets of concepts belonging to a taxonomy and the crucial role of the notion of IC
in this activity. The main goals of this contribution are: (i) presenting all the selected meth-
ods in a homogeneous manner with the help of basic definitions shared by all the methods;
(ii) identifying the main features used by each method; (iii) showing commonalities and
differences among the methods; (iv) identifying dependencies among the methods, in
particular among those focusing on sets of concepts and those focusing on pairs of concepts,
and among the latter and the methods for computing the IC. Furthermore, concerning the
methods working on sets of concepts, the previous experiment presented in [18] has been
enriched by including a recent additional method (Wang et al. similarity method [55]), in
order to provide an updated comparative assessment. The new experiment shows that,
among the methods for computing semantic similarity between sets of concepts, SemSimp

outperforms the other approaches, in line with the previous results [18].
One interesting future direction is represented by the machine learning techniques

dealing with graph-shaped knowledge. However, in this research area, computational effi-
ciency is still an open problem because the computation of embedding is time-consuming,
and experiments, even with small Resource Description Framework (RDF) datasets, do not
terminate in a reasonable number of days or run out of memory.
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Appendix A. Formulas of Methods for Computing the IC of Concepts in a Taxonomy

Here, we report the formulas for computing the IC of a concept c in a taxonomy
T = (C, E) according to the methods discussed in Section 2 (see definitions in Table 1).

• Resnik IC [17]

icresnik(c) = −log
(

f req(c)
|C|

)
(A1)

where, f req(c) is the relative frequency of the concept c in a corpus of text documents.

https://data.mendeley.com/datasets/r4vbkhgxx3/2
https://data.mendeley.com/datasets/r4vbkhgxx3/2
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• Seco et al. IC [20]

icseco(c) = 1− log(|hypo(c)|+ 1)
log(|C|) . (A2)

• Zhou et al. IC [21]

iczhou(c) = k ∗
(

1− log(|hypo(c)|+ 1)
log(|C|)

)
+ (1− k) ∗ log(depth(c))

log(height(T))
. (A3)

• Sebti and Barfroush IC [28]

icsebti(c) = −log

 ∏
ci∈hyper(c)∪{c}

1
|sibling(ci)|

. (A4)

• Meng et al. IC [31]

icmeng(c) =
log(depth(c))
log(heigh(T))

∗

1−
log(∑c′∈hypo(c)

1
depth(c′) + 1)

log(|C|)

. (A5)

• Sanchez and Batet 1 IC [26]

ics&b_1(c) = −log
(

commonness(c)
commonness(root)

)
(A6)

where

commonness(c) =


1

|hyper(c)| , if c is a leaf

∑c′∈leaves(c)
1

|hyper(c′)| , otherwise.
(A7)

• Sanchez and Batet 2 IC [22]

ics&b_2(c) = −log

 |leaves(c)|
|hypo(c)| + 1

|leaves(T)|+ 1

. (A8)

• Top Down IC [27]

ictd(c) = log(|siblings(c)|+ 1)− ictd(directHyper(c)) (A9)

where ictd(root) is assumed to be equal to 0, and T is a tree-shaped taxonomy.
• Yuan et al. IC [25]

icyuan =
log(depth(c))
log(heigh(T))

∗
(

1− log(|leaves(c)|+ 1)
log(leaves(T) + 1)

)
∗
(

1− log(|hyper(c)|+ 1)
log(|C|)

)
. (A10)

• Taieb et al. IC [23]

ictaieb =

 ∑
ci∈hyper(c)

score(ci)

 ∗ avgdepth(c) (A11)

where
score(ci) =

(
∑cj∈directHyper(ci)

depth(cj)

|hypo(cj)|

)
∗ |hypo(ci)|

and
avgdepth(c) = 1

|hyper(c)| ∑c∈hyper(c) depth(c).
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• Adhikari et al. IC [32]

icadhikari(c) =
log(depth(c) + 1)

log(height(T) + 1)
∗

1− log

 leaves(c)∗|directHyper(c)|
leaves(T)

|hyper(c)| + 1

∗
1−

log
(

∑ci∈hypo(c)
1

depth(ci)
+ 1
)

log(|C|)

.

(A12)

• Zhang et al. 1 IC [33]

iczhang_1 = −(1− k) ∗ 1
n
∗

n

∑
i=1

log

 ∏
ci∈hyper(c)

1
siblings(ci)

+ 1

+ k ∗
(

1− log(|hypo(c)|+ 1)
log(|C|)

)
(A13)

where
k = |hypo(c)|

hyper(c)+hypo(c)
and
n = |directHyper(c)|.

• Annotation Frequency IC [18]

ica f (c) = −IDF(c). (A14)
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