
Citation: Fang, Y.; Zhou, F.; Xu, Y.;

Liu, Z. TCCCD: Triplet-Based

Cross-Language Code Clone

Detection. Appl. Sci. 2023, 13, 12084.

https://doi.org/10.3390/

app132112084

Academic Editors: Antonio

Fernández-Caballero and João M. F.

Rodrigues

Received: 18 September 2023

Revised: 16 October 2023

Accepted: 2 November 2023

Published: 6 November 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

TCCCD: Triplet-Based Cross-Language Code Clone Detection
Yong Fang, Fangzheng Zhou , Yijia Xu * and Zhonglin Liu

College of Cybersecurity, Sichuan University, Chengdu 610065, China; fangyongscu@gmail.com (Y.F.);
2021226240007@stu.scu.edu.cn (F.Z.); jungleforsa@gmail.com (Z.L.)
* Correspondence: xuyijia@stu.scu.edu.cn

Abstract: Code cloning is a common practice in software development, where developers reuse
existing code to accelerate programming speed and enhance work efficiency. Existing clone-detection
methods mainly focus on code clones within a single programming language. To address the
challenge of code clone instances in cross-platform development, we propose a novel method called
TCCCD, which stands for Triplet-Based Cross-Language Code Clone Detection. Our approach
is based on machine learning and can accurately detect code clone instances between different
programming languages. We used the pre-trained model UniXcoder to map programs written in
different languages into the same vector space and learn their code representations. Then, we fine-
tuned TCCCD using triplet learning to improve its effectiveness in cross-language clone detection. To
assess the effectiveness of our proposed approach, we conducted thorough comparative experiments
using the dataset provided by the paper titled CLCDSA (Cross Language Code Clone Detection using
Syntactical Features and API Documentation). The experimental results demonstrated a significant
improvement of our approach over the state-of-the-art baselines, with precision, recall, and F1-
measure scores of 0.96, 0.91, and 0.93, respectively. In summary, we propose a novel cross-language
code-clone-detection method called TCCCD. TCCCD leverages the pre-trained model UniXcode
for source code representation and fine-tunes the model using triplet learning. In the experimental
results, TCCCD outperformed the state-of-the-art baselines in terms of the precision, recall, and
F1-measure.

Keywords: code clone detection; cross-language; pre-trained model; triplet learning

1. Introduction

Code cloning refers to code fragments that implement the same functionality and have
identical or similar syntax and semantics. Code clone instances are common in software
development and maintenance. In general software projects, there are 5–20% of duplicated
code [1], while high-quality software systems like Linux core code have even higher rates
of code reuse, up to 15–25% [2].

With the development of software engineering and open-source communities, the pro-
portion of code clones in software systems will continue to increase [3]. While benefits
such as reduced development time can be provided by code clones, they can also have
significant negative impacts on software quality and maintenance [4]. The primary harm of
code clone instances is that the complexity in software systems is increased, which, in turn,
leads to an increase in maintenance costs. Additionally, the number of potential defects
and vulnerabilities in the software system can be increased by code clone instances, thus
decreasing software quality and reliability [5].

According to the research [1], code clones are typically classified into four types: Type-
I, Type-II, Type-III, and Type-IV. Type-I, Type-II, and Type-III belong to the syntactic clone
class, meaning that they have similarity in code structure and syntax. Type-IV belongs to the
semantic clone class, meaning that they have the same functionality, but may differ greatly
in implementation, involving different programming languages, libraries, or algorithms.

Appl. Sci. 2023, 13, 12084. https://doi.org/10.3390/app132112084 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132112084
https://doi.org/10.3390/app132112084
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0009-0006-3361-8036
https://orcid.org/0000-0003-2843-4225
https://doi.org/10.3390/app132112084
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132112084?type=check_update&version=2

Appl. Sci. 2023, 13, 12084 2 of 22

Code-clone-detection technology has made significant progress in the detection of
Type-I, Type-II, and Type-III clones, with methods such as CCFinder [6], Deckard [7],
NiCad [8], and SourcererCC [9] being proposed. However, for Type-IV clone detection,
which is semantic clone detection, there are still challenges to be faced. These challenges
include the difficulty of fully capturing and comprehending the intricate semantics of
code, as well as the insufficient performance and efficiency in handling large-scale code
repositories. To address these challenges, many researchers have combined static detection
methods with deep learning and applied them to Type-IV clone detection, achieving
promising results, such as CCLearner [10], CCGraph [11], ASTNN [12], and DeepSim [13].

Prior research in the field of code clone detection primarily concentrated on iden-
tifying clones within the single programming language, with limited attention given to
cross-language clone detection. Recent studies on cross-language code clone detection en-
compass LICCA [14], CLCDSA [15], and C4 [16]. LICCA is a tool based on the SSQSA [17]
architecture for cross-language code clone detection. However, it exhibits certain limita-
tions, such as requiring equal source code lengths and identical code steps and functional
flow for code blocks, restricting its applicability in real-world scenarios. CLCDSA utilizes
Abstract Syntax Trees (ASTs) to extract features for detecting cross-language code clones.
Nonetheless, its precision and recall rates are relatively low, impeding its effectiveness
in real-world scenarios. C4 leverages the pre-trained model CodeBERT [18] to convert
code from diverse languages into high-dimensional vector representations, facilitating the
detection of cross-language code clones. However, C4’s use of CodeBERT’s pre-trained
models for languages beyond the six it was trained on may lead to less-accurate code
representation. Additionally, C4’s pre-trained approach solely focuses on modeling natural
language, neglecting the valuable structural information present in the code. This limitation
restricts C4’s ability to fully exploit the code’s structural and data flow features.

In the research on cross-language code clone detection, several challenges are
encountered:

• Source code representation: Cross-language source code representation faces several
challenges. Firstly, there are syntax and semantic differences between different pro-
gramming languages, resulting in potentially different representations in the vector
space for code with similar functionality. Secondly, different programming languages
have distinct code structures and conventions, such as variable naming rules and
function call styles, which also impact the vector representation of code [19,20].

• Identification of clone/non-clone code pairs: The difficulty in determining whether
code pairs are clones or non-clones in vector space mainly arises from several factors.
First, the vector representation of code may have a high dimensionality, leading to a
significant amount of redundant information, which can impact the effectiveness and
efficiency of similarity calculations. Additionally, due to the diversity and complexity
of code, even if the code functionality is similar, their representations in the vector
space may differ substantially, making the similarity calculation of clone code pairs
complex [12,19].

In response to the aforementioned challenges, we propose a novel approach named
Triplet-based Cross-language Code Clone Detection (TCCCD). Our approach leverages the
pre-trained model UniXcoder [21] and adopts triplet learning. Firstly, we employed the
UniXcoder pre-trained model to map clone code from different languages into a shared
high-dimensional vector space, addressing the challenge of source code representation.
Secondly, we used triplet learning [22,23] to tackle the challenge of clone/non-clone code
pair identification and to learn effective feature representations. Triplet learning demon-
strates flexibility in selecting positive, anchor, and negative samples, adapting to intricate
cross-language code structures. Moreover, triplet learning enhances the discriminative
capacity of vector representations, thereby improving detection effectiveness.

To validate the effectiveness of our experiments, we conducted comparative experi-
ments on the same dataset, comparing our approach with CLCMiner, CLCDSA, and C4.
The experimental results demonstrated that our approach outperformed state-of-the-art ap-

Appl. Sci. 2023, 13, 12084 3 of 22

proaches significantly. Compared to the current state-of-the-art models for cross-language
clone detection, our approach achieved an improvement from 0.92 to 0.93 in the F1-score,
an increase from 0.94 to 0.96 in precision, and a rise from 0.90 to 0.91 in recall. Furthermore,
compared to UniXcoder without triplet learning, our approach achieved a 15.3% increase
in precision and a 3.4% improvement in the F1-score.

In conclusion, our main contributions can be summarized as follows:

1. A novel and effective method, TCCCD, for cross-language code clone detection, which
leverages UniXcoder to efficiently represent code.

2. The triple-based learning method in the context of cross-language code clone detection
and validating its effectiveness and applicability.

3. The evaluation of the effectiveness of TCCCD on the CLCDSA dataset. The exper-
imental results demonstrated that TCCCD outperformed the state-of-the-art clone-
detection methods.

2. Related Work

In this section, we explore existing work and research advancements in the field
of code clone detection. Existing studies are analyzed and compared to to gain a better
understanding of our contributions and the innovation behind our approach.

2.1. Code Clone Detection

We categorize the existing research in code clone detection into three parts based on
the techniques employed and specific scenarios. These parts include traditional approaches,
deep learning approaches, and cross-language code clone detection. Subsequent content
will provide detailed descriptions.

2.1.1. Traditional Approaches

In traditional approaches, researchers typically rely on static features of the code, such
as code tokens, abstract syntax trees, textual analysis, and metrics, to capture the semantic
similarity between code fragments, primarily focusing on Type-I, Type-II, and weak Type-III
clone detection.

Deckard [7] employs a tree-based representation to encode code fragments and utilizes
both the structural and content information of the tree to identify cross-language code
clones. Deckard’s study relies on specific programming language parsers and code repre-
sentations, limiting its support to only a few programming languages for clone detection.

CCFinder [6] proposes a clone-detection method based on token sequence comparison.
The method converts code fragments into token sequences and utilizes the similarity of
token sequences to identify clone code. However, CCFinder relies solely on the similar-
ity of token sequences to detect code clones, which may not capture more-fine-grained
code similarities.

Boreas [24] proposes a token-level code representation, constructs a structured repre-
sentation of the code, and introduces a matching algorithm based on similarity measure-
ment to identify code clones by comparing the similarity of token sequences. Boreas shares
similar limitations with CCFinder.

In addition, NiCad [8] treats source code as character sequences and performs clone
detection based on textual analysis. This kind of method is easy to implement and is
language-independent. Shawky et al. [25] and CMCD [26] perform fixed-granularity
clone detection, utilizing metric-based approaches. These methods offer a fast detection
speed. The effectiveness of traditional methods in code clone detection is not particularly
prominent, as they exhibit limitations in terms of both effectiveness and speed.

2.1.2. Deep Learning Approaches

In recent years, there have been emerging approaches in clone detection that leverage
deep learning techniques. These methods harness the power of neural networks to auto-

Appl. Sci. 2023, 13, 12084 4 of 22

matically learn meaningful representations of code, leading to more-accurate and -effective
clone detection.

CCLearner [10] employs a Convolutional Neural Network (CNN) and a Recurrent
Neural Network (RNN) as its primary techniques to handle the structural and sequential
information of the code, thereby capturing the semantics and contextual relationships of
the code.

TBCNN [27] utilizes an AST to transform code into a tree-like structure and performs
clone detection based on the shape and content information of the tree. This method defines
a set of convolutional kernel functions to perform convolutions on the nodes of the tree,
capturing the similarity between code fragments.

DeepSim [13] utilizes a CNN and an RNN as the main techniques to process the
structural and sequential information of the code. By converting code fragments into vector
representations and encoding them through neural networks, DeepSim effectively captures
the semantic relationships between code segments.

With the advancement of deep learning techniques, the Graph Neural Network (GNN)
has been widely applied to code clone detection with significant results. FCCA [28] trans-
forms code snippets into an AST and Program Dependency Graph (PDG). It employs a
hybrid code representation approach based on a Graph Convolutional Network (GCN)
and attention mechanisms to model and detect code clones using these representations.
Wang [20] et al. proposed a method that combines a GNN and a Flow-Augmented Ab-
stract Syntax Tree (FA-AST) to detect code clones by integrating syntax trees with data
flow information.

2.1.3. Cross-Language Code Clone Detection

In recent years, there has been an increasing amount of research on cross-language
code clone detection due to the wide variety of programming languages used in soft-
ware development.

LICCA [14] incorporates various techniques and methods such as code parsing, AST
construction, code feature extraction, and similarity comparison for cross-language code
clone detection. CLCMiner [29] introduces a novel technique for cross-language clone
detection based on revision histories, eliminating the need for an intermediate language.
CLCDSA [15] proposes a method that utilizes cross-language API call similarity to analyze
the syntactic features of the source code in different programming languages for cross-
language code clone detection. C4 [16] utilizes the pre-trained model CodeBERT [18] to
convert programs in different languages into vector representations in the same space.
Through contrastive learning, it effectively identifies clone pairs and non-clone pairs.

2.2. Source Code Representation Learning

Source code representation learning is a significant research direction in the field of
software engineering, aiming to transform source code into machine-interpretable vector
representations. With the advancement of deep learning techniques, an increasing number
of researchers have embarked on exploring the use of deep learning methods to learn
meaningful representations of source code. Source-code-representation-learning models
can be mainly categorized into token-based and graph-based approaches.

2.2.1. Token-Based Approaches

The token-based source-code-representation-learning method is a significant research
direction in the field. White et al. [30] utilize an RNN, Long Short-Term Memory (LSTM), a
Gated Recurrent Unit (GRU), and other models to extract vector representations of tokens.
Bhoopchand et al. [31] utilize an RNN to extract token context and employed a sparse
pointer network to capture long-range dependencies. On the other hand, Dam et al. [32]
use the LSTM model to extract token embeddings, introducing gate mechanisms to control
information flow and, thus, exhibiting a stronger ability than an RNN in capturing long-
range dependencies among tokens.

Appl. Sci. 2023, 13, 12084 5 of 22

Utilizing pre-training techniques significantly improves the predictive effectiveness
of NLP models. Mikolov et al. [33,34] employ word2vec [33] and BERT [35] for token
pre-training, leading to enhanced model effectiveness. BERT, a bidirectional Transformer
encoder, adjusts model parameters through two pre-training objectives: masked language
model and next sentence prediction [35]. Feng et al. [18] propose a multimodal pre-trained
model that leverages the complementary interactions among different modalities to enhance
the overall representation capability of the model. CodeBERT [18], based on documents
and source code, conducts pre-training using BERT in the bimodal context of natural
language and programming language. It captures semantic connections between the two
different types of languages to provide universal representation vectors for downstream
tasks [16,36,37].

2.2.2. Graph-Based Approaches

In graph-based source code representation, the source code is represented as a graph
structure, where various elements of the code, such as functions, variables, and statements,
are treated as nodes in the graph. The relationships between these elements, such as
function calls and variable dependencies, are represented as edges in the graph. Ref. [38]
converts the AST of the source code into a graph structure, where each node and edge
in the AST is mapped to nodes and edges in the graph. The Inst2vec [39] model is based
on the Low-Level Virtual Machine (LLVM) framework [40] to construct semantic flow
graphs and uses the skip-gram algorithm for training to obtain vector representations of
the graphs. The BRGCN [41] model extracts instruction-level heterogeneous data flow
graphs, where edges include various relationships such as data flow, variable adjacency,
and read–write relationships. It utilizes an R-GCN [42] for heterogeneous representation
learning. Wang et al. [43] adopt the Transformer framework for heterogeneous network
representation learning. The attention mechanism of the Transformer is related to the types
of source and target nodes, with key values and query values associated with the nodes’
types. This enables the model to learn the interactive features of heterogeneous nodes.

3. Background

We delve into three essential parts of our research background: code clone, pre-trained
models, and triplet learning. A more-detailed exploration of these parts will be presented
in the following content.

3.1. Code Clone

Code cloning refers to the existence of similar or identical code fragments in a software
system, which achieve the same function [1]. According to the research [1], code clones can
be classified into the following categories:

Type-I: code fragments that have the same syntax except for whitespace and com-
ments.

Type-II: code fragments that have the same syntax as Type-I clones, but also include
variations in identifier names and literal values.

Type-III: code fragments that exhibit more syntax changes compared to Type-I and
Type-II clones, such as added, modified, or deleted statements.

Type-IV: code fragments that have different syntax, but still perform the same func-
tionality.

The focus of our research on cross-language code clones primarily revolves around
Type-IV clones, which are characterized by code fragments that exhibit different syntax,
but possess similar functionality [44]. The provided Figure 1 showcases a cross-language
code clone example depicting the implementation of the linked list reversal functionality
using Java and Python. It is evident from Figure 1 that distinct programming languages
exhibit notable differences in syntax and structure. In particular, significant disparities
are observed in syntax rules, keyword usage, class and method definitions, variable dec-
larations, and overall statement composition between Java and Python. These variations

Appl. Sci. 2023, 13, 12084 6 of 22

highlight the inherent distinctions encountered in syntax and structure when comparing
code clones across different programming languages.

Figure 1. Cross language clone example.

When performing clone detection across different programming languages, a major
challenge lies in establishing a unified intermediate representation. This unified intermedi-
ate representation should possess the following characteristics:

1. Cross-language compatibility: Due to the differences in syntax, rules, and control
symbols between different programming languages, the intermediate representa-
tion must overcome these diversities and be compatible with various programming
languages.

2. Information preservation: The intermediate representation needs to accurately pre-
serve important information from the source code, including variables, functions,
classes, and control flow structures.

3. Comparability: The intermediate representation should be comparable, allowing
code written in different programming languages to be compared at the level of the
intermediate representation. This requires the intermediate representation to capture
both the syntax and semantic features of the code, enabling effective matching and
comparison operations.

To address these challenges, we chose the pre-trained model UniXcoder for code
representation, transforming code from different programming languages into a shared
vector space for effective representation. This approach enables cross-language code
comparison and analysis as the foundation.

3.2. Pre-Trained Models

Pre-trained models have emerged as a powerful approach in Natural Language Pro-
cessing (NLP) by utilizing large-scale unlabeled textual data to learn rich language repre-
sentations and patterns. By leveraging techniques such as self-supervised learning and
Transformer architectures, state-of-the-art pre-trained models have achieved remarkable
success in the NLP field [18,21,35].

3.2.1. BERT

BERT [35] is based on the Transformer architecture and adopts a bidirectional approach
to better capture the context of words in a sentence. Unlike traditional language models,
which process words sequentially, BERT leverages the power of self-attention mechanisms
to simultaneously model the relationships between all words in the input sentence.

BERT comprises two main training objectives: Masked Language Modeling (MLM)
and Next Sentence Prediction (NSP). In MLM, a certain percentage of words in each input
sentence is randomly masked, and the model is trained to predict the masked words based
on the surrounding context. This enables BERT to develop a deep understanding of the
relationships between words and their context. NSP, on the other hand, involves training

Appl. Sci. 2023, 13, 12084 7 of 22

BERT to predict whether two sentences are consecutive or not. This helps BERT capture
the semantic relationships between sentences and improve its ability to handle tasks that
involve sentence-level understanding.

To train BERT, a massive amount of unlabeled text data are utilized, enabling the model
to learn contextualized representations of words. This unsupervised training process helps
BERT capture various levels of language information, including syntax and semantics.

3.2.2. CodeBERT

CodeBERT [18] is an advanced code-representation-learning method proposed by
Microsoft Research Asia, which draws inspiration from the successful NLP model BERT.
Similar to BERT, CodeBERT adopts the Transformer [45] architecture, a deep neural network
structure based on attention mechanisms, capable of capturing long-range dependencies
and contextual information. Through pre-training on large-scale code data, CodeBERT
aims to learn universal code representations, providing powerful feature representations
for various code-related tasks [16,36,37].

During the pre-training phase, CodeBERT performs the masked language model-
ing [35] on abundant code data by masking parts of code snippets and predicting their
original content. This process enables the model to understand the structure and semantics
of code effectively. The pre-training procedure captures abstract semantics and contextual
information in the code, endowing CodeBERT with the ability to deeply comprehend and
represent code.

3.2.3. UniXcoder

UniXcoder [21] is a novel unified cross-modal pre-trained model for programming
languages. It addresses the limitations of existing encoder–decoder frameworks by intro-
ducing mask attention matrices with prefix adapters, which allow fine-grained control
over the model’s behavior. The model leverages cross-modal contents, such as ASTs and
code comments, to enhance the representation of the source code. Compared to CodeBERT,
UniXcoder expands the amount of programming language data it learns from, pre-training
on nine programming languages, Go, Python, Java, JavaScript, Php, Ruby, C, C++, and C#.
As a result, it achieves better performance in representing cloned code in C++ and C#.

When using the encoder-only mode, UniXcoder processes the input sequence by
adding a special token (such as [Enc]) as a prefix and setting all elements of the attention
mask matrix to 0, allowing all tokens to attend to each other. This processing method en-
ables UniXcoder to consider all tokens in the input sequence simultaneously, capturing their
associations and semantic information. By utilizing the self-attention mechanism, UniX-
coder models the global dependencies of the input sequence and generates corresponding
encoding representations.

UniXcoder stands as the most-state-of-the-art pre-trained model, exhibiting remark-
able effectiveness in various code-related tasks. We employed UniXcoder to transform code
fragments from various programming languages into a unified high-dimensional vector
space. Subsequently, we utilized the triplet learning method to further explore the learning
features within these transformed vectors, effectively capturing the semantic relationships
and similarities between code fragments.

3.3. Triplet Learning

Triplet learning is a fundamental concept in metric learning, first introduced and
applied in the field of image recognition by researchers [46] at Google in 2015. Triplet
learning utilizes triplets composed of an anchor sample Xa

i , a positive sample Xp
i (similar

to the anchor), and a negative sample Xn
i (dissimilar to the anchor) to train the model.

Appl. Sci. 2023, 13, 12084 8 of 22

The distance function between two vector, X1, X2, is defined as D(X1, X2). The triplet loss
function is defined as Equation (1):

L =
N

∑
i=1

[D(Xa
i , Xp

i)− D(Xa
i , Xn

i) + α]+. (1)

where N is cardinality of train set. α is a margin that is enforced between positive and
negative pairs.

By optimizing this loss function, a discriminative embedding representation is learned
by the model, where similar samples are brought closer together and dissimilar samples
are pushed farther apart in the embedding space. This leads to improved similarity
measurement and sample classification performance.

Researchers have proposed various improved triplet loss functions to better capture
the relative relationships between features. These improvements include cosine–margin–
triplet loss [23], weighted triplet loss [47,48], adaptive triplet loss [49], and others [49–51].
Among them, the cosine–margin–triplet loss, based on cosine similarity, restricts the em-
bedding vectors of samples within a specific cosine boundary. This helps enhance the
similarity between positive samples while ensuring that the embedding vectors of nega-
tive samples are located outside the cosine boundary. This approach can strengthen the
discriminative power of embedding vectors. The goal of these methods is to increase the
separation of samples in the embedding space, thereby enhancing the model’s effectiveness.
Weighted triplet loss takes into account the importance of different samples for model
training by introducing sample weights for optimization. Adaptive triplet loss allows the
model to adaptively adjust the loss function based on the current training state and sample
distribution.

In triplet learning, the construction of appropriate negative samples plays a crucial
role in effectively training the model. Researchers have proposed various approaches and
strategies to address this key issue, such as soft triple loss [52] and distance-weighted
sampling loss [22].

Due to the effectiveness of triplet learning in capturing the relative relationships
between features and learning discriminative embedding representations, it is combined
with other loss functions to enhance learning effectiveness. Specifically, the distance-
weighted sampling loss and triplet loss are integrated, and the cosine–margin–triplet
loss [23] is employed as an improved approach to enhance triplet learning.

The triplet learning approach we employed can be summarized in the following steps:

1. Using an encoder f (.) to transform code fragments into high-dimensional vectors.
2. Selecting an appropriate sampling method called S(.) for triplet learning; some re-

search has been effective, such as [22]. Treating each vector in the batch as an anchor X,
according to sampling method S(.) to chose positive samples and negative samples.

3. Putting the triplets into the cosine–margin–triplet loss function.

Recent research on triplet loss has shown state-of-the-art results in the fields of image
recognition and text classification [23,51,53].

4. Proposed Approach

In this section, we describe TCCCD, a cross-language code-clone-detection approach
that utilizes the pre-trained model UniXcoder and triplet learning.

4.1. Overall Framework

Figure 2 presents an overview of our approach. In our study, we began by performing
data processing as the initial step. The data were preprocessed using UniXcoder [21], which
was fine-tuned, acting as a tokenizer to transform each code snippet from the source code
into aggregated sequences. Then, these sequences were grouped into batches, where each
batch consisted of code pairs belonging to the same task, but in different programming
languages, as well as code pairs from diverse tasks using different programming languages.

Appl. Sci. 2023, 13, 12084 9 of 22

Following that, we employed UniXcoder to convert each processed sequence into its
corresponding code representation. Lastly, we applied triplet learning to encode the code
snippets into a high-dimensional embedding space, thereby ensuring that the anchor and
positive samples were brought closer together, while the anchor and negative samples
were pushed further apart. Our approach can be summarized into main three parts: data
processing, code representation, and triplet learning.

Detailed descriptions of these components will be provided in the subsequent sections.

Figure 2. Overview of TCCCD. (In Process (a), the same color pairs represent the code pairs be-
longing to the same task, but in different programming languages. In Process (b), the same color
token sequences represent the sequences belonging to the same task, but in different programming
languages. After tokenization, UniXcoder converts the sequences into code representation. In Process
(c), the symbols with the same color and shape stand for code representation vectors belonging to
the same task. Next, they are selected to form triplets, and after triplet learning, they are effectively
classified in the vector space).

4.2. Data Processing

The data-processing stage involved providing detailed information about the dataset
and describing the specific data-handling procedures. A comprehensive description of
the dataset and code clone pairs is presented in Section 4.1. The dataset we utilized is
composed of code clone pairs, where code clone pairs refer to combinations of two code
fragments that exhibit similar structures and functionalities. Code clone pairs were used as
the inputs for our proposed approach.

4.3. Code Representation

After the data processing step, we fine-tuned the UniXcoder pre-trained model to
obtain more-effective code representation. Our fine-tuning procedure included the follow-
ing steps:

1. Tokenization: Code snippets were subjected to a tokenization process, whereby
UniXcoder was utilized as the tokenizer to segment the source code snippets into
subwords, resulting in the transformation of the source code into a words list. When
UniXcoder tokenizes the source code, it segments source code snippets into subwords.
These subwords can include identifiers, keywords, operators, and more from the
source code. This tokenization process helps to illustrate the abstract hierarchy of the
source code, transforming it into smaller semantic units for subsequent representation
and learning. The list of these subwords forms an abstract representation of the source
code, providing a more-informative input for our method.

2. Sequence aggregation: After tokenization, special tokens [CLS] (abbreviation of Clas-
sification) and [SEP] (abbreviation of Separator) are incorporated into the vocabulary

Appl. Sci. 2023, 13, 12084 10 of 22

list, with the [CLS] token marking the beginning of the source code and the [SEP]
token indicating the end of the source code, respectively. Finally, the tokenized source
code is represented as a sequence of tokens, denoted as [CLS, ω1, ω2, ω3, ..., ωn, SEP].
Then, we replaced the subwords of each code snippet with their corresponding IDs
using the tokenizer function and, then, aggregated them into sequences. Because the
maximum input token sequence length for the pre-trained model UniXcoder is 512,
the token sequence in our approach was also limited to a maximum length of 512.

3. Batch creation: To enhance efficiency in processing and training, we created batches
comprising the aggregated sequences. These sequences were grouped into batches,
where each batch consisted of pairs of sequences belonging to the same task, but in
different programming languages, as well as pairs of sequences from diverse tasks
using different programming languages.

4. Vector generation: We took the sequences within a batch as the inputs to the UniX-
coder model, and the output of UniXcoder included both the contextual vector repre-
sentations for each token and the sentence representation corresponding to the [CLS]
token, which represents the entire code snippet.

During the fine-tuning process, we applied various data-processing techniques and
adjusted the model parameters to obtain more-effective code representation. We prepro-
cessed the dataset to consist of clone code pairs from the same task, but implemented in
different programming languages, making it better suited for our proposed approach. Then,
we fine-tuned the parameters of UniXcoder to achieve optimal effectiveness, including
parameters such as the learning rate and batch size. More-specific details can be found in
Section 4.3. Additionally, by learning to minimize the triplet loss, the UniXcoder model can
enhance its representational capacity, thereby improving its effectiveness.

4.4. Triplet Learning

We propose an effective triplet-learning method that combines distance-weighted
sampling [22] in triplet learning with the cosine–margin–triplet loss [23]. Our objective was
to select the most-suitable negative samples for each anchor sample and, then, feed the
selected triplets into the cosine–margin–triplet loss function.

The selection probability of negative samples is determined by Equation (1), which
utilizes the softmax function to convert the distance between negative samples and anchor
samples into a probability distribution. The calculation of the selection probability was
based on the Euclidean distance between samples, where larger distances correspond to
higher probabilities.

Our probability of negative samples selected can be expressed as Equation (2):

Pnegative(i) =
E(Dpos(Xa

i , Xn
i))

∑r
j=1 E(Dpos(Xa

i , Xn
j))

. (2)

In this equation, Pnegative is the probability of negative samples selected and i is the
number of the currently selected samples.
r is the total count of all negative samples in a batch.
Xa and Xn are anchor samples and negative samples, respectively (i.e., Xa and Xn form a
non-clone pair).
The Dpos function represents the square of the Euclidean distance between samples. The E
function is the softmax function.

The distance metric function Dpos used to measure the square of the Euclidean distance
between two samples (x and y represent two samples) is defined as Equation (3):

Dpos(x, y) = ‖x− y‖2. (3)

The triplet loss function is applied after selecting the negative samples based on the
probabilities and finding the positive samples from the same task for each anchor sample.

Appl. Sci. 2023, 13, 12084 11 of 22

The cosine–margin–triplet loss function calculates the cosine similarity between embedding
vectors and introduces a margin parameter (m) and a scaling factor (s) to penalize positive
and negative samples that do not meet the desired similarity boundary. This encourages
the embedding vectors to cluster and separate samples more effectively in the embedding
space. The cosine-margin–triplet loss function is defined as Equation (4):

Loss = − 1
N

N

∑
i

log
E(s(cos(Xa

i , Xp
i)−m))

E(s(cos(Xa
i , Xn

i))) + E(s(cos(Xa
i , Xp

i)−m))
. (4)

In Equation (4), N represents the number of all triples.

m represents the minimum angular distance between positive and negative samples.
s is the scaling factor used to adjust the scaling of the exponential term.
Xp is the positive sample (i.e., Xa and Xp form a clone pair).

The following Algorithm 1 provides a detailed description of the process for selecting
negative samples and constructing the loss function.

Algorithm 1: Calculation of triplet loss.
input :A batch of clone code pairs, B
output :Triplet loss, LT

1 for each pair Ei in B do
2 Xa

i , Xp
i ←Ei;

3 Scosp=E(s(cos(Xa
i , Xp

i)−m)) ;
4 for each pair Ej(i 6= j) in B do
5 Xn1

j , Xn2
j ←Ei;

6 Dsum=Dsum+E(Dposj(Xa
i , Xn1

j))+E(Dposj(Xa
i , Xn2

j));

7 Setneg←Xn1
j , Xn2

j ;

8 for each negative sample e do

9 Pneg(i) =
E(D(Xa

i ,hi))
Dsum

;
10 Xn

i =S(pneg) ;
11 Scosn=E(s(cos(Xa

i , Xn
i))) ;

12 LTi=−log(
Scosp

Scosn+Scosp
);

13 LT=
∑

len(B)
i=1 LTi
len(B)

For each processed batch, B denotes the number of token sequence instances converted
from cloned code within the batch. The traversal of this batch is conducted iteratively
for processing purposes. In each pair, the initial instance is designated as the anchor
sample, while the subsequent instance assumes the role of the positive sample. Ideally,
the remaining pairs of cloned code instances are utilized as negative samples, resulting in an
aggregate count of 2*(B-1) negative examples. Subsequently, an assessment of the distances
is carried out between all negative samples and one anchor sample. These distances are then
subjected to a softmax transformation, yielding probabilities. The probability of selecting
a negative sample instance increases proportionally with the magnitude of the distance
between the negative sample instance and the anchor sample. Ultimately, the selection of a
negative sample instance is contingent upon these probabilities.

After selecting the anchor samples, positive samples, and negative samples, we com-
bined them to form triplets and processed them using the loss function. Finally, the loss
values obtained for each triplet were summarized or averaged to form the overall loss for
the entire batch. By following this process of handling triplets, we can effectively handle
the anchor sample, select the positive sample, apply the negative-sample-selection strategy,

Appl. Sci. 2023, 13, 12084 12 of 22

and train the model using the loss function, thereby improving the feature representation
capability of the model.

During the fine-tuning process, we conducted experiments using the same hyper-
parameters as those used in the paper on UniXcoder [21]. Subsequently, we optimized
TCCCD using the triplet loss, and the results demonstrated a significant improvement in
effectiveness.

5. Experiment Setup

When it comes to cross-language code clone detection, we propose several Research
Questions (RQs) to evaluate the effectiveness of our approach:

1. RQ1: baselines’ effectiveness comparison. To gauge our approach’s competitiveness
in the cross-language code-clone-detection domain, we aimed to assess its effective-
ness relative to state-of-the-art methods using the metrics described in Section 4.2 as
the criteria. Hence, we formulated RQ1: “How does our approach perform compared
to the state-of-the-art approaches in cross-language code clone detection?”

2. RQ2: effectiveness on specific language pairs. In practical development scenarios,
developers often require code clone detection across various programming languages.
To assess the effectiveness of our approach in detecting code clones across specific,
distinct programming languages, we pose RQ2: “Does our approach effectively detect
code clones across different programming languages?”

3. RQ3: impact of different components. Our approach comprises multiple compo-
nents, including triplet learning and distance-weighted sampling. By analyzing the
influence of these diverse components on the effectiveness of our approach, we can
gain a better understanding of which components are most crucial for cross-language
code clone detection. This understanding, in turn, guided our selection and optimiza-
tion. Therefore, we present RQ3: “What is the impact of different components in our
approach on the effectiveness of cross-language code clone detection?”

5.1. Baselines

CLCMiner [29] is an advanced technology for cross-language code clone detection
that utilizes token sequences to represent the syntactic and structural information of code
fragments. It leverages modification history and window algorithms to detect clones effec-
tively.

CLDCDSA [15] is a tool that utilizes techniques involving the analysis of syntactic
features of source code and measuring cross-language API call similarity to detect cross-
language code clones.

C4 [16] is a state-of-the-art approach for clone detection that effectively detects clone
code. It leverages the pre-trained model CodeBERT to convert programs in different
languages into high-dimensional vector representations. Additionally, the C4 model is
fine-tuned using a contrastive learning objective, enabling it to accurately identify clone
pairs and non-clone pairs.

CLCDSA [15] proposes three datasets for cross-language clone detection, sourced
from three open-source programming competition websites (AtCoder, Google CodeJam,
and CoderByte), comprising over 78,000 solutions. To construct these datasets, researchers
collect at least 20 fully accepted solutions for each problem statement, spanning the Java,
C#, C++, and Python programming languages. Accepted solutions for the same problem
statement are considered functional clones, while solutions for different problem statements
are considered non-clone pairs. These datasets are regarded as validated cross-language
clone databases in various aspects.

In the construction of triplets for TCCCD, we selectively chose code pairs representing
solutions for the same problem in different programming languages as positive and anchor
samples in the triplets, without explicitly constructing negative samples. During training,
we adopted a sampling strategy to select a code segment from a different problem within
the same batch as the negative sample in the triplets. As a result, our dataset consisted

Appl. Sci. 2023, 13, 12084 13 of 22

of clone pairs comprising positive and anchor samples in the triplets. The training set
contained 69,424 clone pairs, the testing set 8692 clone pairs, and the validation set 8556
clone pairs.

The same dataset as used in TCCCD was also employed in C4 since it utilizes the
N-pair approach, which only requires clone pairs as the inputs.

For CLCDSA and CLCMiner, we followed the dataset setup described in CLCDSA.
We needed to augment the dataset consisting only of clone pairs by adding non-clone pairs.
Finally, our training set contained 138,848 code pairs, the validation set 17,384 code pairs,
and the test set 17,112 code pairs, with a positive clone pair ratio of 50%.

The precise statistics of the experimental dataset can be observed in Table 1. According
to the statistical data, C++ code snippets had the highest count, reaching 32,281, which was
roughly twice the count of code snippets in other programming languages. Python code
exhibited the lowest average number of lines, which can be attributed to the language’s
inherent simplicity. The average number of lines and tokens in C# code blocks was the
highest among all programming languages, due to the more-complex syntax structures
and a limited number of standard library functions in the C# language.

Table 1. Statistics for specific language code snippets.

Language Code Snippets Average Lines Average Tokens

Java and Python 18,836 104 686
Python 18,331 26 191

C++ 32,281 66 556
C# 16,359 111 855

5.2. Metrics

In our experiment, the Precision (P), Recall (R), and F-measure (F1) were used as the
metrics to evaluate the effectiveness of code clone detection.

True Positive (TP) is the count of correctly classifying positive class samples as positive.
True Negative (TN) is the count of correctly classifying negative class samples as negative.
False Positive (FP) is the count of incorrectly classifying negative class samples as positive.
False Negative (FN) is the count of incorrectly classifying positive class samples as negative.

Precision measures the proportion of correctly predicted positive samples by the clas-
sifier. It is calculated as the ratio of TPs to the sum of TPs and FPs. In code clone detection,
precision represents the percentage of accurately detected clones among the samples that
include both clones and non-clones. If Tp is a TP and Fp is an FP clone, Equation (5) for the
Precision (P) is:

P =
Tp

Tp + Fp
. (5)

Recall measures the proportion of actual positive samples that are correctly predicted
as positive by an approach. In code clone detection, recall represents the percentage of
detected clone code out of all actual clone code instances. If Tp is the number of detected
TP clones and Fn is the number of detected FP clones, Equation (6) for the Recall (R) is:

R =
Tp

Tp + Fn
. (6)

The F-measure (F1-score) is a comprehensive evaluation metric that takes into account
both the precision and recall. If P represents precision and R represents recall, Equation (7)
for the F-measure (F1) is:

F1 =
2PR

P + R
(7)

In the context of code clone detection, the precision, recall, and F1-score serve as
vital metrics for measurement. Precision indicates the accuracy of labeling genuine code

Appl. Sci. 2023, 13, 12084 14 of 22

clone fragments, ensuring that the identified code segments indeed exhibit duplication and
merit the attention of developers. This aids in keeping the development team focused on
addressing real issues, without being distracted by false clone alerts. Recall measures the
proportion of genuinely cloned code instances successfully detected by the model among
all true clones. A low recall implies that the model may have missed numerous genuinely
existing code clones, leaving these clones unattended and unaddressed. The F1-score strikes
a balance between precision and recall while considering both FPs and FNs, providing a
critical and versatile metric for comprehensive effectiveness evaluation.

In the field of cross-language clone detection, ensuring high precision is of paramount
importance. False positives are a particularly concerning issue as they can lead to devel-
opers spending a significant amount of time and effort examining and handling code that
is not actually cloned. When balancing high precision against recall and the F1-score, we
believe that high precision takes precedence, and a slight compromise in recall and the
F1-score may be acceptable in the pursuit of achieving high precision.

By computing these metrics, the effectiveness of a approach in clone detection tasks
can be assessed. Higher values of the precision, recall, and F-measure indicate the better
effectiveness of the approach.

5.3. Experiment Settings

All experiments were conducted on a server using the Linux system with 32 cores
running at 2.1 GHz CPU and an RTX 3090 graphics card. For the training process of our
approach, we set the batch size to 16, and for the cosine–margin–triplet loss, we set S to 16.0
and m to 0.2. For distance-weighted sampling, we selected four times from the negative
sample weight set within the same batch to form the negative samples for the triplets.
Additionally, we used the Adam optimizer for training, performing 10 epochs, and each
epoch took approximately 40 min. The learning rate was set to 0.00004.

As for the settings of the baseline approaches, we followed the descriptions provided
in their original papers or published code [15,16,29].

6. Experimental Results

In this section, we analyze the experimental results to gain a comprehensive under-
standing of the effectiveness of our approach in cross-language code clone detection.

6.1. RQ1: Baselines’ Effectiveness Comparison

Under the same experimental environment and settings, we conducted experiments
on several state-of-the-art baseline approaches, including CLCMiner [29], CLCDSA [15],
and C4 [16], and compared them with our proposed approach. To evaluate the experimental
results, the precision, recall, and F1-score were used as the effectiveness metrics.

The experimental results are presented in Table 2, which clearly shows that our
proposed approach outperformed the baseline methods in terms of the precision and
F1-score, and CLCDSA tended to consider most code pairs as clones.

Table 2. Effectiveness comparison of TCCCD and baselines.

Approach Precision Recall F1

CLCMiner 0.37 0.59 0.46
CLCDSA 0.53 0.6 0.67

C4 0.93 0.90 0.92
TCCCD 0.96 0.91 0.93

Due to significant syntactic and structural differences between programming lan-
guages, CLCMiner failed to fully capture the similarity between cross-language code
fragments using simple token sequences. Furthermore, the adaptation of the modification
history and window algorithms in CLCMiner may suffer from inadequate adaptability to
different programming languages, leading to suboptimal detection effectiveness.

Appl. Sci. 2023, 13, 12084 15 of 22

CLCDSA utilizes syntactical features and API documentation information to rep-
resent code snippets, which provides stronger expressive power and discrimination in
code representation compared to the simple token sequence representation method used
in CLCMiner.

Compared to CLCMiner and CLCDSA, C4 demonstrated significant advancements
in code representation and vector similarity contrastive learning. By leveraging the pre-
trained model CodeBERT and contrastive learning, C4 can more comprehensively capture
the semantic information of code in cross-language code clone detection, resulting in
significant effectiveness in the precision and F1-score.

Our approach clearly outperformed the baseline approaches, with an improvement in
the F1-score from 0.92 to 0.93, precision from 0.94 to 0.96, and recall from 0.90 to 0.91.

6.2. RQ2: Effectiveness on Specific Language Pairs

The results presented in Table 3 demonstrate the effectiveness of various meth-
ods on specific cross-language pairs, including CLCMINER, CLCDSA, C4, and TCCCD.
Among these methods, TCCCD exhibited the best effectiveness.

Table 3. Effectiveness on specific cross-language pairs.

Language CLCMiner CLDSA C4 TCCCD
Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

Java and Python 0.36 0.57 0.44 0.49 0.93 0.60 0.95 0.93 0.94 0.96 0.92 0.94
Java and C# 0.38 0.60 0.47 0.58 0.97 0.72 0.95 0.93 0.94 0.98 0.90 0.94

Python and C# 0.35 0.57 0.43 0.48 0.98 0.64 0.92 0.95 0.94 0.95 0.91 0.92
Python and C++ 0.36 0.56 0.44 - - - 0.94 0.92 0.93 0.94 0.92 0.93

Java and C++ 0.38 0.59 0.46 - - - 0.93 0.90 0.91 0.96 0.90 0.93
C++ and C# 0.39 0.61 0.48 - - - 0.91 0.88 0.89 0.97 0.90 0.93

In comparison to CLCMiner, TCCCD exhibited significant effectiveness in all specific
cross-language code pairs, with an average increase of 0.59 in precision, 0.33 in recall,
and 0.48 in the F1-score.

Compared to CLCDSA, our approach showed similar recall on Java and Python clone
pairs, but CLCDSA had a higher average recall, indicating that it tended to classify more
input code pairs as clones. However, our approach outperformed CLCDSA in the precision
and F1-score metrics, with an average increase of 0.44 in the precision and 0.27 in the
F1-score.

Based on the experimental results, we observed that our approach consistently outper-
formed C4 in terms of the precision, recall, and F1-score on each specific cross-language
pair, with a notable 0.06 increase in precision for the C++ and C# cross-language pairs. This
improvement can be attributed to the fact that UniXcoder was pre-training on data that
include C++ and C# code, while CodeBERT lacked such pre-training, making UniXcoder
more effective in representing C++ and C# code. Additionally, the adoption of UniXcoder
and triplet learning in TCCCD contributed to its superior effectiveness over the baseline
methods across all specific cross-language pairs.

6.3. RQ3: Impact of Different Components

Our proposed approach in this paper consisted of two steps: the first step involved
processing the source code into sequences using UniXcoder, and the second step involved
fine-tuning the model using triplet learning. We designed the following ablation experi-
ments to signify the importance of each module of TCCCD.

We designed the following experiments to compare with our approach.

6.3.1. Fine-Tuning of the Model

In Table 4, we present the results of model fine-tuning. We designed two methods
to validate the effectiveness of model fine-tuning. The first method directly uses the
UniXcoder model to detect code clones without fine-tuning. The second method fine-tunes

Appl. Sci. 2023, 13, 12084 16 of 22

the UniXcoder model on the training set, representing the source code and using the Mean-
Squared Error (MSE) as the loss function. Upon observing the experimental results, we
found that fine-tuning had a significant positive impact on our approach. In the method
that directly uses the UniXcoder model to detect cross-language code clones, the F1-score
was only 0.67, with the precision and recall being 0.5 and 1, respectively. This indicated
that the method considered all input code pairs as clones. However, with fine-tuning of
UniXcoder, the effectiveness greatly improved, with an increase of 0.23 in the F1-score and
0.35 in the precision.

Table 4. Fine-tuning of the model.

Approach Precision Recall F1

Without fine-tuning 0.50 1.00 0.67
Fine-tuning 0.85 0.95 0.90

6.3.2. Distance Metric Learning

Based on our analysis of the experimental results in Table 5, we concluded that triplet
learning demonstrated excellent effectiveness in cross-language code clone detection. This
was attributed to triplet learning’s ability to select a challenging negative sample and train
it alongside an anchor sample and a positive sample, forming a triplet. This approach
effectively facilitated the learning of subtle distinctions between clones and non-clones.

Table 5. Distance metric learning.

Approach Precision Recall F1

MSE 0.85 0.95 0.90
Contrastive learning 0.94 0.91 0.92

Triplet learning 0.96 0.91 0.93

In Table 5, we demonstrate the impact of distance metric learning on cross-language
code clone detection. We conducted experiments by replacing the triplet loss function
used in TCCCD with the Mean-Squared Error (MSE) loss function and the contrastive loss
function separately. For cross-language code clone detection, triplet learning showed the
best effectiveness in terms of the precision and F1-score, achieving 0.96 in the precision,
0.93 in the F1-score, and 0.91 in the recall.

6.3.3. Triple Sampling Method in Triplet Learning

We observe a significant improvement in the effectiveness of triplet learning when
using distance-weighted sampling in Table 6. We attributed this improvement to the fact
that distance-weighted sampling allowed the model to select samples with varying degrees
of similarity based on the distances between them. This included selecting challenging
samples (those with high similarity between positive and negative instances), as well as
normal samples (those with low similarity). The selection of these samples was crucial for
model training as it enhanced the model’s discriminative capabilities.

Table 6. Triple sampling method.

Approach Precision Recall F1

Random sampling 0.94 0.92 0.92
Distance-weighted sampling 0.96 0.91 0.93

In Table 6, we present the impact of the triplet sampling methods in triplet learning.
For the triplet learning strategy used in TCCCD, we conducted experiments with two differ-
ent sampling methods: random sampling and distance-weighted sampling. We compared

Appl. Sci. 2023, 13, 12084 17 of 22

their respective effects on the model’s effectiveness. In TCCCD, the distance-weighted
sampling method was more effective in identifying code pairs as triplets, outperforming
the random sampling method in terms of the precision and F1-score.

7. Discussion

In this section, we discuss the effectiveness of TCCCD on a small dataset and the
reasons for choosing UniXcoder for the code representation. Through these discussions, we
aimed to gain a deeper understanding of the limitations and advantages of our approach.

7.1. Effectiveness of TCCCD on a Small Dataset

We conducted an effectiveness analysis of TCCCD on datasets of various sizes, in-
cluding 10%, 30%, 50%, 70%, and 90% of the original data, and investigated the impact of
dataset size on its results. Figure 3 shows the results of the effectiveness of TCCCD on a
small dataset. When using 70% of the original data, TCCCD’s precision, recall, and F1-score
tended to stabilize. On the reduced dataset containing 30% of the original data, its effective-
ness was slightly lower than that on the full dataset, but still surpassed the effectiveness of
existing baseline methods.

10 20 30 40 50 60 70 80 90

88

90

92

94

96

Dataset Percentage

Pe
rc

en
ta

ge

Precision Recall F1-score

Figure 3. Effectiveness on different dataset percentages.

When evaluating on a small-scale dataset containing only 10% of the original data,
TCCCD achieved relatively lower effectiveness with a precision, recall, and F1-score of 0.95,
0.91, and 0.88, respectively. However, as the training data were increased to include 30% of
the original data, the precision remained unchanged, while the recall and F1-score both
improved, reaching 0.90 and 0.92, respectively. This indicated that TCCCD can maintain a
high level of effectiveness and recall even with reduced data, highlighting its robustness
and generalization capability on small-scale datasets.

When the data were further increased to include 70% of the original data, the method’s
precision, recall, and F1-score became relatively stable. It is worth noting that our ap-
proach’s precision showed relatively stable effectiveness across various percentages of the
original dataset. The F1-score gradually improved as the dataset percentage increased from
10% to 50%, while the recall exhibited a significant improvement in two ranges: from 10%
to 30% and from 50% to 70% of the original dataset.

Appl. Sci. 2023, 13, 12084 18 of 22

The ability of TCCCD to perform well on small-scale datasets is crucial. This indicates
that our approach does not excessively rely on large amounts of data, making it applicable
in scenarios where data collection resources are limited or challenging. Furthermore,
the consistent effectiveness on the reduced datasets demonstrated that TCCCD remained a
reliable solution even in situations with limited data availability.

Overall, these results demonstrated the efficacy and robustness of TCCCD, mak-
ing it a promising approach for cross-language code clone detection even in resource-
constrained environments.

7.2. Why We Chose UniXcoder for Code Representation

One significant advantage of using UniXcoder [21] for code representation lies in its
exceptional cross-language generalization capability. UniXcoder is a pre-trained code repre-
sentation model that has been trained on vast amounts of code data, allowing it to learn the
syntactic structures and semantic information of multiple programming languages. Since
UniXcoder has already encompassed diverse programming languages during its training, it
can automatically adapt to different languages when performing code representation, elim-
inating the need for prior uniform and rigorous data preprocessing. UniXcoder effectively
captures the distinctive features and structures of code, enabling consistent representation
and transformation across various programming languages.

We employed CodeBERT for code representation and fine-tuned it using the same
distance-weighted sampling-triplet-learning technique. Subsequently, we performed an
effectiveness comparison with TCCCD based on the results. Regarding the dataset, we
trained CodeBERT on the dataset described in Section 4.1, which was the same dataset
used in TCCCD.

In our experiments, as presented in Table 7, we conducted comparative trials be-
tween CodeBERT and UniXcoder, employing triplet learning for optimization. The results
highlighted UniXcoder’s superiority in terms of the precision and F1-score. UniXcoder
demonstrated impressive effectiveness in multiple downstream tasks related to code pro-
cessing. As a result, we chose UniXcoder as our pre-trained model for code representation.

Table 7. Pre-trained model effectiveness.

Approach Precision Recall F1

CodeBERT 0.94 0.91 0.92
UniXcoder 0.96 0.91 0.93

The emergence of TCCCD has a multifaceted impact on both researchers and industry
practitioners. Here are some of the primary impacts:

1. Innovative approach: TCCCD introduces a novel and highly efficient method for
addressing cross-language code clones, providing researchers with a platform to
explore new technologies and algorithms.

2. Enhanced effectiveness: For industry professionals, TCCCD significantly improves the
accuracy of code clone detection, thereby reducing false positives and false negatives.
This has profound implications for software development and maintenance.

3. Multilingual support: TCCCD’s cross-language capabilities open up new possibilities
for research in multilingual software projects, encouraging researchers to investi-
gate clone relationships across different programming languages. For multilingual
software development teams, TCCCD offers an effective solution for addressing clone-
related challenges among diverse languages, ultimately reducing the complexity of
software maintenance.

8. Threats to Validity

In our study, several threats to the validity pose potential risks to the effectiveness of
our research, categorically falling into two domains: internal validity and external validity.

Appl. Sci. 2023, 13, 12084 19 of 22

Internal validity pertains to factors within the study that could influence the results,
potentially leading to internal inaccuracies or unreliability. On the other hand, external
validity relates to the generalizability of the research findings to broader contexts.

Specifically, within the domain of internal validity, we contend with the following
threats: the challenge of handling untrained programming languages and the limitation of
input length. In terms of external validity, our study faces the threat of having a limited set
of programming languages within the experimental dataset.

8.1. Internal Validity

1. Challenge of handling untrained programming languages: The potential issue arises
when the pre-training of the model does not cover certain specific programming lan-
guages. In such cases, the pre-trained model may struggle to effectively comprehend
the syntax and semantics of these untrained programming languages, resulting in a
decline in the quality of code representations for those languages. To mitigate this
issue, it is advisable to consider incorporating a more-diverse range of untrained
programming languages into the pre-trained model to expand its language coverage.

2. Limitation of input length: The limitation of pre-trained models to handle input
code sequences with a maximum length of 512 tokens can pose challenges when
using them for code representation. When processing longer code sequences, the
truncation of the code may be necessary, leading to potential loss or incompleteness of
code information. This limitation could impact the quality and effectiveness of code
representations, especially for tasks or dataset that involve longer code sequences.
When confronted with lengthy code sequences, a practical approach is to partition
them into shorter segments, which can then be individually processed by the model.

8.2. External Validity

Limited programming languages in the experimental dataset: The experimental
dataset included only four programming languages. As a result, we cannot fully assess the
effectiveness of the method on other programming languages. It remains uncertain how
well the method would generalize across a broader set of programming languages. In the
real world, different programming languages exhibit diverse code features and structures,
and a dataset restricted to a few programming languages may not sufficiently represent the
method’s effectiveness across various languages.

To address this issue, one potential approach is to consider augmenting the existing
dataset by utilizing synthetic data or leveraging multi-language solutions available on
programming competition websites.

9. Conclusions

In this paper, we proposed the TCCCD model to address the challenges of cross-
language code clone detection. Leveraging the UniXcoder pre-trained model, we mapped
programs written in different programming languages into the same vector space and
learned their code representations. Through fine-tuning using triplet learning, we further
enhanced the effectiveness of the TCCCD model in cross-language clone detection.

In summary, our main contributions can be outlined as follows: (i) Firstly, we proposed
a novel and effective method, TCCCD, for cross-language code clone detection, leveraging
UniXcoder to efficiently represent code. (ii) Secondly, we introduced the triplet-based
learning approach in the context of cross-language code clone detection and validated its
effectiveness. (iii) Lastly, we evaluated the effectiveness of TCCCD on publicly available
datasets, with experimental results demonstrating its outstanding effectiveness in the field
of clone detection, surpassing existing methods.

The experimental results demonstrated that TCCCD outperformed existing baselines
significantly, achieving precision, recall, and F-measure scores of 0.96, 0.92, and 0.93,
respectively, showcasing its outstanding effectiveness in this domain.

Appl. Sci. 2023, 13, 12084 20 of 22

In future work, we will focus on exploring novel and effective pre-trained models
and evaluating their effectiveness when fine-tuned using the triplet learning method we
proposed. Additionally, our research will involve expanding the diversity of programming
languages in existing datasets and ensuring a balanced representation of samples from
different languages. This will enable us to conduct a more-comprehensive assessment of
the generalization capabilities of the methods in the field of cross-language code clone
detection.

Author Contributions: Conceptualization, F.Z.; Methodology, F.Z.; Software, F.Z.; Validation, Y.F.;
Formal analysis, Y.X.; Investigation, Y.F.; Resources, Y.F.; Data curation, Y.X.; Writing—original draft,
F.Z.; Supervision, Z.L.; Project administration, Z.L. All authors have read and agreed to the published
version of the manuscript.

Funding: This research was supported by the National Science Foundation of China (U20B2045).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Roy, C.K.; Cordy, J.R. A survey on software clone detection research. Queen’s Sch. Comput. TR 2007, 541, 64–68.
2. Antoniol, G.; Villano, U.; Merlo, E.; Di Penta, M. Analyzing cloning evolution in the linux kernel. Inf. Softw. Technol. 2002, 44,

755–765. [CrossRef]
3. Dang, Y.; Ge, S.; Huang, R.; Zhang, D. Code clone detection experience at Microsoft. In Proceedings of the 5th International

Workshop on Software Clones, Waikiki, HI, USA, 23 May 2011; pp. 63–64.
4. Bellon, S.; Koschke, R.; Antoniol, G.; Krinke, J.; Merlo, E. Comparison and evaluation of clone detection tools. IEEE Trans. Softw.

Eng. 2007, 33, 577–591. [CrossRef]
5. Juergens, E.; Deissenboeck, F.; Hummel, B.; Wagner, S. Do code clones matter? In Proceedings of the IEEE 31st International

Conference on Software Engineering; IEEE: Piscataway, NJ, USA, 2009; pp. 485–495.
6. Kamiya, T.; Kusumoto, S.; Inoue, K. CCFinder: A multilinguistic token-based code clone detection system for large scale source

code. IEEE Trans. Softw. Eng. 2002, 28, 654–670. [CrossRef]
7. Jiang, L.; Misherghi, G.; Su, Z.; Glondu, S. Deckard: Scalable and accurate tree-based detection of code clones. In Proceedings of

the 29th International Conference on Software Engineering (ICSE’07), Minneapolis, MN, USA, 20–26 May 2007; pp. 96–105.
8. Roy, C.K.; Cordy, J.R. NICAD: Accurate detection of near-miss intentional clones using flexible pretty-printing and code

normalization. In Proceedings of the 16th IEEE International Conference on Program Comprehension, Amsterdam, The
Netherlands, 1–13 June 2008; pp. 172–181.

9. Sajnani, H.; Saini, V.; Svajlenko, J.; Roy, C.K.; Lopes, C.V. SourcererCC: Scaling code clone detection to big-code. In Proceedings of
the 38th International Conference on Software Engineering, Austin, TX, USA, 14–22 May 2016; pp. 1157–1168.

10. Li, L.; Feng, H.; Zhuang, W.; Meng, N.; Ryder, B. CClearner: A deep learning-based clone detection approach. In Proceedings of
the IEEE International Conference on Software Maintenance and Evolution (ICSME), Shanghai, China, 17–22 September 2017; pp.
249–260.

11. Zou, Y.; Ban, B.; Xue, Y.; Xu, Y. CCGraph: A PDG-based code clone detector with approximate graph matching. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software Engineering, Virtual, 21–25 December 2020; pp. 931–942.

12. Zhang, J.; Wang, X.; Zhang, H.; Sun, H.; Wang, K.; Liu, X. A novel neural source code representation based on abstract syntax tree.
In Proceedings of the IEEE/ACM 41st International Conference on Software Engineering (ICSE), Montreal, Canada, 25–31 May
2019; pp. 783–794.

13. Zhao, G.; Huang, J. Deepsim: Deep learning code functional similarity. In Proceedings of the 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of Software Engineering, Lake Buena Vista, FL,
USA, 4–11 November 2018; pp. 141–151.

14. Vislavski, T.; Rakić, G.; Cardozo, N.; Budimac, Z. LICCA: A tool for cross-language clone detection. In Proceedings of the IEEE
25th International Conference on Software Analysis, Evolution and Reengineering (SANER), Campobasso, Italy, 20–23 March
2018; pp. 512–516.

15. Nafi, K.W.; Kar, T.S.; Roy, B.; Roy, C.K.; Schneider, K.A. Clcdsa: Cross language code clone detection using syntactical features
and api documentation. In Proceedings of the 34th IEEE/ACM International Conference on Automated Software Engineering
(ASE), San Diego, CA, USA, 11–15 November 2019; pp. 1026–1037.

16. Tao, C.; Zhan, Q.; Hu, X.; Xia, X. C4: Contrastive cross-language code clone detection. In Proceedings of the 30th IEEE/ACM
International Conference on Program Comprehension, Pittsburgh, PA, USA, 16–17 May 2022; pp. 413–424.

http://doi.org/10.1016/S0950-5849(02)00123-4
http://dx.doi.org/10.1109/TSE.2007.70725
http://dx.doi.org/10.1109/TSE.2002.1019480

Appl. Sci. 2023, 13, 12084 21 of 22

17. Rakić, G. Extendable and Adaptable Framework for Input Language Independent Static Analysis. Ph.D. Thesis, University of
Novi Sad, Novi Sad, Serbia, 2015.

18. Feng, Z.; Guo, D.; Tang, D.; Duan, N.; Feng, X.; Gong, M.; Shou, L.; Qin, B.; Liu, T.; Jiang, D.; et al. Codebert: A pre-trained model
for programming and natural languages. arXiv 2020, arXiv:2002.08155.

19. Wang, K.; Yan, M.; Zhang, H.; Hu, H. Unified abstract syntax tree representation learning for cross-language program classification.
In Proceedings of the 30th IEEE/ACM International Conference on Program Comprehension, Pittsburgh, PA, USA, 16–17 May
2022; pp. 390–400.

20. Wang, W.; Li, G.; Ma, B.; Xia, X.; Jin, Z. Detecting code clones with graph neural network and flow-augmented abstract syntax
tree. In Proceedings of the IEEE 27th International Conference on Software Analysis, Evolution and Reengineering (SANER),
London, ON, Canada, 18–21 February 2020; pp. 261–271.

21. Guo, D.; Lu, S.; Duan, N.; Wang, Y.; Zhou, M.; Yin, J. Unixcoder: Unified cross-modal pre-training for code representation. arXiv
2022, arXiv:2203.03850.

22. Wu, C.-Y.; Manmatha, R.; Smola, A.J.; Krahenbuhl, P. Sampling matters in deep embedding learning. In Proceedings of the IEEE
International Conference on Computer Vision, Venice, Italy, 22–27 October 2017; pp. 2840–2848.

23. Unde, A.S.; Rameshan, R.M. MOTS R-CNN: Cosine-margin-triplet loss for multi-object tracking. arXiv 2021, arXiv:2102.03512.
24. Yuan , Y.; Guo , Y. Boreas: An accurate and scalable token-based approach to code clone detection. In Proceedings of the 27th

IEEE/ACM International Conference on Automated Software Engineering, Essen, Germany, 3–7 September 2012; pp. 286–289.
25. Shawky, D.M.; Ali, A.F. An approach for assessing similarity metrics used in metric-based clone detection techniques. In

Proceedings of the 3rd International Conference on Computer Science and Information Technology, Chengdu, China, 9–11 July
2010; pp. 580–584.

26. Yuan , Y.; Guo , Y. CMCD: Count matrix based code clone detection. In Proceedings of the 18th Asia-Pacific Software Engineering
Conference, Chi Minh, Vietnam, 5–8 December 2011; pp. 250–257.

27. Mou, L.; Li, G.; Jin, Z.; Zhang, L.; Wang, T. TBCNN: A tree-based convolutional neural network for programming language
processing. arXiv 2014, arXiv:1409.5718.

28. Hua, W.; Sui, Y.; Wan, Y.; Liu, G.; Xu, G. FCCA: Hybrid code representation for functional clone detection using attention
networks. IEEE Trans. Reliab. 2020, 70, 304–318. [CrossRef]

29. Cheng, X.; Peng, Z.; Jiang, L.; Zhong, H.; Yu, H.; Zhao, J. CLCMiner: Detecting cross-language clones without intermediates.
IEICE Trans. Inf. Syst. 2017, 100, 273–284. [CrossRef]

30. White, M.; Vendome, C.; Linares-Vásquez, M.; Poshyvanyk, D. Toward deep learning software repositories. In Proceedings of the
IEEE/ACM 12th Working Conference on Mining Software Repositories, Florence, Italy, 16–17 May 2015; pp. 334–345.

31. Bhoopchand, A.; Rocktäschel, T.; Barr, E.; Riedel, S. Learning python code suggestion with a sparse pointer network. arXiv 2016,
arXiv:1611.08307.

32. Dam, H.K.; Tran, T.; Pham, T. A deep language model for software code. arXiv 2016, arXiv:1608.02715.
33. Mikolov, T.; Chen, K.; Corrado, G.; Dean, J. Efficient estimation of word representations in vector space. arXiv 2013,

arXiv:1301.3781.
34. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
35. Devlin, J.; Chang, M.-W.; Lee, K.; Toutanova, K. BERT: Pre-training of deep bidirectional Transformers for language understanding.

arXiv 2018, arXiv:1810.04805.
36. Mashhadi, E.; Hemmati, H. Applying codebert for automated program repair of java simple bugs. In Proceedings of the

IEEE/ACM 18th International Conference on Mining Software Repositories (MSR), Madrid, Spain, 17–19 May 2021; pp. 505–509.
37. Zhou, X.; Han, D.; Lo, D. Assessing generalizability of codebert. In Proceedings of the IEEE International Conference on Software

Maintenance and Evolution (ICSME), Luxembourg, 27 September–1 October 2021; pp. 425–436.
38. Wang, Y.; Li, H. Code completion by modeling flattened abstract syntax trees as graphs. In Proceedings of the AAAI Conference

on Artificial Intelligence, Vancouver, BC, Canada, 2–9 February 2021; Volume 35, pp. 14015–14023.
39. Ben-Nun, T.; Jakobovits, A.S.; Hoefler, T. Neural code comprehension: A learnable representation of code semantics. arXiv 2018,

arXiv:1806.07336.
40. Lattner, C.; Adve, V. LLVM: A compilation framework for lifelong program analysis & transformation. In Proceedings of the

International Symposium on Code Generation and Optimization, Palo Alto, CA, USA, 20–24 March 2004.
41. Wang, Z.; Yu, L.; Wang, S.; Liu, P. Spotting Silent Buffer Overflows in Execution Trace through Graph Neural Network Assisted

Data Flow Analysis. arXiv 2021, arXiv:2102.10452.
42. Schlichtkrull, M.; Kipf, T.N.; Bloem, P.; Van Den Berg, R.; Titov, I.; Welling, M. Modeling relational data with graph convolutional

networks. In Proceedings of the Semantic Web: 15th International Conference, ESWC 2018, Heraklion, Crete, Greece, 3–7 June
2018; pp. 593–607.

43. Zhang, K.; Wang, W.; Zhang, H.; Li, G.; Jin, Z. Learning to represent programs with heterogeneous graphs. In Proceedings of the
30th IEEE/ACM International Conference on Program Comprehension, Pittsburgh, PA, USA, 16–17 May 2022; pp. 378–389.

44. Yuan, D.; Fang, S.; Zhang, T.; Xu, Z.; Luo, X. Java code clone detection by exploiting semantic and syntax information from
intermediate code-based graph. IEEE Trans. Reliab. 2022, 72, 511–526. [CrossRef]

http://dx.doi.org/10.1109/TR.2020.3001918
http://dx.doi.org/10.1587/transinf.2016EDP7334
http://dx.doi.org/10.1109/TR.2022.3176922

Appl. Sci. 2023, 13, 12084 22 of 22

45. Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In
Advances in Neural Information Processing Systems 30; NEURips: San Diego, CA, USA, 2017.

46. Schroff, F.; Kalenichenko, D.; Philbin, J. Facenet: A unified embedding for face recognition and clustering. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 815–823.

47. Ge, W. Deep metric learning with hierarchical triplet loss. In Proceedings of the European Conference on Computer Vision
(ECCV), Munich, Germany, 8–14 September 2018; pp. 269–285.

48. Yu, J.; Zhu, C.; Zhang, J.; Huang, Q.; Tao, D. Spatial pyramid-enhanced NetVLAD with weighted triplet loss for place recognition.
IEEE Trans. Neural Netw. Learn. Syst. 2019, 31, 661–674. [CrossRef] [PubMed]

49. Zhao, X.; Qi, H.; Luo, R.; Davis, L. A weakly supervised adaptive triplet loss for deep metric learning. In Proceedings of the
IEEE/CVF International Conference on Computer Vision Workshops, Seoul, Republic of Korea, 27–28 October 2019.

50. Seo, S.; Kim, D.; Ahn, Y.; Lee, K.-H. Active learning on pre-trained language model with task-independent triplet loss. Proc. AAAI
Conf. Artif. Intell. 2022, 36, 11276–11284. [CrossRef]

51. Chen, W.; Chen, X.; Zhang, J.; Huang, K. Beyond triplet loss: A deep quadruplet network for person re-identification. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp.
403–412.

52. Qian, Q.; Shang, L.; Sun, B.; Hu, J.; Li, H.; Jin, R. Softtriple loss: Deep metric learning without triplet sampling. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp.
6450–6458.

53. Dong, X.; Shen, J. Triplet loss in siamese network for object tracking. In Proceedings of the European Conference on Computer
Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 459–474.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.1109/TNNLS.2019.2908982
http://www.ncbi.nlm.nih.gov/pubmed/31034423
http://dx.doi.org/10.1609/aaai.v36i10.21378

	Introduction
	Related Work
	Code Clone Detection
	Traditional Approaches
	Deep Learning Approaches
	Cross-Language Code Clone Detection

	Source Code Representation Learning
	Token-Based Approaches
	Graph-Based Approaches

	Background
	Code Clone
	Pre-Trained Models
	BERT
	CodeBERT
	UniXcoder

	Triplet Learning

	Proposed Approach
	Overall Framework
	Data Processing
	Code Representation
	Triplet Learning

	Experiment Setup
	Baselines
	Metrics
	 Experiment Settings

	Experimental Results
	RQ1: Baselines' Effectiveness Comparison
	RQ2: Effectiveness on Specific Language Pairs
	RQ3: Impact of Different Components
	Fine-Tuning of the Model
	Distance Metric Learning
	Triple Sampling Method in Triplet Learning

	Discussion
	 Effectiveness of TCCCD on a Small Dataset
	Why We Chose UniXcoder for Code Representation

	Threats to Validity
	 Internal Validity
	External Validity

	Conclusions
	References

