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Abstract: This study introduces an innovative optimization method to identify the optimal configu-
ration of a sparse symmetric 2D array for applications in security, particularly multistatic imaging.
Utilizing genetic algorithms (GAs) in a sophisticated optimization process, the research focuses on
achieving the most favorable antenna distribution while mitigating the common issue of secondary
lobes in sparse arrays. The main objective is to determine the ideal configuration from specific design
parameters, including hardware specifications such as number of radiating elements, minimum
spacing, operating frequency range, and image separation distance. The study employed a cost
function based on the the point spread function (PSF), the system response to a point source, with the
goal of minimizing the secondary lobe levels and maximizing their separation from the main lobe.
Advanced simulation algorithms based on physical optics (PO) were used to validate the presented
methodology and results.

Keywords: submillimeter wavelength imaging; multistatic imaging; backpropagation imaging;
genetic algorithm (GA)

1. Introduction

Active millimeter- and submillimeter-wave radar systems have become indispensable
tools for bolstering civil security in airports, bus stations, crowded public areas, and
beyond [1–7]. These non-destructive testing (NDT) systems play a pivotal role in security
screening by detecting concealed objects, including weapons and drugs, providing effective
and secure solutions.

Conventional monostatic and quasi-monostatic radar systems [8–11] face limitations
in complex geometries due to shadow regions caused by specular reflections falling outside
the receiving area. To overcome this limitation, our proposal integrates multiple wideband
millimeter-wave transmitters and receivers to obtain high-resolution radar images in real-
time [12–15]. Multistatic systems provide several advantages by capturing information from
multiple angles, including advanced stealth object detection and reduced susceptibility
to jamming. In addition, this approach allows for a lower spatial sampling frequency
than traditional systems, which benefits from secondary lobe cancellation [16–19]. Unlike
other commonly used methods for image processing, such as fractal wavelets [20–26], the
approach of this study extracts artifacts by averaging the phasors of the electromagnetic
fields acquired by the multistatic system.

In this paper, we present a novel methodology for identifying an optimal 2D sparse
array configuration for generating multistatic radar images based on predefined design
parameters. While various array configurations exist for THz security applications, we
chose a uniform sparse array configuration due to its suitability for our research problem.
Conventional dense arrays offer superior image resolution but require a significant number
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of elements, resulting in unwieldy arrays, high computational requirements, and potential
impracticality for real-time applications. In contrast, random distributions offer a simpler
design process and the potential for improved resolution compared to uniform meshes but
lack the systematic performance optimization characteristic of our chosen methodology
and occasionally yield unpredictable image quality [27].

Genetic algorithms (GAs) have emerged as the preferred method for array optimiza-
tion due to their adaptability, robustness, and efficiency in tackling complex array design
problems encountered in scientific research. GAs excel at exploring large search spaces;
handling non-linear, non-convex optimization landscapes; and supporting multi-objective
optimization. They are highly efficient in combinatorial search spaces and work effectively
with black-box functions, making them suitable for complex optimization challenges.

The core objective of this study is to identify the optimal antenna configuration from
a set of design parameters. The structure of this paper unfolds as follows: Section 2
outlines the architecture, imaging procedure, and the evaluation function used for potential
solutions. In Section 3, we introduce GAs and describe their specific application in this
context. Section 4 delves into the simulation process, while Section 5 presents the results,
including a compelling comparison between optimized and non-optimized approaches.
Finally, in Section 6, we summarize our achievements and lay out future steps to further
enhance imaging system efficiency.

2. Multistatic Architecture

A multistatic architecture refers to a configuration in which multiple spatially dis-
tributed transmitters and receivers collaborate to perform sensing or imaging tasks. This
architecture contrasts with traditional monostatic radar systems, where a single radar unit
serves as both the transmitter and the receiver.

In a multistatic radar system, each transmitter emits electromagnetic waves toward the
designated area of interest. Multiple receivers are strategically placed in various locations
to simultaneously detect reflections or echoes of waves that were transmitted and interacted
with targets in the surrounding environment.

The main idea behind multistatic architectures is to utilize the spatial diversity of
receivers to obtain more detailed and comprehensive information regarding the observed
scene. These approaches offer several advantages in both scientific and practical applica-
tions, including:

• Multistatic architectures can achieve increased spatial resolution through the collection
of data from various angles. This provides the system with the ability to distinguish
small details, resulting in more precise measurements that are paramount in the
identification of targets, object recognition, and other imaging tasks.

• Deploying transmitters and receivers across multiple locations improves system re-
silience, making it harder for adversaries to disrupt. In case one component is com-
promised, the system remains operational with the unaffected ones.

• Multistatic systems reduce blind spots caused by obstructions or interference, achieved
through the use of multiple sensors, which provide comprehensive coverage.

• Multistatic radar systems are highly effective in detecting and tracking stealth targets
that exhibit low visibility due to their inability to maintain stealth from all angles, thus
becoming more visible from diverse viewpoints.

• The designs of multistatic systems are flexible and allow for customized configu-
rations that meet specific operational requirements, accommodating a wide range
of applications.

These advantages collectively make multistatic radar systems a valuable tool for
defense and surveillance applications.

These systems are primarily designed for real-time personal security and surveillance
applications. Therefore, it is vital to minimize the number of elements needed, which
can be achieved by opting for sparse arrays instead of the denser ones that are generally
used. Sparse arrays offer many advantages in this context. In particular, they improve cost



Appl. Sci. 2023, 13, 12138 3 of 15

efficiency by reducing the number of antenna elements required, leading to savings in hard-
ware acquisition, deployment, and maintenance. They also reduce the computational load
for signal processing and data analysis, which is critical for real-time applications. These
arrays demonstrate versatility by seamlessly adapting to different scenarios and skillfully
balancing performance and complexity. Most importantly, they address resource conserva-
tion and environmental sustainability by requiring fewer resources. Using sparse arrays
strategically optimizes performance while efficiently managing resources and complexity
compared to denser alternatives.

2.1. Baseline Configuration

This work marks the initial phase in the development of a prototype, which is currently
undergoing construction. As a result, design constraints have been defined by considering
the available hardware and its specific characteristics. The system’s architecture relies on
multiple transmitters (txm) and receivers (rxn), positioned at tm and rn, respectively. This
work focuses on analyzing a specific architecture consisting of a 2D sparse array with 64
transmitting antennas (NTX) and 49 receiving antennas (NRX) positioned in front of an
object under test (OUT).

The transmitting antennas are equidistantly spaced at a distance of dtx cm, while
the receiving antennas are also equidistantly spaced at a distance of drx cm. To ensure
symmetrical responses with respect to both the X = 0 and Z = 0 axes, this equidistance
is maintained in both the horizontal and vertical directions. The system operates in the
frequency range of 120 to 150 GHz using only 12 different frequencies, which corresponds
to a minimum working wavelength (λmin) of 2 mm.

2.2. Imaging

The imaging process involves creating an individual image for each transmitting
antenna, combining contributions from all receivers to create the final image. Figure 1 pro-
vides a visual representation, simplifying the procedure within a basic system configuration
of NTX = 3 and NRX = 2.

Figure 1. Graph of the imaging process in a simplified system with NTX = 3 and NRX = 2.

In this concept, each transmitting antenna emits signals toward the OUT, creating
distinct electromagnetic responses from the target. Receiving antennas systematically
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capture these responses, reflecting the unique interaction of the transmitted signals with
the object. Coherent summation of these responses, encompassing phase and amplitude
information, is performed for each transmitting antenna.

As a result, for a system with NTX transmitting antennas, NTX transmitter images are
generated, each representing a unique perspective offered by a specific transmitting element.

The final image is created by combining these transmitter images coherently. It
provides a comprehensive depiction of the object under scrutiny, revealing intricate char-
acteristics and spatial distribution. This fusion of information from multiple transmitting
antennas enhances imaging resolution and fidelity, offering a more detailed and accurate
representation of the target object.

2.3. Point Spread Function

The PSF plays a crucial role in radar systems, as it defines how electromagnetic
waves interact with point-like targets, guiding the detection and localization of objects. It
characterizes the spatial distribution of radar energy received from a point scatterer and
directly impacts the system’s resolution. A smaller PSF signifies higher radar resolution,
enabling the distinction of closely spaced targets. Various factors, including radar frequency,
antenna characteristics, and signal processing methods, influence the PSF, thereby affecting
the accuracy of target localization. Thus, a comprehensive understanding of the PSF is
indispensable for optimizing radar systems utilized in surveillance, tracking, and remote
sensing applications.

According to the reciprocity theorem, the total PSF of the system when focused at point
pi can be computed from the PSF of the transmitting and receiving arrays as follows [28]:

PSFtx(pi) = ∑
l,m

e−jκl |tm−pi | (1)

PSFrx(pi) = ∑
l,n

e−jκl |rn−pi | (2)

PSFtotal(pi) = PSFtx(pi)× PSFrx(pi) (3)

Here, multiple frequencies fl are employed in an ultra wideband (UWB) radar config-
uration, and κl = 2π

fl
c represents the wavenumber at the l-th frequency.

3. Optimization Algorithm

In the realm of mathematical and computational sciences, the choice between using
optimization algorithms and exhaustively exploring all feasible solutions depends on a
reasonable trade-off between efficiency, scalability, and accuracy. When faced with complex
optimization challenges characterized by a large solution space, the use of optimization al-
gorithms is a methodologically sound choice. The effectiveness of optimization algorithms
is further manifested in their ability to handle constraints and ensure the precise attainment
of predefined objectives, thereby providing solutions that satisfy the desired criteria. In
addition, their adaptability allows the tailoring of optimization strategies to different types
of problems, increasing their utility in academic and scientific domains. Consequently,
optimization algorithms represent a rational preference for cases that require computa-
tional rigor and scalability, making them indispensable in scenarios where comprehensive
exploration of all solution alternatives is infeasible or prohibitively resource-intensive.

3.1. Cost Function

In optimization, the cost function plays a vital role in evaluating solution efficiency
and appropriateness within the problem space. Its primary objective is to measure solution
quality in terms of optimization objectives while considering problem constraints to enable
numerical performance evaluation. The optimization algorithm aims to minimize a function
to identify the ideal solution among multiple options. In this case, the goal is to establish
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the transmitter element spacing (dtx) and receiver element spacing (drx) combination that
yields the lowest magnitude of the secondary lobes.

Figure 2 shows the cost function for the case under study. As expected, it presents
complex, non-linear, discontinuous, and non-convex landscapes. Furthermore, not every
value fulfills the problem requirements, resulting in a difficult optimization task. Therefore,
we utilized the GA optimization algorithm due to its ability to handle such complexity. The
next sections provide the rationale for selecting this technique over others and the details
of the implementation for this particular issue.

Figure 2. Cost function associated with each possible combination of dtx − drx.

3.2. Genetic Algorithm

The cost function utilized in this method (as demonstrated in Section 3.1) creates
landscapes that tend to be complex, nonlinear, often non-convex, and (more importantly)
not continuous, posing formidable challenges for optimization.

Gradient methods, Bayesian optimization, simulated annealing, or and colony op-
timization techniques [29–36] are well-known methods that work well in scenarios with
smooth and well-behaved objective functions.

In contrast, GAs present a compelling set of characteristics that make them the ideal
choice for this problem. Their ability to navigate high-dimensional solution spaces, coupled
with their resilience in dealing with noisy or irregularly sampled objective functions, posi-
tions them as a robust and versatile optimization tool. The adaptive nature of GAs, which
merge the best solutions and introduce mutations, facilitates extensive exploration of the
solution space, greatly increasing the likelihood of finding globally optimal configurations.
In addition, GAs are amenable to parallelization, leveraging the computational power of
modern resources to accelerate the optimization process.

GAs have demonstrated remarkable efficacy in tackling real-world challenges [37–40].
They operate within a population-based framework, where each member represents a po-
tential solution. The fitness of individuals gauges their problem-solving capabilities. Highly
fit individuals reproduce by mating with others, passing on their advantageous traits. This
orchestrated progression births a new generation with the promise of enhanced solutions.

GAs conduct this evolutionary process by combining genetic material from the most
promising individuals through recombination (crossover) and introducing occasional muta-
tions. As generations unfold, GAs tend toward optimization. Top-performing individuals
propagate favorable traits and information, while mutations prevent stagnation. Conse-
quently, GAs adeptly navigate complex search spaces, as depicted in Figure 3.

A well-designed GA can converge on optimal solutions, offering strength in diverse
problem domains. Although GAs cannot guarantee global optimality due to inherent ran-
domness, they often quickly find practical solutions that suffice for real-world applications.
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Figure 3. Basic GA operation.

3.2.1. Custom GA Configuration

Once the optimization tool has been selected, the optimal configuration with the
smallest secondary lobes should be identified. Only configurations that meet the criteria
below will be evaluated:

• The aperture size (horizontal and vertical) cannot exceed 100 cm.
• Due to hardware limitations, the minimum distance between elements is set to 2 cm.
• The array is symmetric on both the X and Z axes.
• Transmitter and receiver elements are uniformly spaced in both horizontal and vertical

dimensions.

In this study, the GA was utilized to calculate the most suitable drx value, while dtx
was kept constant. Although there were previous attempts to optimize both variables at
the same time, it was found that fixing the value of dtx to cover the desired aperture size
and concentrating on determining the optimal drx value is a more efficient method.

This process is computationally intensive, as the GA solver must construct the ap-
propriate architecture, compute the PSF, and evaluate the cost function for each potential
dtx-drx pair. However, by taking advantage of GPU acceleration and MATLAB’s vector
computation capabilities, we can quickly and efficiently obtain initial results. Fixing dtx
while optimizing only for drx yields results in less than 3 min and 18 s. If both dtx and drx
are optimized simultaneously, the process extends to about 15 min.

3.2.2. MATLAB Implementation

Optimization was performed using MATLAB’s GA Toolbox, which provides a plat-
form for creating and using GAs. The function ga requires a series of input parameters to
adapt the optimization problem. The most important inputs are described below:

1. Cost Function (CostFcn): This parameter represents the function that needs to be
optimized. It takes a set of input decision variables and generates a single value, the
cost, to be minimized. As previously noted, the PSF is the cost function. It receives drx
as an input and produces the PSF value related to the array configuration obtained
from the combination of dtx-drx.

2. Number of decision variables (nvars): This parameter indicates the number of vari-
ables being optimized.

3. Linear inequality constraints (A and b): These constraints do not apply in our situa-
tion as the problem’s intrinsic characteristics depend on nonlinear constraints.

4. Linear equality constraints (Aeq and beq): Similarly not applicable due to the use of
nonlinear constraints.

5. Lower and upper bounds for decision variables (lb and ub): These arrays establish
the boundaries of the search space by defining the range within which each variable
is permitted to vary.

6. Initial population (x0): This is the initial set of candidate solutions. A randomized
starting point is chosen from the feasible variable values.
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7. Options: This structure contains a range of control settings for the behavior of the
GA. It includes definitions for parameters such as population size, number of gen-
erations, genetic operators (parent selection, recombination, and mutation), and
replacement strategy.

8. Nonlinear inequality constraints (nonlcon): An ad hoc function has been created to
manage the constraints outlined in Section 3.2.1.

Once the parameters have been configured, the GA is executed, and upon completion
the algorithm generates two crucial pieces of information:

• x represents the optimized solution and contains the decision variables.
• fval indicates the minimum value of the cost function.

4. Simulation

A simulator based on PO principles is used to model the presented system [41].
This simulator allows a comprehensive simulation of the electromagnetic response of the
imaging system when exposed to an arbitrary OUT. In a first step, the simulator calculates
the induced electric currents within the OUT by considering the interaction between
the incident electromagnetic wave and the specific material properties and geometric
characteristics of the OUT. This complex calculation is based on the solution of Maxwell’s
equations, which allows the derivation of the spatial distribution of the induced currents on
the surface of the OUT. The simulator then determines the electromagnetic field received
by each individual receiver, resulting from the field scattered by the OUT. This step is
performed independently for each transmitting antenna and over a range of discrete
frequencies (fl).

In the context of radiation modeling, both the transmitting and receiving antennas
are abstracted as ideal spherical sources. The OUTs are introduced into the simulator
as computer-aided design (CAD) models, encapsulating their complex geometries. The
detailed operation of the simulator is defined in [41]; however, for a simplified scenario
involving a single txm, one OUT, and one rxn, the process can be summarized as follows:

1. Incident field calculation: The process begins with a point source (txm) emitting
spherical electromagnetic waves, which propagate uniformly in all directions. These
waves consist of electric (~Einc) and magnetic (~Hinc) fields traveling at the speed of
light. To determine the direction of incidence, the Poynting vector (p̂inc) is calculated
using the following equation:

p̂inc = Re

{
~Einc × ~H∗inc

‖~Einc × ~H∗inc‖

}
(4)

2. Equivalent currents calculation: The next step involves calculating the equivalent
currents on the surface of the metallic OUT, represented as~Jout, which is responsible
for radiating fields. These currents are determined as follows:

~Jout = 2n̂out × ~Hinc (5)

3. Scattered field calculation: The simulator models the OUT as a collection of triangular
patches with specific points and vectors, allowing for the calculation of the scattered
magnetic field (~Houtn) at the receiver (rxn) point using PO nearfield equations. This
involves several substeps:

(a) Calculate the position vector (~Routn) between the receiver and the center of
each triangular patch, along with the distance (Routn) and direction (R̂outn).

(b) Compute the magnetic field (~Houtn) at the receiver due to each triangular patch
using the formula:

~Houtn =
e−jkRoutn

4πR3
outn

(1 + jkRoutn)
(
~Jout × ~Routn

)
Ioutn (6)
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(c) Calculate the integral term (Ioutn) using the given expression and constants:

Ioutn = 2Aoute−j αoutn+βoutn
3

[
αoutnejβoutn − βoutnejαoutn + βoutn − αoutn

(αoutn − βoutn)αoutnβoutn

]
(7)

where

αoutn = k~vout12 ·
(

R̂outn − p̂iout

)
(8)

βoutn = k~vout13 ·
(

R̂outn − p̂iout

)
(9)

(d) Compute the electric field (~Eoutn) at the receiver due to each triangular patch
using the formula:

~Eoutn = − jηe−jkRoutn

4πkR3
outn

[
~Jm

(
−1− jkRoutn + (kRoutn)

2
)

+ R̂outn

(
3 + 3jkRoutn − (kRoutn)

2
)(

R̂outn ·~Jm

)]
Ioutn

(10)

(e) Simplify Equations (6) and (10), since the distance between elements is much
larger than the wavelength:

~Houtn =
j

2λ

e−jkRoutn

Routn

(
~Jout × R̂outn

)
Ioutn (11)

~Eoutn = η~Houtn × R̂outn (12)

This entire process is iterated for all txm–rxn combinations and across all fl . Conse-
quently, at the end of this procedure, a matrix (S12) is generated, representing the received
electromagnetic fields at each frequency, as observed by the receivers for each specific
txm–rxn pair.

This simulation was carried out so that the process was the same as that by which the
measurement system was configured, with which the same (S12) parameters are obtained.

In the context of ISAR (inverse synthetic aperture radar) processing on the
dataset [42,43], the initial step involves defining the imaging plane of interest, which
usually, but not necessarily, includes the OUT. For every txm–rxn combination, two crucial
distances are computed, the distance from txm to every point in the imaging plane (Rincm )
and the distance from every point in the imaging plane to rxn (Rscatn ). Once these distances
are established, they are used to calculate the value of the reflected signal (I(m,n)) as follows:

I(m,n) = ∑
l
(Rinc(m)

· Rscat(n) · e
jκl(Rinc(m)

+Rscat(n)
) · S12(m,n)(l)

) (13)

The global image (Ir) is generated by coherently adding up the individual reflected
signals obtained from all txm–rxn combinations. Mathematically, this summation process is
represented as follows:

Ir = ∑
m,n

I(m,n) (14)

Ir is a composite image that consolidates the information from all the txm–rxn pairs
and provides a comprehensive view of the object’s scattering characteristics within the
imaging plane. This global image is a valuable output of the ISAR processing, aiding in the
detailed analysis and interpretation of the object’s characteristics and behavior in response
to electromagnetic waves.

5. Results

The results presented were obtained using the hardware described below:

• HW-1: Laptop
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– 12th Gen Intel® Core™ i7-12700H @ 2.70 GHz

* RAM: 32 GB
* Number of Cores: 14 (20 logical cores per physical)

– 1 × NVIDIA GeForce RTX 3070 Ti Laptop GPU

* Memory: 8 GB (GDDR6 SDRAM)
* Number of CUDA Cores: 5888

• HW-2: Server GPU

– 32 × 13th Gen Intel® Core™ i9-13900K @ 5.80 GHz

* RAM: 128 GB
* Number of Cores: 24 (32 logical cores per physical)

– 1 × NVIDIA GeForce RTX 4090

* Memory: 24 GB (GDDR6X)
* Number of CUDA Cores: 16384

5.1. Optimal 2D Sparse Array

To evaluate the performance of the method, an architecture with NTX = 64 and
NRX = 49 was used. As previously described in Section 3.2.1, the desired aperture size,
both in range and cross-range, was set to 1 m. To precisely meet this design criterion,
dtx was set to 14.3 cm. Additionally, it is critical to consider the minimum inter-element
separation, which was set to 2 cm due to the physical characteristics of the hardware
available for prototype construction. As described in Section 2.1, the system was operated
in a frequency range from 120 GHz to 150 GHz, implying the use of wavelengths in the
order of 2 mm.

Given all of these design considerations, the GA was used to determine the optimal
drx. Figure 4a visually depicts the progression of drx values during optimization, alongside
their associated costs, until the optimal value was achieved. It is noteworthy that this graph
illustrates the correlation between distance and cost, with GA convergence manifesting
at the point where the distance equates to the minimal cost. The optimization process
ultimately yielded an optimal value of drx = 10.0103 cm, which was subsequently employed
in the construction of the optimal configuration (as shown in Figure 4b).

(a) (b)

Figure 4. Optimal 2D sparse array architecture via GA ( drx
dtx

= 0.6996 ≈ 0.7). (a) Values taken by drx

during optimization and associated costs. GA convergence at 10.0103 cm. (b) Optimized architecture.

5.1.1. PSF

The ideal cross-range size of the PSF for this system, as described by the equation

δx,z =
λ

Dx,z
· L (15)
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can be understood as the spatial resolution of the imaging system [44]. In this equation, Dx,z
represents the aperture size of the array, λ represents the wavelength of the electromagnetic
waves being used, and L is the distance between the OUT and the array.

The PSF effectively defines the smallest resolvable detail or spot size in the resulting
images produced by the system. According to the given equation, this PSF results in a spot
with an approximate diameter of 6 mm centered at the origin (0,0). This means that, in
ideal conditions, the imaging system can resolve features in the object as small as this 6 mm
spot size, allowing for detailed observation and analysis of the OUT’s characteristics.

It is also desirable to eliminate additional contributions and minimize the presence
of secondary lobes, which can have several negative effects, such as degradation of res-
olution, contamination of the image with unwanted artifacts, and difficulty in accurate
interpretation of the image, which in turn can hinder the identification of specific objects or
details. However, due to the inherent characteristics of these architectures, which do not
strictly adhere to the Nyquist criterion, achieving this is unattainable. These diffraction
lobes will inevitably appear as a direct consequence of the architectural features and impose
constraints on the FoV during the reconstruction process. The objective is to position them
as far away as possible from the main lobe and minimize their magnitude.

Secondary lobes are observed at a distance of approximately 13 cm from the main lobe
and have a magnitude of 24.6 dB less than the main lobe. Although the PSF is not ideal, it
comes quite close. The secondary lobes are distant enough and at a low enough level to not
negatively impact the reconstructions that the system can perform.

Figure 5 shows the PSF at a distance of 3 m of the architecture resulting from the GA
optimization.

The goal of the optimization is to obtain a PSF that is as clean as possible, with the
aim of keeping the secondary lobes as far away and as low as possible. Without the
assistance of these optimization tools, the most intuitive way to design the architecture
would be to evenly distribute the transmitters and receivers along the X and Z axes. For
example, to achieve a 1 m aperture, the spacing between elements should be 13.33 cm.
Figure 6a shows the resulting configuration, and Figure 6b shows the PSF at 3 m. Multiple
secondary lobes are observed, located extremely close to the main lobe, and furthermore,
they have a significantly high level, nearly of the same order of magnitude as the main
lobe. This is an unfavorable result as it predicts a significant degradation in the quality
of the recovered images, making it difficult to clearly distinguish any objects. Comparing
Figures 5a and 6b, there is a significant improvement of the optimized system with respect
to the unoptimized one.

(a) (b)

Figure 5. PSF of optimal architecture at a standoff distance of 3 m. (a) PSF in XZ−plane. (b) X−Cut
at Z = 0.
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(a) (b)

Figure 6. Non-optimized array configuration and its corresponding PSF. (a) Array configuration.
(b) PSF.

5.1.2. Imaging

To validate the performance of the presented configuration, a model based on a 1951
USAF MIL-STD-150A resolution test chart was used as the OUT. This type of geometry
consists of several groups of bars (in this specific case modeled as metal plates) separated
by a certain distance and is widely used to analyze and validate imaging systems. The
CAD model used in the following simulation is shown in Figure 7a, and Table 1 specifies
its geometry.

To perform the experiment, the OUT was placed at a standoff distance of 3 m. As
can be seen in Figure 7b, the reconstruction replicates all the details of the original image.
This shows that the system has a very high resolution, since it is able to reconstruct all the
elements of the two groups of bars, which indicates that it is able to detect targets with an
accuracy of less than 1 mm.

Table 1. Custom 1951 USAF MIL-STD-150A model geometry definition.

Resolution (rr) Analysis

Distance between Bars

Group Number

Element −2 −1

1 2.5 cm 0.85 cm

2 1.75 cm 0.75 cm

3 1.5 cm 0.5 cm

4 1 cm 0.25 cm

5 0.2 cm

6 0.1 cm

Vertical spacing between elements 1 cm

Bar width (bw) 1 cm

Bar length (bl) 3bw + 2rr
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(a) (b)

Figure 7. XZ-plane reconstruction of the USAF-based target located 3 m from the antenna array.
(a) CAD model. (b) XZ-plane reconstruction.

Runtime Simulation Performance

For imaging purposes, an XZ plane measuring 36.5 cm by 31 cm was defined, with
a fine 2.5 mm discretization, resulting in a total of 18.375 pixels in the image plane. As
detailed in Section 2.2, each txm–rxn pair generates an individual image, leading to a
substantial total of 3.136 different images to be combined within this architecture.

Remarkably, HW-1 processes these images in a mere 0.03 s, but with the utilization
of HW-2 this processing time is dramatically reduced to an impressive 0.008 s. Such
exceptional performance gains can be attributed to harnessing GPU resources and lever-
aging MATLAB’s robust vector computing capabilities. Our unwavering commitment
to efficiency and rapid processing drives us to continually improve our software. We
actively explore alternative approaches to optimize performance, consistently pushing the
boundaries of what can be achieved in the field.

6. Conclusions

This study presents a novel method to improve 2D sparse arrays, enhancing imaging
performance by integrating advanced electromagnetic simulations and powerful mathe-
matical optimization algorithms, including GAs. The results show the potential to achieve
superior reconstruction quality while using less than 2% of the elements typically required
by conventional full-density 2D arrays. To give context, the present version utilizes only
113 elements in contrast to the one million element requirement for a full-dense array
that adheres to Nyquist’s theorem, which mandates minimum separation of λmin between
elements. Refer to [13] for a detailed analysis of multistatic radar configurations for human
body imaging. This study compares a multistatic sparse setup to established millimeter-
wave imaging systems used for security screening. It should be noted that the comparison
was carried out at lower frequency ranges than the ones in our study. However, the findings
are still applicable to confirm that our approach is one of the most effective solutions.

The implications of this innovative method extend beyond the laboratory, with ap-
plications in On-The-Move (OTM) imaging systems that enable real-time 3D imaging of
dynamic targets. Notably, the reduction in the number of elements, coupled with optimized
simulation codes that leverage vector computations in MATLAB and harness the capabili-
ties of GPUs and parallelization resources, drastically shortens simulation execution times,
making the approach highly efficient.

In essence, this study is a significant advancement in imaging technology, leading
to the development of highly efficient and agile imaging systems with unmatched image
quality. It not only contributes substantially to the field of image processing but also lays
a solid foundation for prospective advancements in the domain. This breakthrough has
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far-reaching implications, including enhancing medical imaging, where the reduction in
hardware requirements can lead to more accessible and cost-effective diagnostic tools.
Furthermore, it can improve surveillance systems, allowing for the deployment of smaller,
more discreet arrays without compromising performance, thus bolstering security and
tracking capabilities. In the realm of aerospace and autonomous vehicles, this innovation
can lead to more compact and lightweight radar systems, enhancing navigation and obstacle
avoidance. Its manifold applications make it a revolutionary development across multiple
industries, offering increased efficiency, lowered costs, and superior image quality.

Author Contributions: Conceptualization: M.A., B.G.-V., O.R., A.P., J.G. and L.P.-E.; Methodology:
M.A., B.G.-V. and J.G.; Software: M.A., L.P.-E., B.G.-V. and Y.R.-V.; Validation: M.A. and B.G.-V.;
Formal analysis: M.A., B.G.-V. and L.P.-E.; Investigation: M.A., B.G.-V., L.P.-E., I.S.-M. and J.G.;
Resources: M.A., B.G.-V., L.P.-E. and I.S.-M.; Data curation: L.P.-E. and M.A.; Writing—original draft
preparation: L.P.-E.; Writing—review and editing: M.A., B.G.-V., L.P.-E., Y.R.-V., O.R., A.P., J.G. and
I.S.-M.; Visualization: M.A., B.G.-V., L.P.-E., Y.R.-V., O.R., A.P., J.G. and I.S.-M.; Supervision: M.A. and
B.G.-V.; Project administration: M.A. and B.G.-V.; Funding acquisition: M.A., B.G.-V., O.R., A.P. and
J.G. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by MCIN/AEI/10.13039/501100011033 for projects PID2020-
113979RB-C21 and PID2020-113979RB-C22, as well as by the European Union NextGenerationEU/PRTR
for project RYC2021-033593-I. Additionally, financial support was received from the Xunta de Gali-
cia (Centro singular de investigación de Galicia accreditation 2019–2022) and the European Union
(European Regional Development Fund—ERDF).

Data Availability Statement: Data are contained within the article.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Ahmed, S.S. Personnel screening with advanced multistatic imaging technology. Passive and Active Millimeter-Wave Imaging

XVI. In SPIE Defense, Security, and Sensing, International Society for Optics and Photonics; SPIE: Bellingham, WA, USA, 2013;
p. 87150B.

2. Siegel, P.H. Terahertz technology. IEEE Trans. Microw. Theory Tech. 2002, 50, 910–928 [CrossRef]
3. Sheen, D.; McMakin, D.; Hall, T. Three-dimensional millimeter-wave imaging for concealed weapon detection. IEEE Trans.

Microw. Theory Tech. 2001, 49, 1581–1592. [CrossRef]
4. Sheen, D.M.; Hall, T.E.; Severtsen, R.H.; McMakin, D.L.; Hatchell, B.K.; Valdez, P.L.J. Active wideband 350 GHz imaging system

for concealed-weapon detection. In Society of Photo-Optical Instrumentation Engineers (SPIE) Conference Series; SPIE: Bellingham,
WA, USA, 2009; Volume 7309. [CrossRef]

5. Sheen, D.; McMakin, D.; Hall, T.; Severtsen, R. Active millimeter-wave standoff and portal imaging techniques for personnel
screening. In Proceedings of the IEEE Conference on Technologies for Homeland Security, HST ’09, Waltham, MA, USA, 11–12
May 2009; pp. 440–447. [CrossRef]

6. Friederich, F.; Von Spiegel, W.; Bauer, M.; Meng, F.; Thomson, M.D.; Boppel, S.; Lisauskas, A.; Hils, B.; Krozer, V.; Keil, A.; et al.
THz active imaging systems with real-time capabilities. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 183–200. [CrossRef]

7. Cooper, K.; Dengler, R.; Llombart, N.; Thomas, B.; Chattopadhyay, G.; Siegel, P. THz Imaging Radar for Standoff Personnel
Screening. IEEE Trans. Terahertz Sci. Technol. 2011, 1, 169–182. [CrossRef]

8. Soumekh, M. Bistatic synthetic aperture radar inversion with application in dynamic object imaging. IEEE Trans. Signal Process.
1991, 39, 2044–2055. [CrossRef] [PubMed]

9. Grajal, J.; Badolato, A.; Rubio-Cidre, G.; Úbeda Medina, L.; Mencia-Oliva, B.; Garcia-Pino, A.; Gonzalez-Valdes, B.; Rubiños,
O. 3-D High-Resolution Imaging Radar at 300 GHz With Enhanced FoV. IEEE Trans. Microw. Theory Tech. 2015, 63, 1097–1107.
[CrossRef]

10. Burkholder, R.; Gupta, I.; Johnson, J. Comparison of monostatic and bistatic radar images. IEEE Antennas Propag. Mag. 2003,
45, 41–50. [CrossRef]

11. Yates, G.; Horne, A.; Blake, A.; Middleton, R. Bistatic SAR image formation. IEE-Proc.-Radar, Sonar Navig. 2006, 153, 208–213.
[CrossRef]

12. Zhuge, X.; Yarovoy, A.G. A Sparse Aperture MIMO-SAR-Based UWB Imaging System for Concealed Weapon Detection. IEEE
Trans. Geosci. Remote. Sens. 2011, 49, 509–518. [CrossRef]

13. Gonzalez-Valdes, B.; Alvarez, Y.; Mantzavinos, S.; Rappaport, C.M.; Las-Heras, F.; Martinez-Lorenzo, J.A. Improving Security
Screening: A Comparison of Multistatic Radar Configurations for Human Body Imaging. IEEE Antennas Propag. Mag. 2016,
58, 35–47. [CrossRef]

http://doi.org/10.1109/22.989974
http://dx.doi.org/10.1109/22.942570
http://dx.doi.org/10.1117/12.817927
http://dx.doi.org/10.1109/THS.2009.5168070
http://dx.doi.org/10.1109/TTHZ.2011.2159559
http://dx.doi.org/10.1109/TTHZ.2011.2159556
http://dx.doi.org/10.1109/78.134436
http://www.ncbi.nlm.nih.gov/pubmed/19546899
http://dx.doi.org/10.1109/TMTT.2015.2391105
http://dx.doi.org/10.1109/MAP.2003.1232162
http://dx.doi.org/10.1049/ip-rsn:20045091
http://dx.doi.org/10.1109/TGRS.2010.2053038
http://dx.doi.org/10.1109/MAP.2016.2569447


Appl. Sci. 2023, 13, 12138 14 of 15

14. Ahmed, S.S.; Genghammer, A.; Schiessl, A.; Schmidt, L.-P. Fully electronic active E-band personnel imager with 2 m2 aperture.
In Proceedings of the 2012 IEEE/MTT-S International Microwave Symposium Digest, Montreal, QC, Canada, 17–22 June 2012;
pp. 1–3. [CrossRef]

15. Ahmed, S.S.; Schiessl, A.; Schmidt, L.-P. A Novel Fully Electronic Active Real-Time Imager Based on a Planar Multistatic Sparse
Array. IEEE Trans. Microw. Theory Tech. 2011, 59, 3567–3576. [CrossRef]

16. Ahmed, S.S.; Schiess, A.; Schmidt, L.-P. Near field mm-wave imaging with multistatic sparse 2D-arrays. In Proceedings of the
2009 European Radar Conference (EuRAD), Rome, Italy, 30 September–2 October 2009; pp. 180–183.

17. Rigling, B.D.; Moses, R.L. Three-dimensional surface reconstruction from multistatic SAR images. IEEE Trans. Image Process.2005,
14, 1159–1171. [CrossRef] [PubMed]

18. Detlefsen, J. Application of Multistatic Radar Principles to Short-Range Imaging. Iee Proc. Commun. Radar Signal Process. 1986,
133, 658–663 [CrossRef]

19. Stojanovic, I.; Çetin, M.; Karl, W.C. Sensing of Monostatic and Multistatic SAR. IEEE Geosci. Remote. Sens. Lett. 2013, 10, 1444–1448.
[CrossRef]

20. Guido, R.C.; Pedroso, F.; Contreras, R.C.; Rodrigues, L.C.; Guariglia, E.; Neto, J.S. Introducing the Discrete Path Transform (DPT)
and its applications in signal analysis, artefact removal, and spoken word recognition. Digit. Signal Process. 2021, 117, 103158.
[CrossRef]

21. Guariglia, E.; Silvestrov, S. Fractional-Wavelet Analysis of Positive definite Distributions and Wavelets on D’(C). In Engineering
Mathematics II; Silvestrov, S., Ed.; Springer International Publishing: Cham, Switzerland, 2016; pp. 337–353.

22. Yang, L.; Su, H.; Zhong, C.; Meng, Z.; Luo, H.; Li, X.; Tang, Y.Y.; Lu, Y. Hyperspectral image classification using wavelet
transform-based smooth ordering. Int. J. Wavelets, Multiresolution Inf. Process. 2019, 17, 1950050. [CrossRef]

23. Guariglia, E. Harmonic Sierpinski Gasket and Applications. Entropy 2018, 20, 714. [CrossRef]
24. Zheng, X.; Tang, Y.Y.; Zhou, J. A Framework of Adaptive Multiscale Wavelet Decomposition for Signals on Undirected Graphs.

IEEE Trans. Signal Process. 2019, 67, 1696–1711. [CrossRef]
25. Guariglia, E. Primality, Fractality, and Image Analysis. Entropy 2019, 21, 304 [CrossRef]
26. Berry, M.V.; Lewis, Z.V.; Nye, J.F. On the Weierstrass-Mandelbrot fractal function. Proc. R. Soc. Lond. Math. Phys. Sci. 1980,

370, 459–484. [CrossRef]
27. Molaei, A.M.; Hu, S.; Skouroliakou, V.; Fusco, V.; Chen, X.; Yurduseven, O. Fourier Compatible Near-Field Multiple-Input

Multiple-Output Terahertz Imaging With Sparse Non-Uniform Apertures. IEEE Access 2021, 9, 157278–157294. [CrossRef]
28. Ahi, K. Mathematical Modeling of THz Point Spread Function and Simulation of THz Imaging Systems. IEEE Trans. Terahertz Sci.

Technol. 2017, 7, 747–754. [CrossRef]
29. Shami, T.M.; El-Saleh, A.A.; Alswaitti, M.; Al-Tashi, Q.; Summakieh, M.A.; Mirjalili, S. Particle Swarm Optimization: A

Comprehensive Survey. IEEE Access 2022, 10, 10031–10061. [CrossRef]
30. Shi, Y.; Eberhart, R.C. Empirical study of particle swarm optimization. In Proceedings of the Congress on Evolutionary

Computation CEC 99, Washington, DC, USA, 6–9 July 1999; Volume 3, pp. 1945–1949. [CrossRef]
31. Kirkpatrick, S.; Gelatt, J.; Vecci, M. Optimization by simulated annealing. Science 1983, 220, 671–680. [CrossRef]
32. Hajek, B. A tutorial survey of theory and applications of simulated annealing. In Proceedings of the 1985 24th IEEE Conference

on Decision and Control, Fort Lauderdale, FL, USA, 11–13 December 1985; pp. 755–760. [CrossRef]
33. Altbawi, S.M.A.; Khalid, S.B.A.; Mokhtar, A.S.B.; Shareef, H.; Husain, N.; Yahya, A.; Haider, S.A.; Moin, L.; Alsisi, R.H. An

Improved Gradient-Based Optimization Algorithm for Solving Complex Optimization Problems. Processes 2023, 11, 498.
[CrossRef]

34. Malu, M.; Dasarathy, G.; Spanias, A. Bayesian Optimization in High-Dimensional Spaces: A Brief Survey. In Proceedings of the
2021 12th International Conference on Information, Intelligence, Systems and Applications (IISA), Chania Crete, Greece, 12–14
July 2021; pp. 1–8. [CrossRef]

35. Grana-Varela, M.; Arias, M.; Rubinos, O.; Garcia-Pino, A. Rapid dual reflector shaping using Ant Colony Optimization, fast
iterated PO and asymptotic MFIE. In Proceedings of the 2009 3rd European Conference on Antennas and Propagation, Berlin,
Germany, 23–27 March 2009; pp. 2731–2735.

36. Bergmann, J.R.; Hasselmann, F.J.; Teixeira, F.L.; Rego, C.G. A Comparison between Techniques for Global Surface Interpolation in
Shaped Reflector Analysis. IEEE Trans. Antennas Propag. 1994, 42, 47–53. [CrossRef]

37. Holland, J.H. Adaptation in Natural and Artificial Systems, 2nd ed.; University of Michigan Press: Ann Arbor, MI, USA, 1992.
38. Beasley, D.; Bull, D.R.; Martin, R.R. An Overview of Genetic Algorithms: Part 1, Fundamentals. Univ. Comput. 1993, 15, 58–69.
39. Srinivas, M.; Patnaik, L. Genetic algorithms: A survey. Computer 1994, 27, 17–26. [CrossRef]
40. Ares-Pena, F.; Rodriguez-Gonzalez, J.; Villanueva-Lopez, E.; Rengarajan, S. Genetic algorithms in the design and optimization of

antenna array patterns. IEEE Trans. Antennas Propag. 1999, 47, 506–510. [CrossRef]
41. Perez-Eijo, L.; Gonzalez-Valdes, B.; Arias, M.; Tilves, D.; Rodriguez-Vaqueiro, Y.; Rubiños-López, O.; Pino, A.; García-Rial, F.;

Grajal, J. A Physical Optics Simulator for Multireflector THz Imaging Systems. IEEE Trans. Terahertz Sci. Technol. 2019, 9, 476–483.
[CrossRef]

42. Wehner, D.R. High-Resolution Radar, 2nd ed.; Artech House: London, UK, 1995.

http://dx.doi.org/10.1109/MWSYM.2012.6259549
http://dx.doi.org/10.1109/TMTT.2011.2172812
http://dx.doi.org/10.1109/TIP.2005.851690
http://www.ncbi.nlm.nih.gov/pubmed/16121463
http://dx.doi.org/10.1049/ip-f-1.1986.0105
http://dx.doi.org/10.1109/LGRS.2013.2259794
http://dx.doi.org/10.1016/j.dsp.2021.103158
http://dx.doi.org/10.1142/S0219691319500504
http://dx.doi.org/10.3390/e20090714
http://dx.doi.org/10.1109/TSP.2019.2896246
http://dx.doi.org/10.3390/e21030304
http://dx.doi.org/10.1098/rspa.1980.0044
http://dx.doi.org/10.1109/ACCESS.2021.3130079
http://dx.doi.org/10.1109/TTHZ.2017.2750690
http://dx.doi.org/10.1109/ACCESS.2022.3142859
http://dx.doi.org/10.1109/CEC.1999.785511
http://dx.doi.org/10.1126/science.220.4598.671
http://dx.doi.org/10.1109/CDC.1985.268599
http://dx.doi.org/10.3390/pr11020498
http://dx.doi.org/10.1109/IISA52424.2021.9555522
http://dx.doi.org/10.1109/8.272300
http://dx.doi.org/10.1109/2.294849
http://dx.doi.org/10.1109/8.768786
http://dx.doi.org/10.1109/TTHZ.2019.2930918


Appl. Sci. 2023, 13, 12138 15 of 15

43. Teer, T.; Goodman, N. Multistatic SAR algorithm with image combination. In Proceedings of the 2006 IEEE Conference on Radar,
Verona, NY, USA, 24–27 April 2006; p. 8. [CrossRef]

44. Ahmed, S.S.; Schiessl, A.; Gumbmann, F.; Tiebout, M.; Methfessel, S.; Schmidt, L. Advanced microwave imaging. IEEE Microw.
Mag. 2012, 13, 26–43. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

[
http://dx.doi.org/10.1109/RADAR.2006.1631845
http://dx.doi.org/10.1109/MMM.2012.2205772

	Introduction
	Multistatic Architecture
	Baseline Configuration
	Imaging
	Point Spread Function

	Optimization Algorithm
	Cost Function
	Genetic Algorithm
	Custom GA Configuration
	MATLAB Implementation


	Simulation
	Results
	Optimal 2D Sparse Array
	PSF
	Imaging


	Conclusions
	References

