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Abstract: The Zhuang ethnic minority in China possesses its own ethnic language and no ethnic
script. Cultural exchange and transmission encounter hurdles as the Zhuang rely exclusively on
oral communication. An online cloud-based platform was required to enhance linguistic commu-
nication. First, a database of 200 h of annotated Zhuang speech was created by collecting standard
Zhuang speeches and improving database quality by removing transcription inconsistencies and text
normalization. Second, SAformerNet, a more efficient and accurate transformer-based automatic
speech recognition (ASR) network, is achieved by inserting additional downsampling modules.
Subsequently, a Neural Machine Translation (NMT) model for translating Zhuang into other lan-
guages is constructed by fine-tuning the BART model and corpus filtering strategy. Finally, for the
network’s responsiveness to real-world needs, edge-computing techniques are applied to relieve
network bandwidth pressure. An edge-computing private cloud system based on FPGA acceleration
is proposed to improve model operation efficiency. Experiments show that the most critical metric of
the system, model accuracy, is above 93%, and inference time is reduced by 29%. The computational
delay for multi-head self-attention (MHSA) and feed-forward network (FFN) modules has been
reduced by 7.1 and 1.9 times, respectively, and terminal response time is accelerated by 20% on
average. Generally, the scheme provides a prototype tool for small-scale Zhuang remote natural
language tasks in mountainous areas.

Keywords: automatic speech recognition; natural language processing; neural machine translation;
transformer; cloud edge computing; network programming

1. Introduction

The Zhuang people are the largest ethnic minority in China, with a population of
approximately 15 M. They predominantly inhabit the southern region of China. Further-
more, there is a significant Zhuang community in the regions bordering China in northern
Vietnam, constituting one of the largest ethnic minority groups in Vietnam [1].

The Zhuang language is primarily used in areas of Guangxi inhabited by the Zhuang
people [2]. Its underlying vocabulary and pronunciation system are closely related to those
of the Dong-Tai language group, which is part of the Zhuang-Dong language family [3].
Internationally, Zhuang is considered an independent language group. However, in China
it is classified as part of the “Sino-Tibetan languages” [4]. Zhuang is a minority language
with limited coverage and audience as it is highly localized and regionalized. There are
no traditional characters, and the language is only transmitted orally, resulting in a lack
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of standardized and unified official characters to inherit. Additionally, it is impossible to
form a sufficient amount of paper or electronic corpus resources. The lack of an extensive
Chinese–Zhuang parallel corpus results in limited research on ASR and MT of Zhuang.
Consequently, the current research is still relatively scarce, unable to meet the application
requirements of industrial production and community life. An established resolution
would be to explore the edge of the cloud platform system with remote speech recognition
functions and multilingual translation. Additionally, Guangxi is the window of “Associa-
tion of Southeast Asian Nations (ASEAN)” cooperation and exchanges in the “Silk Road
Economic Belt and the 21st-Century Maritime Silk Road”. The development of a machine
translation (MT) system for the Zhuang language can not only enrich minority languages
and cultures but also enhance communication between Zhuang and other languages in
Guangxi and ASEAN nations.

For ASR tasks, the focus is to transcribe the information of the input speech sequence
into the corresponding linguistic text. The traditional approach to implementing speech
recognition systems involves combining an acoustic model, a pronunciation dictionary,
and a language model. However, in recent years, Convolutional Neural Network (CNN)
has achieved considerable success in computer vision (CV), as demonstrated by models
such as VGG [5], Res-Net [6], and Google-LeNet [7]. Meanwhile, the Transformer [8] has
also had breakthroughs in Natural Language Processing (NLP) through the utilization of
an attention mechanism. While both CNN and Transformer architectures possess their
own advantages and limitations, the newly introduced hybrid CNN-Transformer [9–11]
architecture overcomes the lack of CNN’s ability to capture global context. This enables
end-to-end neural network model to achieve remarkable progress in ASR tasks while
also resolving the challenges of forced alignment and multi-module training faced by
conventional speech recognition systems. Hybrid architecture becomes a trend.

The rapid development of neural networks also provides novel research directions for
a subfield of computational linguistics: Machine Translation. End-to-end Neural Machine
Translation (NMT) has emerged as the prominent approach for MT research. Nevertheless,
it cannot yet be trusted to work independently in real-world applications. On the one
hand, it is challenging for NMT to sufficiently take into account the contextual factors
present in the source text, where social, cultural, economic, religious, and political contexts
constrain the production of the original text [12]. On the other hand, researchers require an
assessment of the Machine Translation Output (MTO) and a considerable quantity of high-
quality corpora to improve translation models [13]; for instance, BLEU [14,15]. However,
these metrics focus solely on exact match identification, which leads to minimal correlation
with assessments made by humans that account for rich morphology [16]. For low-resource
languages, the corpus needs to be further collected and expanded, which is an issue that
needs to be addressed.

The convolutionally augmented Transformer has complex architecture. For instance,
the design integrates several normalization and activation functions, multi-head attention
(MHA), and macaron structures. As the model’s dimensions increase, so does the compu-
tational overhead. Additionally, the attention mechanism involves several large matrix
multiplications and data interactions that necessitate high computational and storage over-
heads [17,18]. To improve the condition, the convolutionally augmented Transformer is
structurally optimized to reduce its overall complexity. The model’s inference is accelerated
by utilizing a Field Programmable Gate Array (FPGA) to make it practical and efficiently
deploy the model on a dedicated hardware platform [19–22].

The proposed work has the following contributions:

1. A method for automatic construction method of a large-scale Zhuang speech anno-
tation database is proposed, which allows for acquisition of deep learning data in a
short timeframe.

2. SAformerNet, a more efficient and accurate transformer-based automatic speech recog-
nition (ASR) network is achieved by inserting additional downsampling modules.
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This model has speedy training and decoding processes, and equivalent recognition
performance to the existing ASR model under certain computational resources.

3. A neural machine translation model for Zhuang and other languages using a deep
learning architecture is presented.

4. A natural language processing system based on edge computing is proposed for the
efficient and accurate multilingual translation of Zhuang’s output, thus completing the
cycle from theory to practice and efficiently serving the cause of village revitalization.

The rest of the paper is organized as follows. In Section 2, we discuss the current state
of research on Zhuang language recognition models. In Section 3, we describe in detail the
essential structure of the system being constructed. Section 4 describes the construction
of the Zhuang language cloud platform system and conducts experiments. Finally, we
conclude in Section 5.

2. Previous Work

Recent end-to-end ASR models typically consist of an encoder and decoder, wherein
a strong encoder architecture plays a vital role in achieving optimal ASR system perfor-
mance. The Conformer architecture efficiently models both global and local dependencies
by employing a convolutionally augmented transformer, and it becomes a practical model
for ASR tasks as well as various speech processing tasks. Additionally, ref. [23] proposes a
progressive downsampling scheme to reduce the training and inference costs of the model.
Ref. [24] introduces a similar progressive downsampling scheme, but also includes an
upsampling mechanism [25,26] to improve the representational capability of the model.
Meanwhile, ref. [27] utilizes an additional add-on downsampling module that fine-tunes
the time-frequency speech features. However, the quadratic complexity of the attention
layer remains excessively high at longer sequence lengths. Furthermore, downsampling ap-
proach reduces the training and inference costs of model, but temporal downsampling leads
to unstable and divergent training, weakening the representational capabilities of model.

The Transformer abandons the RNN and CNN commonly used in research and instead
adopts the self-attention mechanism to encode the sequenced information, resulting in an
improved translation performance and training efficiency of the NMT model. Several pre-
training techniques [28,29] have been proposed to train large models using large existing
corpora. The pre-training and fine-tuning approach further improves the translation results
of NMT. Replicating target data for constructing a pseudo-parallel corpus can yield positive
results [30,31] to improve the translation quality of low-resource machine translation.
Nevertheless, the lack of corpus resources remains the most common problem of NMT. For
Zhuang language, data augmentation and expansion as well as noise reduction of parallel
corpus are required for low-resource scenarios.

Transformer-based models are becoming larger and more computation-intensive, and
existing FPGA acceleration attempts to overcome this problem in two ways, including
data flow optimization and model optimization. Ref. [19] describes splitting large matrices
in transformer and designing pulsation arrays based on computational flow, while also
optimizing computation of nonlinear functions. Ref. [32] mentions reducing computation
including approximation algorithms, along with leveraging parallelism and specializing
data paths to optimize hardware utilization. In Ref. [33], the weights were converted
to block circulant matrix form and FFT’s multiplication method was applied instead of
matrix-vector multiplication. FPGAs are high-speed, use significantly less power and cost
less to realize system design requirements.

Although ASR and NMT systems have gained significant attention in the field of artifi-
cial intelligence (AI), research on the neural network models of Zhuang is at a preliminary
stage and existing literature is lacking. Currently, no practical cloud platform or natural
language processing system has been developed for Zhuang language. Communicating
with volunteers and marketing specialized products in remote mountainous regions can be
challenging, particularly with villagers who only speak Zhuang language. This difficulty
also extends to cultural exchange and transmission. An established resolution would be to
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explore the edge of the cloud platform system with remote speech recognition functions
and multilingual translation.

3. System Design

In this section, the system architecture and workflow of the Zhuang speech recognition
and translation cloud platform are introduced. The system architecture is consisted of four
components, including the Zhuang language database automatic construction system, the
Zhuang language speech recognition model, the Zhuang–Other languages neural machine
translation model, and the edge cloud platform acceleration, as shown in Figure 1.
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Applying deep learning to speech recognition requires collecting and annotating
a large amount of audio data in the Zhuang language. Consequently, an automated
system was created to create a database of the Zhuang language. This system is capable of
extracting audio clips and video subtitles from the archives of Guangxi TV over the past ten
years. This system not only obtains a minimum of 200 h of audio and labelled data but also
drastically reduces the amount of manual effort needed. The next step was to develop a
speech recognition network. SAformerNet, a more efficient and accurate transformer-based
ASR network is achieved by inserting additional downsampling modules. SAformerNet
has a faster training speed and a shorter decoding time than Conformer, but with similar
recognition performance. The advantage of this development is that the network can be
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rapidly deployed. After that, NMT model for translating Zhuang into other languages
is constructed by fine-tuning the BART model and corpus filtering strategy. The model
is utilized to develop an encoder adaptor comprised of two FFNs and a decoder adaptor
including a FFN, and an encoder-decoder attention layer integrated with BART. This is
fine-tuned on a specific dataset to preserve computational resources and significantly
diminish the duration of model training. Finally, the FPGA-accelerated edge computing
approach is used to achieve fast response of network programs, and the optimization of the
matrix product of GPU/CUDA and FPGA hardware devices is used to achieve edge-side
acceleration. A small terminal platform is designed with the esp32-s3 development board
as the main controller. The configuration of the edge server is NVIDIA GeForce GTX 1650,
with 4 T storage. The model was trained on a single Nvidia RTX 3090 GPU. The architecture
of the model was accelerated on a Xilinx XCZU9EG FPGA.

3.1. Establishment of Zhuang Language Speech Database

Currently, there is no publicly available Zhuang speech database. Online resources
solely consist of basic Zhuang dialogues and phonetic tutorials, which are unable to fulfill
the model training requirements and are difficult to obtain. Consequently, it is necessary to
establish a Zhuang speech database to train the model. The Zhuang language in different
regions of Guangxi is different, but the standard is Wuming Zhuang. Since Guangxi TV’s
Zhuang newscast speaks the standard Zhuang language, the Zhuang language data was
obtained from the newscast, the subtitles were extracted, and the audio files were exported
from the corresponding video, as shown in Figure 2. The following is the process of
establishing the database:
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Figure 2. Text timeline correction and audio waveform extraction.

At first, it was necessary to sub-frame the video of the Guangxi TV Zhuang news
program and capture all the conversations in it as much as possible. Then, the time
when the conversations appear and end was determined. In addition, the video subtitle
color parameter was relatively important to help generate the correct timeline information
and prevent missing text. To improve the timeline accuracy, the audio that was loaded
was Fourier transformed and windowed to eliminate the disturbance. Additionally, the
subtitles were synchronized with the audio after being corrected. Following that, the static
conversational text was extracted from the images through image processing, whereby the
algorithm utilizes grayscale eroding and dilating and contour chroma-lightness similarity
methods. Finally, according to the timeline information, Pydub was used to trim the video
and audio components of the Zhuang news program from Guangxi TV, resulting in the
extraction of the corresponding audio. The raw text was filtered to remove inappropriate
content. Symbols such as (<, >], [�,� were removed. Abbreviations such as GXUTV and
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CCTV were capitalized. Sentences that were longer than 25 characters were deleted. All
text files were encoded in Utf-8.

Guangxi TV launched a Zhuang language news program in 2013 and has now accu-
mulated ten years of Zhuang language videos. After thorough screening and processing, a
database containing 200 h of annotated Zhuang language speech can be established.

3.2. Multi Language Neural Machine Translation Model Based on BART

Machine translation generally means the utilization of computers to achieve automatic
translation from one language to another [34]. For the input source language S, the machine
translation system can convert it to the target language T. The entire language conversion
process can be modeled as the probability of obtaining the target language under the
condition of inputting the source language P(Y) as follows:

P(Y) = P(T|S) (1)

Due to the contextual semantic links between the words in the target sentence, the
above probability Equation (1) can be further decomposed into the individual conditional
probabilistic factors of the words in the target utterance [35,36]:

P(Y) = P(T|S) =
N

∏
i=1

p(Ti|S; θ) (2)

In Equation (2), N is the length of the target sentence and θ is a parameter of the
machine translation model.

BART [29] is a pre-trained language model based on the overall structure of the Trans-
former, which has demonstrated significant improvements in natural language generation
tasks. In this study, an NMT model is built by pre-training and fine-tuning parameters
using a BART combination adaptor [37–39]. Two BART models, pre-trained as the encoder
and decoder, are employed in tandem. The encoder adaptor is installed immediately
following the encoder BART layer, and similarly, the decoder adaptor is located right after
the decoder BART layer. Only the two adaptors are fine-tuned during training, which not
only saves computational resources but also drastically reduces the model training time.
The model structure for NMT is presented in Figure 3, where M and N represent the same
structure for M and N stacks, respectively.
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Figure 3. Multilingual Neural Machine Translation Model Architecture.

Specifically, two pre-trained BART models, XBART and YBART, are used as the source-
side language encoder and the target-side language decoder, respectively. The two adaptors
are fine-tuned to target the sequence generation framework on a parallel Chinese–other lan-
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guage corpus. The loss function of the whole process is modeled as the following equation:

L(Y|X; θAE, θAD) = −
N

∑
i=1

logP(yi|yi−1, x; θAE, θAD) (3)

L in Equation (3) is the loss function for the entire model, N is the length of the target
sequence, x is the input language of the source, θAE and θAD are the parameters of the
encoding adaptor and decoding adaptor, respectively, and y is the output language of the
target. During the training period, the pre-trained models XBART and YBART in Equation (3)
remain unchanged.

The procedure for fine-tuning the encoder is as follows. Initially, the input undergoes
layer normalization and enters the first layer of the FFN. The Tanh activation function
between the two layers of the FFN assigns a non-linear activation to the current hidden
state. Subsequently, the input enters the second FFN, where the initial input is combined
as the output hidden state of the whole adaptor. The final encoder output is the final
representation of the source language after passing through multiple encoder stacks:

HE
l+1 = AE(XBART(H + W2·(Tanh(W1·(LN(H)))))) (4)

In Equation (4), H denote the input hidden state of the encoder adaptor. LN represents
normalization, while W1 and W2 stand for parameters of two FFN. Tanh denotes the
nonlinear activation function. HE

l represents the final outcome of the entire representation
of the source-side language encoder. The attention layer of the decoder adaptor will model
the interdependence of languages:

HD
l+1 = AD

(
YBART

(
HD

l

)
, HE, HE

)
(5)

In Equation (5), HD
1 represents the output hidden state of the 1th decoder.

The implementation of BART for machine translation tasks involves fine-tuning the
introduced decoding adaptor and encoding adaptor. This not only circumvents extensive
tuning of the BART, but also sustains BART’s high-precision performance in natural lan-
guage generation tasks. Since parallel corpora of low-resource languages are data-poor, a
pivot language transformation approach was employed to augment and expand the corpus
with data [40]. The process for enhancing data with the pivot language transformation
method [41–43] is shown in Figure 4.
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Figure 4. Flowchart for parallel corpus data enhancement based on pivot language transformation.

However, in low-resource situations, the initial base translation model is obtained
by training from a small-scale parallel corpus. As a result, pseudo-parallel sentence pairs
that contain more noise may be generated, possibly leading to insignificant or limited
improvements in the final translation outcomes. To address the issue of low-quality pseudo-
parallel corpus, a filtering mechanism is proposed by first using the real parallel corpus
to train the reverse neural machine translation models, and then feeding the monolingual
corpus of the respective models into the reverse machine translation model to generate
translations. Finally, the filtering mechanism is used to filter the resulting translations. The
real monolingual data is combined with the filtered translations to create a pseudo-parallel
corpus, which is then used alongside the real parallel corpus for further forward machine
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translation model training. The trained translation system is then utilized repeatedly to
generate new pseudo-parallel data to replace the previous data, and the process is shown
in Figure 5.
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Nevertheless, in the case where there is only one reference translation, it is challenging
to use a similarity measure evaluation method that fulfils the requirements of the applica-
tion. In order to better evaluate the machine translation method, a text similarity measure
algorithm based on the ordering of common words was proposed. This algorithm has less
computational overhead and can characterize more cases than the similarity measure based
on the editing distance. The process of similarity computation can be described as follows:

Firstly, do the partitioning of Sentence1 and Sentence1, assuming that they are divided
into k words and l words, respectively, and store the common words of the two clauses in
the order of the original sentence in the arrays A and B, respectively. Sorting in terms of A
to B. Assuming the length of the array is n and letting m = 0, the sorting can be described as:

step 1: for i = 0 to n − 1
step 2: for j = 0 to n − i − 1
step 3: If the order of A[j] and A[j + 1] is different from the order of the corresponding

contents within B, then perform a bubble sort.
step 4: m = m + 1
It can be seen that m is the number of executions of the bubbling sort. The similarity

of arrays A and B can be described as:

Arraysimilarity(A, B) = 1− 2m
n·(n− 1)

(6)

The similarity calculated from Equation (6) can be extended to the Position Based
Sentence Similarity (PBSS) approach. PBSS based on the positional ordering of shared
words can be quantitatively represented as:
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PBSS(Sentence1, Sentence2) = max
(

Arraysimilarity
(

Ax, By
)
· n
max(k, 1)

)
(7)

If there are words that appear differently in Sentence1 and Sentence2, the computation
process in Equation (7) may have multiple groups (A, B), and the similarity of the two
sentences is taken as the maximum value obtained from the calculation of the different
groups

(
Ax, By

)
.

3.3. An End-to-End Automatic Speech Recognition Algorithm Based on Conformer

In this paper, a more efficient network architecture for solving the ASR problem is
designed to achieve a reduction in the complexity of the Conformer while achieving a
lower Character Error Rate (CER) for a given computational budget. A novel convolution-
attention hybrid downsampling layer is designed, as shown in Figure 6. The novel sampling
layer diverges from the Macaron structural design of the Conformer block and resembles the
standard Transformer structure more closely. The convolution module is placed between
the two feed-forward networks, and the MHSA module is positioned in front of the feed-
forward networks. The original convolutional module is replaced by a convolutional
downsampling module, shown in Figure 7, to reduce the computational cost of CNNs, and
enable faster training and inference. Downsampling is performed to reduce the sampling
rate of the input sequences to 40 ms, followed by sequential downsampling to reduce the
sampling rate of each input sequence to 80 ms. During this process, the feature sequences
are projected to wider feature dimensions to maintain the complexity of each encoder.
This effectively reduces the redundancy in the feature embedding vectors learned by
the Conformer block, thus further reducing the computational overhead without loss
of accuracy.
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Figure 6. The Conformer architecture (Left). The Conformer consists of two macaron-like feed-
forward layers, with a MHSA and convolutional module in the middle layer. The feature dimensions
are kept constant throughout the network; The SAformerNet architecture (Right). SAformerNet
consist of multiple Conformer blocks with a hybrid convolution-attention structure. The coded
sequences are subjected to multiple downsampling operations before being projected to wider
feature dimensions.
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Figure 7. The Convolution Downsampling Module. The residual module contains a pointwise
projection layer and a 1D SE-Net. The strided depth-wise convolution is responsible for the down-
sampling function; The 1D SE-Net utilizes a convolutional layer to extract features, which are pooled
to compress the convolutional result into a 1D vector and applied to the convolutional output using
pointwise multiplications.

However, temporal downsampling results in unstable and divergent training, and
downsampling the feature vectors reduces the amount of contextual information available
to the decoder, thus hindering the successful decoding of the entire sequence. Inspired by
Res-Net, a new network structure is introduced as a squeeze-and-excite (SE) block [44,45]
in the convolution downsampling module by residually connecting some of the conformer
blocks, as shown in Figure 7. The SE block can recalibrate features to selectively emphasize
informative features, thereby mitigating information deficits attributable to downsampling.
For input x, the output y of the SE block is denoted by:

xt =
1
T ∑

t
xt, θ(x) = Sigmoid(W2(Act(W1xt + b1)) + b2)

SE(x) = θ(x) ◦ xT
(8)

In Equation (8), Act(·) denotes the activation function, θ(x) is a global channel-wise
weight, and Sigmoid(·) refers to the sigmoid function. Where ◦ represents element-wise
multiplication, W1, W2 are weight matrices, and b1, b2 are bias vectors.

The residual module contains a pointwise projection layer and a 1D SE-Net, which
uses a convolutional layer for feature extraction. The resulting features are then pooled
and compressed into a 1D vector before being applied to the convolutional output through
pointwise multiplications. The Convolution Downsampling module incorporates a strided
depth-wise convolution responsible for the downsampling function, with batch normal-
ization and activation applied after each convolution. The advantages of SE block feature
recalibration can accumulate across the network and can be adapted to the needs of the net-
work, especially in deep Conformer Encode. This allows for further reduced redundancy
without compromising accuracy.

To further reduce the computational overhead in SAformerNet, the MHSA Module is
replaced by the Grouped MHSA Module [23]. The quadratic complexity of the attentional
mechanism increases its computational overhead dramatically over long sequences, causing
networks of different depths to process completely different amounts of data, especially
those that have been downsampled, impairing overall efficiency. The Grouped MHSA
Module reduces the attentional complexity from O

(
n2·d

)
to O

(
n2·d/g

)
by first grouping

long sequences and then performing the attentional operation, and applies it to networks of
different depths so that the processed data is approximately the same in different networks,
which improves the overall efficiency of SAformerNet. In the MHSA Module, a number of
heads H for a hidden sequence X ∈ Rn×d is computed as:

Hh = so f tmax

(
QhKT

h + Srel
h√

dh

)
Vh (9)

And in the Grouped MHSA Module, the header H in Equation (9) transforms into:



Appl. Sci. 2023, 13, 12184 11 of 19

Hgrp
h = so f tmax

Qgrp
h KgrpT

h + Srel
h√

d′h

Vgrp
h (10)

Equation (10) is the encoder output after the Grouped MHSA Module. Where Atten-
tion queries, keys, values are reshaped from Q, K, V ∈ Rn×d to Qgrp, Kgrp, Vgrp ∈ Rn′×d′ .
Srel ∈ Rn×n is a relative position score matrix. n′ = n/g and d′ = d × g. And con-
catenated Grouped attention output Hgrp ∈ Rn′×d′ is reshaped to H ∈ Rn×d before the
output projection layer. The Grouped attention is applied at the network layer, where
the coding sequences are the longest, and the study shows that this approach reduces the
computational overhead and improves the efficiency of the model.

3.4. Acceleration Method of Edge Computing for Multimodal Cooperative Operation Based on
Cloud Platform

There is currently no online translation system available for Zhuang language speech
translation, and it is also impossible to run multimodal networks cooperatively. To handle
complex tasks on the network, such as image recognition algorithms and natural language
processing, etc., the use of edge computing algorithms is necessary to accelerate the network
operations and ensure that the network’s response speed satisfies the real demand. In this
paper, the focus is on how to operate multimodal networks with different programming
languages and call different hardware resources on the same network edge platform, to
maximize resource sharing and achieve the purpose of low-carbon.

This system uses the cross-platform programming language XOJO to quickly build
a cloud platform. XOJO is a cross-platform integrated development environment (IDE),
consisting of an integrated debugger, multi-platform compiler, and other essential compo-
nents. Thanks to cross-compilation, XOJO facilitates developing applications on Windows
that can effortlessly run on Linux and Mac OS X systems. XOJO-developed programs can
be compiled directly into CPU executable instructions, resulting in better performance by
using the LLVM compiler tool. This system employs the developmental capabilities of
its web program. Web applications support the latest versions of popular web browsers,
including Internet Explorer, Firefox, Safari, and Chrome. Web applications can be accessed
as long as the application on the server remains running. The security of web applications
is of utmost importance, as they can be accessed by any online user. XOJO web applications
are compiled into binary code, and the source code is not stored on the server. To modify
the application, an individual needs to possess extensive knowledge of x86 assembly code
and commit a significant amount of time to code tracing. This task is considerably more
challenging compared to hacking PHP, CSS, JavaScript, AJAX, and HTML.

For some algorithms with low computational requirements, such as audio data trans-
mission, and some database operation management, the XOJO platform can be utilized.
The deep learning algorithms and other computationally intensive programs are acceler-
ated by edge computing for network acceleration [46,47]. Unlike XOJO’s web programs,
the programs at the edge reside on the server as a cluster of executable programs that
parse the relevant commands, give the appropriate results, and finally return them to
the client through the Internet. The Algorithms Kernel module can be easily exchanged
with information between programs due to the unified packaging and standard interface
parameters, which allow the client application to operate without restrictions based on the
user’s system platform. To ensure that the algorithmic processing time of SAformerNet
and BART models is within the user’s tolerable range, FPGAs are used for algorithmic
acceleration in the local computing at the edge, and the cloud platform framework is shown
in Figure 8.
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Figure 8. Cloud platform system framework.

The FPGA acceleration for edge computing utilizes the PYNQ chip that adds Python
support in contrast to the original ZYNQ architecture. PYNQ is a heterogeneous SOC
that incorporates an ARM processor and an FPGA programmable logic device, resulting
in many-fold computation acceleration compared to conventional algorithms, as well as
noteworthy reductions in power consumption and cost. After completing the training of
the models employed in the system, the designed deep learning models were accelerated
using Xilinx’s PYNQ Ultra-Scale + MPSoC series of boards, and the FPGA-accelerated
development process is shown in Figure 9.
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If essential, Vitis AI Optimizer can be used after obtaining the model parameter files
to prune redundant connections in the neural network and reduce the overall amount
of computation required. The Vitis AI Quantizer tool can be used to quantize the model
parameters, turning floating-point numbers into fixed-point numbers, which helps in
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reducing the amount of memory bandwidth required by the network model. Additionally,
the Vitis AI compiler compiles the quantized model into an efficient command set and flow
of data. Finally, the Vitis AI Profiler keeps track of function calls and runtimes to activate
the deep learning processing unit (DPU) for efficient inference deployment on AI edge
using the Vitis AI high-level library and the Xilinx Runtime library.

4. Results

This section describes the relevant experiments and evaluates and analyzes the results.

4.1. Mini-Terminal Platform

A mini terminal platform was developed to evaluate system performance and simulate
user interactions. The platform is an integrated system comprising both hardware and
software. It captures, processes and analyzes information, including sound, through
an array of sensors and control modules. It also transmits the data to the server for
business logic processing, as shown in Figure 10. The highlighted areas on the diagram
represent the system’s respective modules. The system is communicated via a Wi-Fi
wireless communication module. The hardware components include the ESP32-s3 primary
controller development board, a microphone, a voice wake-up module, an LCD display,
an audio amplifier module, and a speaker. The master control ESP32-s3 development
board is used as the core control unit and is responsible for operating and transmitting
data throughout the system. The microphone is used to capture the sound signal of the
user’s speech and detect and recognize it through the voice wake-up module. The server is
mainly responsible for processing the business logic, parsing user requests and generating
the required audio files, and then returning the processed files to the mini-terminal. A deep
neural network model is deployed by the server for recognizing audio files and converting
them into text. After being processed by the translation or conversational system, the server
can respond to user requests and return the response text converted into an audio file to
the speakers, thus realizing the function of multilingual interaction.
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4.2. Experiment Setup

Using the automatic construction system of the Zhuang database, a 200 h database of
Zhuang speech with annotations was built for the training of speech recognition models
by filtering the videos of Guangxi TV over the past ten years. The major dialect of this
database is Wuming Zhuang, and the conversation topics include society, finance, science
and technology, entertainment, and health, all of which are used for the training of ASR.
SpecAugment [48,49] was employed to augment data and prevent overfitting during
training. Specific parameters were set, including a frequency mask size parameter (F = 10)
and the time and frequency mask (mT = mF = 2). The input features are 80-dimensional
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mel-scale log filter bank spectrograms, which were calculated with a 25 ms window and a
10 ms shift. The publicly available dataset AISHELL-1 [50] was also used as a pre-feasibility
validation of ASR. The 178 h open-source AISHELL-1 speech database used high-fidelity
microphones to record 400 speakers from diverse accent regions in China, involved in
intelligent households, drones, industrial production, and other fields. The parallel corpus
for MT was selected from the Asian Scientific Papers Excerpt Corpus (ASPEC) version
1.0 [51], with approximately 680,000 parallel utterances. The corpus was divided into
610,000 pairs of training data, 2000 pairs of development data, and 2000 pairs of test data.
The development and test data were randomly selected. In addition, 5000 language pairs
were randomly selected from the publicly available bilingual dataset OPUS JA-ZH for
manual alignment, which was used to validate the generalization ability of the model. The
model was trained on a single Nvidia RTX 3090 GPU using the open-source deep learning
framework PyTorch, version 2.0.1. To optimize training efficiency and maximize GPU
memory usage, the data loader was set up to sort and pack statements based on frame
length, and then randomly select these statements to feed to the model.

For the speech recognition model, the corresponding SAformerNet-S and M were
designed using Conformer-S and M under the reference of the architectural parameters,
keeping the model size constant, and the hyperparameters of the model were set as shown
in Table 1. The utilization of four attention heads and setting the hyperparameter g to 3
provides a good balance between computational effort and accuracy. CER evaluates the
error rate between the predicted text and the original text, a lower CER indicates better ASR
performance. The machine translation model’s encoder network comprises six modules
that are identical in structure. Each module consists of two sublayer structures, including
Multi-head Self-attention and a Fully connected Feed-forward Network (FFN), which
perform residual concatenation and normalization on the output of each sublayer. The
decoder also has six modules that are identical in structure, with one more Multi-head
Attention Network layer than the encoder module. The vector size of the word is 512 and
the output dimension of the first linear layer is 2048 using the 8-head attention mechanism.
The Byte Pair Encoding (BPE) segmentation algorithm was utilized. Word list size was set
to 32,000, and the batch size was set to 32 due to hardware constraints. The effectiveness of
machine translation models is conducted with the BLEU. The degree of similarity between
two sentences can be determined by the BLEU, which calculates a composite score. A
higher score indicates improved machine translation quality. The training data, validation
data, and verification data used in the experiment were randomly selected and do not
overlap with each other.

Table 1. Detailed architectural configuration of SAformerNet and Comformer.

Model Encoder Blocks Encoder
Dims Attention Heads Group

Size
Params

(M)

Conformer-S 16 176 4 - 13.0
SAformerNet-S 15 120,168,240 4 3 13.4
Conformer-M 18 256 4 - 30.6

SAformerNet-M 16 180,256,360 4 3 33.4

4.3. Parallel Corpus Selection and Retranslation Results

Data cleaning methods, such as long sentence splitting, de-duplication, and line length
ratio control, were applied to the dataset. The original corpus and the slice-filtered parallel
corpus were used for training, respectively, and the results are shown in Table 2. The
experiments show that the use of the processed parallel corpus, validated on ASPEC-JC,
the BLEU score of the Chinese-to-Japanese neural machine translation model improves by
0.92, and the BLEU of the Japanese-to-Chinese neural machine translation model improves
by 0.83.
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Table 2. Translation effects when different data are used for training and tests.

Translation Model Data Types ASPEC-JC
BLEU Scores

OPUS JA-ZH
BLEU Scores

Chinese-to-Japanese Original data 34.24 34.20
Japanese-to-Chinese Original data 32.19 33.41
Chinese-to-Japanese Processed data 35.16 35.45
Japanese-to-Chinese Processed data 33.02 33.10

From the model’s BLEU score on OPUS JA-ZH, the model has good robustness. How-
ever, the Japanese-to-Chinese model, which was trained using the processed data, did not
obtain better translation results, indicating that enhancing the quality of the parallel corpus
may not necessarily improve the model’s generalization ability. The generated pseudo-
parallel sentence pairs contain more noise and may provide little or no improvement to the
final translation. To enhance the generalization ability of the model, the initial Transformer
model is first trained using all the parallel corpus in ASPEC-JC, resulting in two NMT
models. The subsequent training employs only the screened real parallel corpus except for
the pseudo-parallel corpus. As can be seen from Table 3, the generalization ability of the
model is enhanced, improving the effectiveness of NMT. The neural machine translation
model from Chinese to Japanese, which incorporates a filtering mechanism, enhances the
BLEU score on ASPEC-JC by 1.54. Likewise, the model that translates from Japanese to
Chinese enhances the BLEU score by 2.8 compared to the cleaned data.

Table 3. Model performance under different retranslation strategies.

Translation Model Retranslation
Strategies

ASPEC-JC
BLEU Scores

OPUS JA-ZH
BLEU Scores

Chinese-to-Japanese No filtering mechanism 35.97 36.12
Japanese-to-Chinese No filtering mechanism 34.31 34.36
Chinese-to-Japanese With filtering mechanism 37.51 37.74
Japanese-to-Chinese With filtering mechanism 35.82 35.92

4.4. Speech Recognition Results

Table 4 provides a comparison of CER between SAformerNet, Conformer, and other
ASR models. The results show that SAformerNet has improved compared to previously
published systems. Moreover, the SAformerNet-S model achieved competitive results of
5.50%/5.76% on the AISHELL-1 dataset with only 13.4 M parameters. However, this is still
a departure from the original work, as it benefited from training with bigger volumes and
a more comprehensive set of resources. Furthermore, the experimental results show that
the feasibility of the SAformerNet speech recognition model is verified, and a recognition
rate of 5.92% is achieved by training and testing on the Zhuang language dataset.

Additionally, as shown in Figure 11, complementary ablation studies are performed
using Conformer-S as a baseline model to better understand the improvements brought
about by the various improvement methods. The study initially examines the impact
of downsampling on accuracy, multiply add operations, and training time reduction. It
demonstrates that downsampling effectively decreases temporal redundancy in the feature
representation of speech frames. The utilization of SE-Net into the convolution module
improves accuracy, shows that feature recalibration can be adapted to the requirements
of the network, compensates for missing information during downsampling, and better
utilizes MHSA for global downsampling operations. The training time and inference
time of the network is further reduced by introducing grouped attention in the network,
showing that the use of grouped attention can reduce the complexity of the model. The
architecture of the model was evaluated using Vivado 2018.2 on a Xilinx XCZU9EG FPGA,
with a batch size set to 1. The utilization report is shown in Table 5.
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Table 4. Comparison of SAformerNet with recently published models. At 13.4 M parameters,
SAformerNet-S outperforms the baseline model Conformer-S by 2.1%/3.3% on the dev/test dataset
of the AISHELL-1, and it is also significantly better than the other models in the Zhuang Language
dataset. At 33.4 M model parameters, the model still has nice results. All model performance metrics
are derived from our replicated best results.

Model
Architecture

Model Type

CER (%)

Params
(M)AISHELL-1 Zhuang Language

Dataset

Dev Test Test

LAS + SpecAugm Seq2Seq 8.63 11.32 13.2 -
Conformer-S CTC 5.62 5.95 7.36 13.0

Eff. Conformer-S RNN-T 5.68 6.03 7.49 10.3
SAformerNet-S (ours) CTC 5.69 6.13 6.21 13.4

w/o grouped Att CTC 5.50 5.76 5.92 13.4

Conformer-M CTC 5.40 5.67 6.99 30.5
Eff. Conformer-M RNN-T 5.43 5.81 7.11 30.7

SAformerNet m (ours) CTC 5.52 6.01 6.11 33.4
w/o grouped Att CTC 5.36 5.58 5.67 33.4

Table 5. Xilinx’s XCZU9EG FPGA is selected for verification. Utilization report for the hardware
accelerator and its primary modules, and comparison between model’s latency on FPGA and GPU.

Modules

Hardware Accelerator Modules Average
Resource

Usage

GPU
Latency

FPGA
LatencyAvailable

Resources
BRAM CLBs LUT DSP

912 548,160 274,080 2520

MHSA
Matrix Operation 0 192,110 215,464 0 28.50%

1935.8 us 269.7 usSoftmax 0 37,847 32,560 0 4.75%

FFN
Layer-Norm 55 8475 14,230 209 5.25%

864.3 us 438.3 usWeight Memory 720 240 4696 0 20.19%
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SAformerNet improves the training speed by 26% and the average inference time by
29%, compared to the baseline model. In the real-world deployment use of the model with
the FPGA acceleration, the overall average improvement in the result-to-terminal time for
speech recognition is 20%.
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5. Conclusions

As the window of ASEAN cooperation and communication in “the Belt and Road
Initiative”, the research and development of speech recognition for the Zhuang language
can not only enrich the research of minority languages and cultures, but also contribute to
the strengthening of communication between the Zhuang language and other languages in
Guangxi and ASEAN countries. An online cloud-based platform was required to enhance
linguistic communication. First, standard Zhuang news speeches were collected to build
a database of 200 h of Zhuang speeches with annotations. Zhuang speech recognition
was realized by an end-to-end automatic speech recognition neural network. Second,
a machine translation model from Chinese to each country’s language was established.
Considering that edge-computing technology can reduce the transmission of a large amount
of data, which can alleviate the pressure on network bandwidth. Finally, for the network’s
responsiveness to real-world needs, edge-computing techniques are applied to relieve
network bandwidth pressure. An edge-computing private cloud system based on FPGA
acceleration is proposed to improve model operation efficiency. The experiments show
that the applicability of the model is verified, with satisfactory results in terms of accuracy
and speed. SAformerNet-S outperforms the baseline model Conformer-S by 2.1%/3.3%
on the dev/test dataset of the AISHELL-1 and has a recognition rate of 5.92% on the
Zhuang language dataset. Compared to the baseline model, SAformerNet demonstrated
a 26% improvement in training speed and a 29% average acceleration in inference time.
In the practical implementation of the model, the computational delay for the MHSA and
FFN modules has been reduced by 7.1 and 1.9 times, respectively, resulting in an overall
average improvement in speech recognition result-to-terminal time of 20%. The scheme is
suitable for small-scale remote natural language tasks in real-time applications. It serves as
a prototype for a tool that supports remote Zhuang speech and multilingual conversational
translation in mountainous areas.

In future studies, more emphasis will be placed on the practical application of the
system, and improvements will continue to be made in response to new problems.
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