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Abstract: In recent years, numerous single-image dehazing algorithms have made significant
progress; however, dehazing still presents a challenge, particularly in complex real-world scenar-
ios. In fact, single-image dehazing is an inherently ill-posed problem, as scene transmission relies
on unknown and nonhomogeneous depth information. This study proposes a novel end-to-end
single-image dehazing method called the Integrated Feature Extraction Network (IFE-Net). Instead
of estimating the transmission matrix and atmospheric light separately, IFE-Net directly generates
the clean image using a lightweight CNN. During the dehazing process, texture details are often
lost. To address this issue, an attention mechanism module is introduced in IFE-Net to handle
different information impartially. Additionally, a new nonlinear activation function is proposed in
IFE-Net, known as a bilateral constrained rectifier linear unit (BCReLU). Extensive experiments were
conducted to evaluate the performance of IFE-Net. The results demonstrate that IFE-Net outperforms
other single-image haze removal algorithms in terms of both PSNR and SSIM. In the SOTS dataset,
IFE-Net achieves a PSNR value of 24.63 and an SSIM value of 0.905. In the ITS dataset, the PSNR
value is 25.62, and the SSIM value reaches 0.925. The quantitative results of the synthesized images
are either superior to or comparable with those obtained via other advanced algorithms. Moreover,
IFE-Net also exhibits significant subjective visual quality advantages.

Keywords: BCReLU; feature extraction; convolutional neural network; single-image dehazing

1. Introduction

Obtaining a clear and haze-free image is crucial in photography and computer vision
applications. Due to the presence of a large amount of dust, smoke, mist, or other float-
ing particles in the atmosphere, when the camera captures images in this environment,
significant quality degradation often occurs in the resulting images. These degradations,
in turn, may have a negative impact on the performance of many computer vision sys-
tems [1–4], such as detection, tracking, and classification. Therefore, restoring clean images
from damaged inputs through image dehazing is extremely important in the field of
computer vision.

To overcome quality issues caused via haze in captured images, the atmospheric
scattering model [5–7] has been proposed to restore clean images; it can be formally written
as follows:

I(x) = J(x)t(x) + α(1− t(x)), (1)

where I(x) is the observed hazy image, J(x) is the true scene radiance, α is the global
atmospheric light, t(x) is the medium transmission map, and x is the pixel index in the
observed hazy image I. Furthermore, the medium transmission map can be expressed
as follows:

t(x) = e−βd(x), (2)
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where d(x) is the distance from the scene point to the camera, and β represents the attenua-
tion coefficient of the atmosphere.

From Equation (1), it can be seen that the dehazing process requires the accurate
estimation of the transmission map and atmospheric light. A small portion of research
mainly focuses on estimating atmospheric light [8–12], but the accuracy of the atmospheric
light obtained will directly affect the results after dehazing and excessive errors will lead to
a decrease in the dehazing performance on the image. Alternative other algorithms focus
more on accurately estimating transmission maps, and the estimation of a transmission
map mainly falls into two categories: prior-based methods [13,14] and learning-based
methods [15,16]. In order to compensate for information loss during image processing,
some methods use different priors to obtain atmospheric light and transmission maps. For
example, Berman et al. [17] proposed a non-local prior-based dehazing algorithm based
on the assumption that the colors of clean images are well approximated by different
colors. Based on the difference in brightness, the saturation of blurred images is blurred,
and color attenuation prior (CAP) [18] is proposed to estimate scene depth. The image
prior obtained using prior-based algorithms can easily be inconsistent with practice, which
may lead to incorrect transmission approximations. Learning-based methods are effective
and superior to prior based-algorithms, exhibiting significant performance improvements.
In [19], two subnetworks were designed to estimate the transmission map and atmospheric
light, respectively. In [20], the authors created three different images from the hazy image
and fused the results of the three images after dehazing. However, deep learning-based
methods require training on a large number of real hazy images and their corresponding
images without haze. The methods of estimating atmospheric light and transmission maps
separately have made significant progress, but both have limitations. On the one hand,
the inaccurate estimation of transmission maps may lead to low image quality; on the
other hand, the separate estimation of atmospheric light and transmission maps leads to
difficulties in finding the inherent relationship between them.

In order to find the intrinsic relationship between the parameters of Equation (1), Boyi
Li et al. [21] first proposed a dehazing model that does not estimate α and t(x). This model
directly generates clean images from blurred images, rather than relying on any separate
intermediate parameter estimation steps. Recently, many methods have used end-to-end
learning instead of atmospheric scattering models to directly obtain clean images from
networks [22–25]. Another widely used method tends to predict the residual of potential
haze-free images or haze-free images relative to hazy images, as they often achieve better
performance [26–30]. Although these recent dehazing methods have made significant
progress, due to the complex haze distribution and the difficulty in collecting image pairs
during the training process, it is easy to lose image details during the dehazing process
using limited a dataset.

Due to the difficulty in collecting image pairs during the training process, IFE-Net
uses end-to-end models, adaptively learns network features, and adopts multiscale feature
extraction to better extract information. In addition, parallel convolutional layers of dif-
ferent sizes are used to extract features from input images of different scales [31,32]. This
feature extraction structure is conducive to preserving more information and reducing the
loss of image details.

Considering the potential cumulative error caused via the separate estimation of atmo-
spheric light and the transmission map, IFE-Net unifies atmospheric light and transmission
maps as one parameter to directly obtain a clean image. In addition, attention mechanisms
have been widely applied in the design of neural networks [19,33–36], which can provide
additional flexibility in the network. Inspired by these works and considering the different
weights of features in different regions, a feature attention mechanism module called at-
tention mechanism (AM) is designed in the network, which processes different types of
information more effectively.

In deep learning networks, the activation function is a nonlinear function that enables
neural networks to learn and represent complex patterns and relationships. The selection
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of the final activation function has a significant impact on the output results of the model,
as different activation functions have different characteristics and applicable scenarios.
We considered that the output of the last layer of the image after dehazing should have
upper and lower boundaries. In IFE-Net, we designed a new activation function called a
bilateral constrained rectifier linear unit (BCReLU). The specific details of BCReLU and its
comparison with other activation results in the network are detailed in Section 3.2.3.

The main contributions are as follows:

1. IFE-Net directly produces the clean image from a hazy image, rather than estimating
the transmission map and atmospheric light separately. All parameters of IFE-Net are
estimated in a unified model.

2. We propose a novel attention mechanism (AM) module, which consists of a channel
attention mechanism, pixel attention mechanism, and texture attention. This module
has different weighted information for different features and focuses more on strong
features in areas with thick haze.

3. A bilateral constrained rectifier linear unit (BCReLU) is proposed in IFE-Net. To our
knowledge, no one else has proposed BCReLU. Its significance in obtaining image
restoration is demonstrated through experiments.

4. The experiments show that IFE-Net performs well both qualitatively and quantita-
tively. The extensive experimental results also illustrate the effectiveness of IFE-Net.

2. Related Work

Recently, single-image dehazing has attracted widespread attention in the field of
computer vision. Due to the unknown global atmospheric light and transmission map,
single-image dehazing is an inherently ill-posed problem. Many different methods have
been proposed to address the issue. These methods can be roughly divided into prior-based
and learning-based methods. The main difference between these two methods is that the
prior-based methods mainly utilize prior statistical knowledge and hand-crafted features
to process the hazy images, while the learning-based methods can automatically learn from
the training set through a neural network and save it in the network’s weights.

Single-image dehazing methods that extensively utilize prior knowledge have emerged.
A patch-based dark channel prior (DCP) [11] method proposed by He et al. is one of
the representative prior methods. Based on the assumption that hazy images may have
extremely low intensity in at least one color channel, DCP uses an atmospheric scattering
model for haze removal. Pixel-based dehazing methods [37,38] provide another solution
to estimate the transmission map; however, pixel-based dehazing methods may result
in insufficient information and an inability to estimate transmission maps. In addition,
a method for establishing a linear model based on local prior images was proposed by
Zhu et al. [18] to restore depth information. Although prior-based methods have achieved
good results, the existence of priors is conditional. These hand-crafted priors are only
applicable to specific cases and may not be applicable in changing scenarios.

The human brain is able to quickly distinguish hazy regions in natural images without
other information, and convolutional neural networks have been inspired by this to be
applied in image dehazing. These learning-based methods demonstrate extremely strong
capabilities in dehazing. For example, Cai et al. [31] proposed Dehaze-Net, which is
a trainable end-to-end network consisting of four parts: feature extraction; multiscale
mapping; local extremum; and nonlinear regression. It is used to estimate the transmission
map, and then the output transmission map is restored to a clean image through an
atmospheric scattering model. Ren et al. [39] further proposed a multiscale convolutional
neural network (MSCNN) for estimating scene transmission maps. Qin et al. [36] proposed
an end-to-end feature fusion attention network (FFA-Net) to directly recover clean images,
taking into account different weighted information. Due to the difficulty in obtaining
paired clean images and hazy images in nature, Li et al. [40] studied the implementation of
image dehazing without training on real clean image sets on the ground. These learning-
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based methods have achieved good performance in dehazing and are more widely used in
image dehazing.

3. The Proposed Method

In this section, we first introduce the transformed atmospheric scattering model. Then,
a detailed introduction to the specific structure of the proposed IFE-Net is provided.

3.1. The Transformed Atmospheric Scattering Model

We can rewrite Equation (1) for the clean image as the output:

J(x) =
I(x)− α(1− t(x))

t(x)
. (3)

Existing works such as [19,31,41] usually utilize empirical rules to estimate α and deep
learning models to estimate t(x). Estimating α and t(x) separately will lead to certain
errors. The output clean image obtained by combining α and t(x) may have a greater
cumulative error.

The transformed atmospheric scattering model is proposed [21] to reduce the cumu-
lative error caused by separate estimating. The two parameters, α and t(x), are unified
into one formula to avoid the potential cumulative error caused by estimating the two
parameters separately. Model (3) can be rewritten as follows:

J(x) = D(x)I(x)− D(x) + 1, (4)

where

D(x) =
(I(x)−α)

t(x) + (α− 1)

I(x)− 1
. (5)

It is worth noting that in Equation (5), α and t(x) together form a new variable D(x). The
clean image can be obtained by estimating D(x). The unified variable D(x) can effectively
reduce the cumulative error caused by estimating α and t(x) separately.

3.2. Network Design

The architecture of the proposed IFE-Net contains three essential parts: (i) fused filters
of different sizes concatenated them together to form a multiscale feature block; (ii) an
attention mechanism composed of channel attention, pixel attention, and texture attention;
and (iii) a bilateral constrained rectifier linear unit (BCReLU). As illustrated in Figure 1, the
input image is first passed to the multiscale feature extraction block to produce multiscale
features. Next, we process multiscale features using an attention mechanism block. The
combination of the multiscale feature block and attention mechanisms module forms the
D(x) estimation block. Finally, we employ BCReLU to perform nonlinear regression on
D(x), thus obtaining the clean image.

Figure 1. Overall architecture of IFE-Net.
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3.2.1. Multiscale Feature Extraction

Multiscale feature extraction is very effective in the field of dehazing, while maintain-
ing scale invariance and extracting information [42–45]. Moreover, parallel convolutions
with different filter sizes are used to capture features at different scales. To compensate for
the loss during information convolution, we connect network features of different scales to
each other before extracting information from the next feature layer. Inspired by feature
extraction methods, we used convolutional layers of different sizes to densely extract the
features of the input image at different scales. As depicted in Figure 2, we choose to use
five convolutional operations in the multiscale feature extraction block of IFE-Net, where
the size of any convolution filter is among 1 × 1, 3 × 3, 5 × 5, 7 × 7, and 9 × 9. “Conv1”
uses a 1 × 1 convolution kernel to extract features, while ”Conv2” uses a 3 × 3 convolution
kernel to extract features; then, “Conv1” and “Conv2” layers are concatenated into the
“concat1” layer. During the forward propagation process, a 5× 5 sized convolution kernel is
used to extract features from the “concat1” layer to obtain the “Conv3” layer. The “Conv2”
layer, and the “Conv3” layer are concatenated into the “concat2” layer, and a 7 × 7 sized
convolution kernel is used to extract features from the “concat2” layer to obtain the “Conv4”
layer. Then, the “Conv3” layer and the “Conv4” layer are concatenated into the “Concat3”
layer, and a 9 × 9 convolution kernel is used to extract features from the “concat3” layer
to obtain the “Conv5” layer. Finally, the “Conv1” layer, “Conv2” layer, “Conv3” layer,
“Conv4” layer and “Conv5” layer are concatenated to obtain the output of the multiscale
feature feature extraction block. Importantly, the multiscale design of IFE-Net reduces
information loss during convolutions and captures features at different scales.

Figure 2. Multiscale feature extraction block.

3.2.2. Attention Mechanism

Most previous networks have treated channel and pixel features equally during image
dehazing, resulting in unsatisfactory results after dehazing. Meanwhile, for images with
uneven haze distribution, such networks cannot achieve good results. In order to better
handle different parts of information, we designed an novel attention mechanism module,
as shown in Figure 3. Compared to networks that treat channel and pixel features equally,
the attention mechanism module of IFE-Net assigns different weights to different regions
based on the importance of features. The more information the features contain, the greater
their weight values. The application of the attention mechanism in IFE-Net focuses more
on learning important information with high weights. The channel attention mechanism,
pixel attention mechanism, and texture attention of the attention mechanism module can
be expressed separately as follows:

F1(y) = ReLU[Conv7[ReLU(Conv6(y)]], (6)

F2(y) = ReLU[Conv9[ReLU(Conv8(F1(y))]], (7)

F3(y) = pool(F2(y)), (8)
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where y is the output of the multiscale feature extraction block, which serves as the input
of the attention mechanism module; Conv6(y) and Conv7(y) denote the 1 × 1 convolution
layer; Conv8(y) and Conv9(y) denote the 3 × 3 convolution layer; pool represents the
5 × 5 channel maxpooling operation; F1(y) denotes the output of the channel attention
mechanism; F2(y) denotes the output of the pixel attention mechanism; and F3(y) denotes
the output of texture attention. The attention mechanism block effectively assigns different
weights to the features of different regions, enabling the entire network architecture to better
retain effective information while suppressing the impact of unimportant information.

Figure 3. Attention mechanism module.

3.2.3. Bilateral Constrained Rectifier Linear Unit

Common choices for nonlinear activation function in deep networks include sig-
moid [46], tanh [47], and rectified linear unit (ReLU) [48]. Sigmoid is a function of satura-
tion at both ends, but it has a high computational cost and easily suffers from vanishing
gradients, which may result in poor local optimality for the training process. Compared
to sigmoid, tanh has an output mean of 0, which leads to faster convergence speed and
fewer iterations. However, tanh, like sigmoid, has soft saturation, resulting in gradients
vanishing. ReLU is proposed to alleviate the vanishing gradient problem of neural net-
works to a certain extent and accelerate the rate of convergence of gradient descent. It is
worth noting that ReLU maintains unilateral suppression and has a wide area when it is
greater than 0, which may lead to response overflow, especially in the final layer. For image
restoration, the output of the last layer should have upper and lower boundaries, and the
range of values should be relatively small. To this end, we propose a bilateral constrained
rectifier linear unit (BCReLU) activation function to overcome the limitations of sigmoid
and ReLU, as shown in Figure 4. As a novel linear unit, BCReLU keeps bilateral constraint
and local linearity. Its output is centered around zero, making the latter layer of neurons
less prone to bias and neuronal necrosis. In addition, BCReLU saves computational time
and converges faster than other activation functions, which can help solve the gradient
attenuation phenomenon as the number of layers increases. The marginal value of BCReLU
is ymax and ymin (ymax = 1 and ymin = −1). BCReLU can be expressed as

BCReLU(x) =


1, x > 1
x,−1 ≤ x ≤ 1.
−1, x < 1

(9)
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Figure 4. Bilateral constrained rectifier linear unit(BCReLU).

We compared the activation functions of the last layer in the network. Table 1 shows
the quantitative evaluation results of different activation functions in the last layer on
SOTS and ITS datasets (see Section 4.2 for details of PSNR and SSIM indicators). When
using BCReLU in the last layer, the network achieved the best results, which confirms its
effectiveness in IFE-Net.

Table 1. Quantitative results of quality evaluation indicators on SOTS and ITS datasets using different
activation functions in the final layer.

Evaluation
Indicators ReLU Tanh Sigmoid BCRelu

PSNR (SOTS) 24.59 20.07 18.61 24.63

SSIM (SOTS) 0.904 0.901 0.859 0.905

PSNR (ITS) 25.31 23.97 22.21 25.62

SSIM (ITS) 0.905 0.924 0.902 0.925

4. Experiments

To verify the superiority of IFE-Net, the dehazing results of IFE-Net were qualitatively
and quantitatively compared with those of existing advanced dehazing methods using
real-world images and benchmark datasets.

4.1. Datasets and Implementation Details

We chose the ground truth images with depth meta-data from the indoor NYU2 Depth
Database [49]. Over 1440 clean images were selected from the NYU2 database and used
to create synthesized hazy images using Equation (1). We chose β ∈ {0.4, 0.6, 0.8, 1.0, 1.2,
1.4, 1.6}, and each channel was set with different atmospheric light A, with a range of [0.6,
1.0]. The synthesized training set includes 27,193 haze images, and the learning rate is set
to 0.0001 during the training process.

During the course of the experiments, we adopted the simple mean square error (MSE)
loss function. Moreover, we utilized the BCReLU neuron in the last convolutional layer, as
we find it more effective than other neurons, in our specific environment. The IFE-Net only
needs a few epochs to converge and exhibits stability after approximately 10 epochs. In this
study, we save the model parameters for 10 epochs of training for dehazing. We notice that
an appropriately large batchsize can yield good performance in the batch normalization
layer [50]. Due to limited physical memory on the GPU cards, the batch size of images is
set to 16 during training. All experiments are performed on an NVIDIA RTX 3060 Ti GPU,
NVIDIA, Santa Clara, CA, USA.

4.2. Quantitative Results on Synthetic Images

We adopt the peak signal-to-noise ratio (PSNR) and structure similarity index measure
(SSIM) [51] as image quality indicators for quantitative analysis. PSNR is generally used to
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measure the reference value of image quality between the maximum signal and background
noise, and the larger the value, the lower the image distortion. PSNR can be expressed as

PSNR = 10× log10(
(MaxValue)2

MSE
), (10)

where MSE is the mean square error of two images, and MaxValue is the maximum value
that can be obtained from image pixels. SSIM is an indicator that measures the similarity
between two images. From the perspective of image composition, SSIM defines structural
information as independent of brightness and contrast, reflecting the properties of object
structures in the scene. SSIM models distortion as a combination of three different factors:
brightness, contrast, and structure. It uses the mean as the estimate of brightness, standard
deviation as the estimate of contrast, and covariance as the measure of structural similarity.

SSIM(x, y) =
(2uxuy + C1)(2σxy + C2)

(u2
x + u2

y + C1)(σ2
x + σ2

y + C2)
, (11)

where C1 = (K1L)2 and C2 = (K2L)2 are used to avoid situations where the denominator
is 0; L is equivalent to MaxValue in PSNR, which is a very small constant; ux and uy are the
mean; σ2

x is the standard deviation; and σxy is the variance. Compared to PSNR, SSIM is
more in line with human visual characteristics in evaluating image quality.

High PSNR and SSIM scores indicate low image distortion and a more similar struc-
ture. We compare IFE-Net with the powerful methods in recent years based on PSNR
and SSIM indicators. DCP [11] does not require precise physical modeling of haze in
images but only relies on the prior principle of dark channels to reliably calculate the
transmission matrix for image dehazing. Dehaze-Net [31] is an end-to-end system that
utilizes prior knowledge to obtain atmospheric light, only learns the medium transmission
map through the network, and ultimately obtains clean images. AOD-Net [21] is the first
end-to-end trainable dehazing model, which does not separately estimate the parameters in
Equation (1) but rather unifies all parameters into one and directly obtains a clean im-
age from the hazy image. FFA-Net [36] has a feature fusion attention mechanism, and
the design of the network allows it to perform well with dense hazes, textures, and de-
tails. GCA-Net [52] applies gated subnetworks and smooth extended convolutions, which
is beneficial for fusing features of different scales and removing possible grid artifacts.
DWGAN [53] introduces 2D discrete wavelet transform, aiming at restoring clear texture
details and retaining sufficient high-frequency information. GUNet [54] significantly re-
duces overhead while effectively removing haze. The images in the RESIDE dataset [55]
were selected for experimental evaluation of our method.

Figure 5 shows the dehazing results of some randomly selected synthetic images from
the SOTS datasets. DCP [11], Dehaze-Net [14], and DWGAN [53] successfully remove
heavy haze, but they exhibit color distortion and increased brightness. There are also
issues with brightness enhancement and contrast in the results generated via FFA-Net [36],
GCA-Net [52], GUNet [54], and AOD-Net [25]. IFE-Net handles details better and maintains
color consistency with the ground truth. From the results, it can be observed that the results
of IFE-Net are significantly better than other networks in terms of fidelity of image details
and color. Table 2 shows the average quantitative results of the quality evaluation indicators
in Figure 5, and the PSNR and SSIM values of IFE-Net are superior to the other methods.
Tables 3 and 4 show the PSNR and SSIM results of our images after dehazing, respectively.
Meanwhile, Table 5 shows the average time it takes for different networks to process each
image with a size of 548 × 412. The results in Tables 2–5 indicate that IFE-Net is effective
and efficient.
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(a) Haze input (b) (TPAMI’10)DCP) (c) (TIP’16)Dehaze-Net (d) (ICCV’17)AOD (e) (AAAI’20)FFA

(f) (WACV’19)GCA (g) (CVPR’21)DWGAN (h) GUNet (i) IFE (j) Ground Truth

Figure 5. Quantitative comparison of IFE-Net with other methods on SOTS.

Table 2. The average quantitative results of the quality evaluation indicators in Figure 5.

Evaluation
Indicators DCP Dehaze-Net AOD FFA GCA DWGAN GUNet IFE

PSNR 20.37 20.66 22.51 20.87 19.52 14.27 21.97 24.38

SSIM 0.913 0.886 0.928 0.909 0.902 0.815 0.921 0.942
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Table 3. Quantitative results of quality evaluation indicators on SOTS dataset.

Evaluation
Indicators DCP Dehaze-Net AOD FFA GCA DWGAN GUNet IFE

PSNR 21.37 21.34 22.12 21.31 23.05 20.56 19.382 24.63

SSIM 0.892 0.857 0.903 0.881 0.889 0.901 0.924 0.905

Table 4. Quantitative results of quality evaluation indicators on ITS dataset.

Evaluation
Indicators DCP Dehaze-Net AOD FFA GCA DWGAN GUNet IFE

PSNR 20.32 18.71 22.39 18.48 27.77 14.79 19.26 25.62

SSIM 0.887 0.888 0.917 0.887 0.936 0.850 0.899 0.925

Table 5. The average time taken by different networks to process each image.

Metrics DCP Dehaze-Net AOD FFA GCA DWGAN GUNet IFE

Time (In
seconds) 0.1294 0.6221 0.0194 0.6089 0.0592 0.1330 0.1106 0.0249

4.3. Qualitative Results on Real-World Images

Figure 6 shows a comparison of the results between IFE-Net and other methods using
real scenes. As shown in Figure 6, DCP and GCA suffered from visual artifacts on the real
hazy images. AOD-Net, FFA-Net, and GCA produced unrealistic colors in one or several
images, such as the results of AOD-Net and FFA-Net in the fourth row as well as the results
of AOD-Net and GCA in the fifth row. Dehaze-Net and FFA-Net retained a thin layer of
haze, as shown in the second row. However, IFE-Net achieved excellent results in both thin
and thick haze areas while maintaining colors consistent with real scenes. A similar result
can be observed in the outdoor images shown in Figure 7. We enlarged the upper left corner
of Figure 7a–g,h–n to show the enlarged results. The results of AOD-Net, FFA-Net, GCA,
and GUNet exhibited color distortions and many non-natural characteristics. Additional
white haze appeared in FFA-Net, resulting in incomplete dehazing. The result of DWGAN
contained too much white. GCA and DWGAN showed unclear outlines of buildings in
hazy areas above the sky. In contrast, IFE-Net successfully removed almost all of the
haze while preserving the essential properties of the images, with obvious advantages in
preserving edges, texture, contrast, brightness, and other image characteristics, as shown
in Figure 7.

(a) Haze input (b) DCP (c) DehazeNet (d) AOD (e) FFA (f) GCA (g) DWGAN (h) GUNet (i) IFE

Figure 6. Qualitative comparisons of IFE-Net on real-world images.
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(a) Haze input (b) AOD (c) FFA (d) GCA (e) DWGAN (f) GUNet (g) IFE

(h) Haze input (i) AOD (j) FFA (k) GCA (l) DWGAN (m) GUNet (n) IFE

Figure 7. This figure shows our ability in detail and color processing compared to other networks.

In addition, we also removed haze from the hazy image of a large area of the sky
and compared it with several other advanced methods. Most dehazing algorithms have
poor dehazing effects on images containing large areas of sky, resulting in color distortion
and uneven color blocks in the restored haze-free images. We show the results of several
methods in Figure 8. Figure 8a shows the input hazy image, and Figure 8b–d show the
dehazing results of GCA, GUN-Net, and IFE-Net, respectively. From Figure 8b, it can be
observed that the results obtained show a thorough removal of haze on the ground, but
uneven color blocks appear on the ground and also in the sky area. In Figure 8c, there are
no issues with image color distortion, but the dehazing effect in the ground and sky areas
is not significant. In Figure 8d, the haze in the sky is suppressed without significant color
distortion blocks. Simultaneously, the dehazing effect in the ground area is significant, and
the results obtained are good in terms of dehazing and details.

(a) Haze input (b) GCA

(c) GUNet (d) IFE

Figure 8. Results of dehazing in sky areas with dense haze.



Appl. Sci. 2023, 13, 12236 12 of 15

4.4. Ablation Research

Both IFE-Net and AOD unify the atmospheric light and transmission map in the
atmospheric scattering model into one parameter, directly obtaining clean images. In order
to evaluate the contribution of the AM module in the network, we compared the networks
with and without it in AOD and IFE-Net, respectively. Table 6 shows the experimental
results on two datasets, indicating that the addition of AM modules resulted in better
PSNR and SSIM results. Figure 9 shows a comparison of the visual effects of images;
networks without an AM module have darker colors, while networks with an AM module
achieve better visual effects. The quantitative and qualitative results in the ablation research
demonstrate the effectiveness of an AM module in the networks.

Table 6. Effectiveness of AM module.

Dataset SOTS ITS

Metric PSNR SSIM PSNR SSIM

AOD 22.12 0.903 22.39 0.917

AOD + AM 24.13 0.904 23.99 0.920

IFE without AM 23.16 0.902 23.77 0.921

IFE + AM 24.63 0.905 25.62 0.925

(a) Hazy image (b) AOD(PSNR = 21.50, SSIM = 0.907) (c) AOD with AM(PSNR = 24.22, SSIM = 0.922)

(d) IFE without AM(PSNR = 23.14, SSIM = 0.920) (e) IFE(PSNR = 24.24, SSIM = 0.924) (f) Ground Truth

Figure 9. Comparison of the visual effects of AM block.

5. Conclusions

We proposed a novel end-to-end adaptive enhancement dehazing network, called
IFE-Net, to address the challenge of single-image dehazing. IFE-Net consists of a multiscale
feature extraction block, an attention mechanism (AM) module, and a bilateral constrained
rectifier linear unit (BCReLU). Considering the cumulative errors that may arise from
estimating atmospheric light and transmission maps separately, IFE-Net estimates a pa-
rameter that is unified by both. Its novel network design effectively performs feature
extraction. In addition, we designed an attention mechanism (AM) module to address
the varying importance of information in different regions. The importance of BCReLU
in image restoration was also demonstrated through experiments. We compared IFE-Net
with other dehazing methods using PSNR and SSIM, and the results show that IFE-Net
achieved good scores for both indicators. At the same time, we used subjective criteria to
analyze the results obtained via different methods on natural hazy images. Our conclusion
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is that the proposed IFE-Net combines feature extraction blocks, attention mechanism, and
a BCReLU activation function, making it significantly effective in natural and synthetic
image dehazing. Although our IFE-Net has a simple structure, it shows strong capabilities
in haze removal. The experimental results confirm the superiority and efficiency of IFE-Net.
At present, IFE-Net has achieved good results in dehazing, and another promising area for
our future research is to apply it to image enhancement algorithms.
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