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Abstract: Machine learning-based malware (malicious software) detection methods have a wide
range of real-world applications. However, these types of approaches suffer from the fatal problem
of “model aging”, in which the validity of the model decreases rapidly as the malware continues
to evolve and variants emerge continuously. The model aging problem is usually solved by model
retraining, which relies on lots of labeled samples obtained at great expense. To address this challenge,
this paper proposes a semi-supervised continuous learning malware detection model based on Trans-
former. Firstly, this model improves the lifelong semi-supervised mixture algorithm to dynamically
adjust the weighted combination of new sample sequences and historical ones to solve the imbalance
problem. Secondly, the Learning with Local and Global Consistency algorithm is used to iteratively
compute similarity scores for the unlabeled samples in the mixed samples to obtain pseudo-labels.
Lastly, the Multilayer Perceptron is applied for malware classification. To validate the effectiveness
of the model, this paper conducts experiments on the CICMalDroid2020 dataset. The experimental
results show that the proposed model performs better than existing deep learning detection models.
The F1 score has an average improvement of 1.27% compared to other models when conducting
binary classification. And, after inputting hybrid samples, including historical data and new data,
four times, the F1 score is still 1.96% higher than other models.

Keywords: android malware detection; deep learning; transformer; semi-supervised continual
learning

1. Introduction

In recent years, with the rapid development of digitization and the increasing conve-
nience of internet technology, mobile devices such as smartphones have rapidly evolved.
The Android system, due to its open source nature, has gradually become the mobile oper-
ating system with the highest market share. However, this also makes it the primary target
for malicious software developers, which brings great harm to individual and enterprise
data users. According to the “2020 Android Platform Security Situation Analysis Report”
by Qi An Xin Threat Intelligence Center, a total of 2.3 million malicious Android program
samples were intercepted in 2020, with an average of 6301 malicious program samples
intercepted per day. According to the “China Mobile Security Situation Report for the
First Half of 2022” released by 360 Anti-Phishing Center, approximately 10.797 million
mobile malicious program samples were intercepted in the first half of 2022, a year-on-year
increase of 180.5% compared to the first half of 2021.

The rapid spread of malicious software has brought about a large number of harms,
such as fee consumption, privacy leakage, and remote control, all of which mobile smart-
phone users have to bear. According to the “2020 Android Platform Security Situation
Analysis Report”, security governance of mobile internet is relatively weak globally and
presents various means, such as online banking theft and Trojan problems, which pose
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a great threat to users’ property. Unlike other operating systems, the Android operating
system allows users to obtain applications from third-party app stores, which brings con-
venience to users but also risks and hazards. The presence of unverified applications in
third-party app stores increases the likelihood of users downloading malicious software.

Although there have been continuous developments in technologies for malware
detection, and significant progress has been made, malware developers are also utilizing
the latest technologies to update their malicious software. Different categories of malware,
such as Trojans, adware, and riskware, are constantly being developed. Therefore, efficient
malware detection methods are essential.

Deep learning, as a powerful tool for data pattern mining, has been widely applied in
the field of malware detection. In the training of malware detection models, static datasets
collected in advance are usually used for learning. This results in the inability of the
models to detect unknown malicious behaviors. Therefore, predicting unknown malicious
behaviors based on historical samples of malicious behaviors is a challenging task, and the
ability to continuously learn new unlabeled malicious software behavior information is
crucial for the lifespan of a malware detection system.

In recent years, the Transformer model, known for its high degree of parallelism and
scalability in parallel computing systems, has become a star in the field of deep learning.
Many improved Transformer models have achieved excellent results in malware detec-
tion. Although these improved Transformer models have clear advantages, there are two
pressing issues that need to be addressed for application in the field of malware detection:
(1) Due to the continuous updates of malware data, the obtained samples of malicious
software lack labels, which poses great difficulties in training malware detection models;
(2) The fixed structure of deep learning neural networks determines the limited capacity
of the models [1]. When neural networks learn new malicious software behaviors, they
may forget historical data, leading to catastrophic forgetting [2]. To address catastrophic
forgetting, one approach is to incorporate new samples into the historical training dataset
and retrain the network using a dataset that contains both new and old training data.
However, starting from scratch to train the model to adapt to newly generated malicious
software data every day is time-consuming and highly inefficient.

This paper makes the following contributions:

1. It proposes a semi-supervised SSCL-TransMD malware detection model. The pro-
posed model improves a feature memory replay algorithm and a pseudo-labels acqui-
sition algorithm;

2. It apples the memory buffer to improve the existing method to solve the significant
imbalance between the new samples and historical samples caused by the the fixed
weighted combination of new sample sequences and historical ones;

3. The proposed model is validated on CICMalDroid2020 datasets. The experimental
results demonstrate that the SSCL–TransMD model outperforms other detection
models in malware detection tasks.

2. Related Work

Malware detection methods can be broadly classified into three categories: traditional
malware detection methods, machine learning-based malware detection methods, and
deep learning-based malware detection methods. In the following sections, each of these
methods are discussed in detail.

Traditional malware detection methods primarily rely on feature-based matching
using unique features extracted from APK files within software [3]. These methods match
the extracted features against a database of known malware features to determine whether
the target software is malicious. If a match is found, the target software is classified as
malware; otherwise, it is considered benign. One key limitation of this method is its
dependency on a database of known malware features. As a result, it is easily affected
when attackers use obfuscation techniques to alter the syntax of the software and modify
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the feature codes. While this method can detect malware through precise matching with
known feature codes, it is unable to handle unknown malware [4].

Machine learning-based malware detection operates by first extracting various behav-
ioral features from the sample under analysis [5]. These features are then represented as
fixed-dimensional vectors. Finally, existing machine learning algorithms are used to train
the classifier on labeled samples, enabling the prediction of the class for unknown samples.

Faiz, Hussain, and Marchang [6] utilized features extracted from permissions, broad-
cast receivers, and APIs to apply support vector machine for detecting Android malware,
achieving a classification accuracy of 98.55%. Alqahtani, Zagrouba, and Almuhaideb [7]
reviewed machine learning detectors and provided a detailed summary of the applications
of naive Bayes, support vector machine, and deep neural networks in Android malware
detection. Lashkari et al. [8] compared random forest, K-nearest neighbor, and decision
tree algorithms as classifiers for Android malware detection, employing the same selected
features for training, testing, and evaluation in each machine learning algorithm. The
K-nearest neighbor algorithm [9] operates as a supervised learning model that achieves the
classification of Android malware by measuring the Euclidean distance between different
feature values in the geometric space. K-means clustering algorithm [10], an unsupervised
learning algorithm, is typically employed for family categorization of Android malware
with the objective of finding centroids among N data points, thereby minimizing the mean
square distance from each data point to its nearest centroid. Zhao et al. [11] aimed to
improve the accuracy of Android malware detection by employing boosting and bagging.
Rana and Sung [12] achieved improved accuracy in Android malware detection by combin-
ing multiple machine learning classifiers within ensemble learning. Yerima and Sezer [13]
proposed a novel multi-level structured classifier fusion approach, training lower-level
Android base classifiers to generate models and using a ranking algorithm to select the
final classifier, then assigning weights to the prediction results of the selected classifier
based on the prediction accuracy of higher-level base classifiers. However, due to the
requirement for multiple detectors to analyze each APK file, the application of ensemble
learning is computationally expensive. Birman et al. [14] addressed this issue by employing
deep reinforcement learning to automatically start and stop basic classifiers, dynamically
determining whether sufficient information is available to classify a given APK file using a
deep neural network.

Deep learning is a machine learning method based on representation learning of
data [15]. Deep learning techniques can integrate feature learning into the learning process
of models, thereby reducing the defects caused by manually training features.

The DL-Droid framework [16] proposes a new method for detecting Android mal-
ware using dynamic analysis techniques based on deep learning technology. In the case
of considering only dynamic features, the detection rate of this method is 97.8%. When
static features are added, the detection rate increases to 99.6%. In addition, the DL-Droid
framework [16] compares detection performance and code coverage, and compares the
performance of traditional machine learning classifiers, showing that this method out-
performs machine learning-based methods. Vinayakumar et al. [17] proposed a hybrid
malware classification method using segmentation-based fractal texture analysis and deep
convolutional neural network features. Android APKs are binarized into grayscale images
generated using bytecode information. Vinayakumar et al. [17] used the time-reversal
backpropagation algorithm to train long short-term memory neural networks for detecting
Android malware. Two different network topologies are used: a standard long short-term
memory neural network with only one hidden layer and a stacked long short-term memory
neural network with three hidden layers. High detection accuracy for Android malware is
demonstrated in both static and dynamic analysis. DeepRefiner [18] uses long short-term
memory neural networks to perform two-layer detection and verification of the semantic
structure of Android bytecode. The accuracy of this method is 97.4%, with a false positive
rate of 2.54%. Compared to traditional methods, this method has higher efficiency and
accuracy. M. Amin et al. [19] extracted vectorized opcodes from APKs’ bytecode using
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one-hot encoding to detect malware attributes. By performing experiments with recurrent
neural networks, long short-term memory networks, neural networks, deep convolutional
networks, and sparse autoencoder models, bi-directional long short-term memory neural
networks were found to be the best model for this method. The AdMat [20] model uses a
matrix-based convolutional neural network approach for detecting Android malware. This
approach treats applications as features and views them as images. An adjacency matrix
of the application has been constructed to improve data processing efficiency. This paper
used convolutional neural network methods to analyze API sequence calls, opcodes, and
permissions for the detection of Android malware in Zero-Day scenarios.

Oak et al. [21] used deep learning techniques to detect Android malware based on
dynamic analysis of application activity sequences. The paper showed that analyzing a
series of activities can provide information for detecting malware, but analyzing longer
sequences does not necessarily result in more accurate models. In the real world, the
number of malware instances is smaller than the number of harmless applications. The
dataset in the paper contains over 180,000 samples, with two-thirds being malware. This
dataset is significantly larger than other datasets used in previous research. The paper
simulates real-world situations by randomly sampling a small portion of malware samples.
Using the state-of-the-art BERT (Bidirectional Encoder Representations from Transformers)
model, the paper demonstrates ideal malware detection performance in an extremely
unbalanced dataset. Experimental results verify the effectiveness of this method in handling
highly imbalanced datasets.

3. Methodology

The SSCL–TransMD detection model is mainly composed of five layers, namely, the
memory replay layer, information mapping layer, similarity calculation layer, information
encoding layer, and classification detection layer. Each layer is responsible for receiving the
input of weighted historical sample sequences and new sample sequences, mapping the
input sequence, providing pseudo-labels for the input sequence, feature encoding, as well
as training the model and outputting the final classification results.

In the SSCL–TransMD detection model, the input data consist of data sequences
generated during the operation of different categories of malware, and the output data are
the identification result of malware. The overall structure of the SSCL–TransMD detection
model is shown in Figure 1.

Sample Execution

Monitoring API Calls

Main Process

Child process1

Child process2

Labeled Unlabeled

API Feature Vectors
Memory Replay

Similarity Calculation

Mixed data

Pseudo-label dataMixed data

Continual Learning

多头注意力多头注意力Multi-head Attention

Feed Forward

Classifier

Injected 

process1

Injected 

process2

Historical data

Figure 1. SSCL–TransMD.
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The following sections provide a detailed introduction to the model structure:
Memory Replay Layer: The inputs of this layer are the malware data after static

analysis. The required sub-sample B for each learning iteration is divided in advance. At
the first layer, they are sequence data A1. At the i-th layer, the data from A1 to Ai layers
are combined through the memory replay sampling method and given to the information
mapping layer;

Similarity Calculation Layer: The input of this layer is the feature matrix generated
by the information mapping layer. The feature matrix is composed of countless vectors.
The LLGC algorithm is iteratively used in the similarity calculation layer to calculate the
similarity matrix between labeled vectors and unlabeled vectors, thus obtaining similarity
scores. The similarity scores are used as input for the unlabeled vectors, and the feature
matrix obtained from the information mapping layer in the information coding layer;

Information Mapping Layer: The inputs of this layer are the sequence data Ai obtained
from the memory replay layer. After preprocessing the sequence data Ai, the malware data
size and annotation format are adapted to the model. During each training iteration, a
sub-sample Ai is obtained from the dataset, and the input data size is A × L × W, where L
represents the number of malware features in the input and W represents the dimension of
the data after mapping by the input layer;

Information Coding Layer: The input of this layer is the feature matrix generated by the
similarity calculation layer and its corresponding similarity labels. The information coding
layer consists of three layers: multi-head attention mechanism layer, residual connection
and normalization layer, and fully connected layer. The feature matrix is learned using
multi-head attention, then passed through the residual connection and normalization layer
to perform residual connection on the sequence matrix weighted by the feature, followed
by a linear transformation to map the data, which are finally mapped by the fully connected
layer to learn more abstract features;

Classification Detection Layer: The input of this layer is the matrix obtained from
the information coding layer. The classification detection layer consists of an MLP basic
neural network, which adjusts the matrix dimension provided by the information coding
layer through the MLP fully connected layer, then performs classification and outputs
the classification results through the softmax activation function. The specific model and
parameters are detailed in the next chapter. After training, the model parameters converge
to achieve optimal prediction performance. The test dataset is input into the trained model
to output the recognition results of the test dataset.

3.1. Model Components

The SSCL–TransMD detection model proposed in this chapter mainly consists of
three key components, namely, the memory replay component, the similarity calculation
component, and the classification detection component. The SSCL–TransMD detection
model uses an improved LUMP model as the memory replay component, selects the
LLGC label iteration algorithm as the similarity calculation component, analyzes the
characteristics of malicious software sequences, and selects the MLP basic neural network
as the classification detection component. This section provides a detailed introduction to
the three components used in the SSCL-TransMD detection model.

3.1.1. Memory Replay Component

The memory replay component is one of the core components of semi-supervised
continual learning. The purpose of this component is to mix historical labeled malicious
software sample sequences and unlabeled new malicious software sample sequences
according to the principles of continual learning [22], using certain weights. This subsection
discusses how the principles of continual learning are applied in the field of malicious
software and how the memory replay method for malicious software samples is utilized in
this chapter.
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(1) Continuous Learning

When the malware detection model transitions into batch learning mode, it is easy to
forget the old malware classifications. This means that, after updating the model with new
malware data, the classification performance achieved by the malware detection model in
historical tasks will rapidly decline, leading to catastrophic forgetting. The root cause of
catastrophic forgetting is that the training process for the new malware classification task
requires changing the weights of the historical neural network. This inevitably modifies
certain weights that are crucial for the historical malware detection task, rendering the
malware detection model no longer suitable for historical tasks. To overcome catastrophic
forgetting, the malware detection model needs to not only demonstrate the ability to acquire
new knowledge in new classification tasks, but also prevent significant interference from
new malware data on the existing model [23]. In this section, we use a continuous learning
approach to continuously train the malware detection model.

The process of continuous learning for a malware model, denoted as P, is shown in
Equations (1) and (2):

P = {P1, P2, . . . , Pn, . . . } (1)

Pn : 〈Mn−1, Tn〉 → Mn (2)

The initial malware detection model before continuous learning is represented as M0,
and the continuous input of newly added malware behavior data sequence is represented
as T = T1, T2, . . . , Tn, . . . , Tn = (Xi

n, Yi
n)|i = 1, 2, . . . , Nn, where Xi

n and Yi
n are the dataset

instances and corresponding labels of the first i malware sequences at task Tn. The malware
detection model after learning from Tn is represented as Mn. The process of semi-supervised
continual learning is shown in Figure 2.

Learner

Learner Learner
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, ~
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X Y D

2

~
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X D

Learner

, ~

m
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T

X Y D ~

m

T

T

X D

(a) Semi-supe rning module Semi-supervised continual learning

Figure 2. Semi-supervised continual learning process.

(2) Memory Replay Method

The LUMP model is able to sample between the current batch and the historical
sequences of malicious software inputs, effectively mitigating the catastrophic forgetting
problem. It is a lifelong unsupervised learning method.

The training idea of the LUMP model is to mixup two random samples (xi, yi) and
(xj, yj) together with the weight λ to form a new sample, as shown in Equation (3):{

x̃ = λ · xi + (1− λ) · xj
ỹ = λ · yi + (1− λ) · yj

(3)

The standard mixup [24] training contructs virtual training examples based on the
principle of Vicinal Risk Minimization. Let (xi, yi) and (xj, yj) denote two random feature–



Appl. Sci. 2023, 13, 12255 7 of 21

target pairs sampled from the training data distribution, and let (x̄, ȳ) denote the inter-
polated feature–target pair in the vicinity of these examples; mixup then minimizes the
following objective:

Lmixup(x̄, ȳ) = CE(hψ( f	(x̄)), ȳ),

where x̄ = λxi + (1− λ)xj and ȳ = λyi + (1− λ)yj
(4)

where f	 is an encoder network which is composed of a backbone network and hψ is predic-
tion MLP head, λ ∼ Beta(α, α), for α ∈ (0, ∞). LUMP utilzes mixup for UCL (unsupervised
continuous learning) by incorporating the instances stored in the replay buffer from the
previous task into the vicinal distribution. More specificly, LUMP interpolates between
the examples of the current task (xi,τ) ∈ Uτ and random examples selected using uniform
sampling from the replay buffer, which encourages the model to behave linearly across
a sequence of tasks. For current task τ, LUMP minimizes the objective on the following
interpolated instances xi,τ :

x̃i,τ = λ · xi,τ + (1− λ) · xi,M (5)

where xj,M ∼ M denotes the example selected using uniform sampling from replay buffer
M. The interpolated example not only augments the past tasks’ instances in the replay
buffer, but also approximates regularized loss minimization [24]. During unsupervised
continuous learning, LUMP enhances the robustness of learned representation by revisiting
the attributes of the past task that are similar to the current. As a result, LUMP sucessively
mitigates catastrophic forgetting.

Although the LUMP model partially avoids the catastrophic forgetting problem, there
still exists an issue regarding the proportion between historical sample sequences and
new input malicious software sample sequences. In the LUMP model, the weight λ for
the historical sample sequence and the new input malicious software sample sequence is
fixed, which introduces a new problem. As the number of continuous learning training
increases, the number of historical sample sequences also increases. At this time, the
imbalance between the new task data and the historical sample data causes a data imbalance
problem [25].

Specifically, in the training algorithm based on memory replay, only a few old class
samples are seen, while there are more new class samples. In this case, the focus of the
training process clearly shifts towards the new class, resulting in many detrimental effects
on class-specific weights, as shown in Figure 3a, where the weights of new sequence data
are significantly higher than those of old sequence data. From Figure 3b, it can be seen
that the relationship between the labels of old data and their corresponding weights is not
well preserved. The combination of these effects severely misleads the classifier, leading to
decision biases towards confusion between new and old classes. These effects seriously
cause the model to forget malicious behaviors in the old sequences during the analysis of
malicious behavior.

To address these problems, this subsection proposes improvements to the training
idea of the LUMP model in the memory replay component.

First, assume a memory replay buffer M that provides historical malicious software
sample sequences. It mixes the historical input sequences stored in the memory replay
buffer with new input malicious software detection samples. In other words, for the current
input sequence xi,τ ∈ T and the sequence sampled from the memory replay buffer, a
sampled sequence x̃i,τ is created, as shown in Equation (5).

Here, xi,M represents an example sampled from the memory replay buffer M, and the
obtained x̃i,τ is used as a training sample.
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Figure 3. Examples of unbalanced data.

Next, to address the issue of data imbalance, an adaptive weight λnew is proposed for
improvement, as shown in Equation (6):

λnew = λbase
√

Cn−1/xn (6)

Here, Cn−1 is the number of old samples in the (n− 1)th training, xn is the number
of new input samples in the nth training, and λbase is the base weight for each dataset.
Therefore, as the ratio between the number of historical sequences and the number of new
input sequences increases, λnew increases, thereby mitigating the detrimental effects caused
by data imbalance, which allows for more effective preservation of previously learned
knowledge and reduction of ambiguity between new and old classes.

In summary, the interpolated sequence x̃i,τ input to the similarity calculation compo-
nent is computed as shown in Equation (7):

x̃i,τ = λnew · xi,τ + (1− λnew) · xi,τ (7)

3.1.2. Similarity Calculation Component

The purpose of the similarity calculation component is to calculate the similarity
between new input unlabeled malware samples and historical labeled malware samples
iteratively, based on the historical labeled malware samples. This calculation is used to
assist the training of the information encoding layer by providing pseudo-labels.

Most pseudo-labeling methods train models on labeled data and then use the trained
models to predict labels for unlabeled data in order to create pseudo-labels. However,
due to the complexity of training the Transformer-based malware training model, most
pseudo-labeling methods are not suitable for the scenario in this paper. The LLGC(Learning
with Local and Global Consistency) algorithm is a classic label propagation algorithm,
which provides smooth classification based on the intrinsic similarity between labeled and
unlabeled data. It allows for simple iteration to provide pseudo-labels for unlabeled data.
The basic idea of the LLGC algorithm is to iteratively propagate the label information of
each point to its neighboring points until a globally stable state is reached. This allows
unlabeled malware samples to obtain corresponding pseudo-labels based on similarity
scores, based on the assumption of prior consistency: (1) nearby points may have the
same label; (2) points with similar structures may have the same label, thus constructing a
smoothing function [26].

Since the LLGC algorithm requires very few computing resources and the accuracy of
pseudo-label calculation is high after repeated iterations, this subsection uses the LLGC
algorithm as the similarity calculation component. Below is a detailed explanation of the
calculation process of the similarity calculation component.
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First, given a set of malware vectors X = {x1, . . . , xl , xl+1, . . . , xn} ⊂ Rm and a corre-
sponding set of labels L = {1, . . . , c}, the labels of the first l malware vectors xi (i ≤ l) are
marked as yi ∈ L, and the remaining malware vectors xu (l + 1 ≤ u ≤ n) are unlabeled.

Next, when i 6= j and Wi,j = 0, the similarity matrix W between different malware
feature vectors is calculated using the formula shown in Equation (8):

Wi,j = exp

(
−‖xi − xj‖2

2 · σ2

)
(8)

At this point, the similarity matrix W is used to calculate the diagonal matrix D, where
the diagonal elements are the sums of the i-th row of W, i.e., Dii = ∑j Wij. A new matrix

S = D−
1
2 WD−

1
2 is constructed using the diagonal matrix D and the similarity matrix W.

Then, for each xi, assume a non-negative score vector Fi ∈ R1×C
+ with positive direction,

where Fi = ( fi1, . . . , fiC) represents the similarity scores for different labels. The vector
F = (F1 . . . Fl+u)

T is propagated through labels to obtain Y = (Y1 . . . Yl+u)
T .

Finally, iterate F until convergence, using the following iteration formula:

F(t + 1)← αSF(t) + (1− α)Y (9)

where α ∈ (0, 1) and F(0) = Y. Let F∗ represent the limit of the sequence F(t), and assign
each point xi with the label yi = argmaxj≤cFij.

First, the similarity matrix W is defined on the dataset X, with the diagonal elements
set to zero. Assume a graph G = (V, E) defined within X, where the vertex set V is equal
to X, and the edge set E is weighted by the values in W. The algorithm then performs
symmetric normalization on the matrix W of the graph G. This step is mandatory to ensure
the convergence of the iteration. During each iteration, each instance receives information
from its neighboring instances while retaining its initial information. The parameter α
represents the relative amount of information from the nearest instances compared to the
initial class information of each instance. The information is symmetrically distributed
since S is a symmetric matrix. Finally, the algorithm assigns the class of each unlabeled
sample as the class with the highest information score received during the iteration process,
thus assigning pseudo-labels to the unlabeled samples.

The key to the semi-supervised learning problem is the assumption of consistency,
which requires the function to be sufficiently smooth for a large amount of labeled and
unlabeled data. In the similarity calculation component, a simple algorithm is used to
provide pseudo-labels in advance for the information encoding layer and the iterative
efficiency is faster and the computational cost is smaller compared to deep learning models,
thus effectively utilizing the unlabeled data. The pseudo-labels provided in this subsection
help the next layer to make more accurate judgments of malware categories, thereby
improving the accuracy of the SSCL–TransMD model.

3.1.3. Classification Detection Component

The design goal of the classification detection component is to adjust the matrix
dimensions trained at the information encoding layer and output the final classification
results. The classification detection component consists of a basic neural network called
Multilayer Perceptron (MLP) [27].

MLP is a fully connected neural network with layers. Taking a three-layer MLP as
an example, the first layer is the input layer with input features [x1, x2, x3], the second
layer is the hidden layer, and the third layer is the output layer. By performing forward
propagation in MLP, the output of each neuron can be calculated. For example, the outputs
of neurons in the second layer are denoted as y(1)2 , y(2)2 , y(3)2 . The calculation process is
as follows:

y(1)2 = f
(

w(11)
2 x1 + w(12)

2 x2 + w(13)
2 x3 + b(1)1

)
(10)
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y(2)2 = f
(

w(21)
2 x1 + w(22)

2 x2 + w(23)
2 x3 + b(2)1

)
(11)

y(3)2 = f
(

w(31)
2 x1 + w(32)

2 x2 + w(33)
2 x3 + b(3)1

)
(12)

Here, f () represents the activation function, y(i)l represents the output of the i-th

neuron in the l-th layer, and w(ji)
l represents the weight between the i-th neuron in the l − 1

layer and the j-th neuron in the l-th layer.
The above calculation can be generalized to MLP with any number of layers. The

general forward propagation process is shown in Equation (13):
y(j)

l = f
(

u(j)
l

)
u(j)

l = ∑i∈L−1 w(ij)
l y(i)l−1 + b(j)

l
yl = f (ul) = f (Wlyl−1 + bl)

(13)

Here, u(j)
l represents the input of the j-th neuron in the l-th layer, and b(j)

l represents
the bias term of the j-th neuron in the l-th layer.

3.2. Training

The training set of the SSCL–TransMD detection model includes historical malware
sample data and their corresponding labels, as well as new input malware sample data. The
new input malware sample data are unlabeled. The training set is defined as
H = historyInput, newInput, label, where historyInput represents historical malware sam-
ple data, newInput represents new input malware sample data, and label represents the
labels corresponding to historyInput.

The SSCL–TransMD detection model is a semi-supervised detection model that con-
sists of two tasks: one is the classification task for labeled malware sample data, and the
other is the classification task for unlabeled malware sample data. The loss functions of both
tasks jointly determine the adjustment direction of the model parameters, in addition to a
third regularization term. The calculation of the total loss function of the SSCL-TransMD
detection model is shown in Equation (14):

Loss =
1
n

n

∑
m=1

K

∑
i=1

R(ym
i , f m

i )+

α(t)
1
n′

n′

∑
m=1

K

∑
i=1

R
(

y′ ′mi , f ′′mi
) (14)

In the equation, the first part is the loss of labeled malware sample data, where ym
i

represents the true label and f m
i represents the forward inference value of the labeled data.

The second part is the loss of pseudo-labeled malware sample data, where y′mi represents
the pseudo-label and f ′mi represents the forward inference value of the unlabeled data. The
second part of the pseudo-label loss function includes α(t), which represents the weight of
the pseudo-label loss value in the entire loss function.

The SSCL-TransMD detection model is trained using Adadelta, which does not require
manual setting of the learning rate. The complete training algorithm flow is shown in
Algorithm 1.
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Algorithm 1: Training SSCL–TransMD
Input: Training data: H = historyInput, newInput, label, Batch size s, Model Net,

Parameters of model T
Output: Trained model Net
Initialize T;
repeat

Inputs← MemoryPlayback(historyInput, newInput) ; // memory playback
component

pseudoLabel ← SimilarityCalculation(historyInput, newInput) ;
// similarity calculation component

X ← InputEmbed(Inputs);
X ← PositionEmbed(X) + TokenEmbed(X) + TemporalEmbed(X);
for i← 1 to T do

Qx, Kx, Vx = X;
X′ ← MultiHeadAttention(Qx, Kx, Vx);
X ← LayerNorm(X + X′);
X ← LayerNorm(X + FeedForwardNeuralNetwork(X));

end
Y ← MLP(historyInput);
pseudoY ← MLP(newInput);
Loss← LtrueLabel(Y, label) + LpseudoLabel(pseudoY, pseudoLabel);
Update network Net;

until Net converges;

4. Experiment

In order to validate the effectiveness of the model, experiments are conducted on
the CICMalDroid2020 dataset in this chapter. Firstly, the experimental preparations are
introduced, including the software packages and their versions used in the experiments,
the hardware configurations and their models, the experimental datasets, and the per-
formance evaluation metrics. Then, the experimental analysis of the malicious software
detection model SSCL–TransMD based on semi-supervised continual learning is conducted,
including the ablation experiment analysis, the model effectiveness analysis, and the model
parameter sensitivity analysis. Through model comparison experiments, the rationality
and effectiveness of the proposed SSCL–TransMD model in this paper are verified.

4.1. Experimental Preparations

This section mainly introduces the preparatory work that needed to be carried out
before the experiments. Firstly, the experimental environment is introduced, including
specific parameters of the hardware environment and the main software modules used in
the experiments. Then, the experimental datasets are introduced, including the selection
method of the datasets and the statistical information of each dataset. Finally, detailed
explanations of the experimental evaluation metrics are provided.

4.1.1. Experimental Environment

An experimental environment can be generally divided into hardware environment
and software environment.

Hardware Environment

The hardware environment of the experimental machine is as follows: CPU is i7-
10700 with 8 cores and 32 GB memory; GPU is GeForce RTX 3080. The specific hardware
parameters are shown in Table 1.
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Table 1. Hardware parameter table.

Hardware Configuration

CPU i7-10700
Cores 8

Threads 16
GPU GeForce RTX 3080

Memory 12 GB
RAM 32 GB
Disk 2 TB

Software Environment

The experimental software environment is mainly configured as follows: the operating
system is Windows 10, and the programming language used is Python 3.9. The third-party
libraries required for the construction of the text detection model and the text recognition
model are shown in Table 2, and the functions of each library are briefly introduced in the
table. For specific usage methods, refer to the user manuals of each dependent package.

Table 2. Software environment.

Name Version Function

torch 1.8.0
A deep learning framework open-sourced by Facebook, which

supports GPU-based tensor computation and automatic
gradient calculation.

numpy 1.19.4 The fundamental package for scientific computing with Python,
providing a large number of matrix calculation functions.

math 3.10.10 Performs various advanced mathematical operations.

pandas 0.25.1
Used for simplifying large-scale structured data operation and

analysis, supporting various matrix operations, data cleaning, and
other functions.

matplotlib 3.1.1 A commonly used plotting library in Python for data visualization
and creation of various charts.

scikit-learn 0.21.3

A third-party module that encapsulates commonly used machine
learning methods, used for learning classification, regression,

dimensionality reduction, and clustering, the four major machine
learning algorithms.

4.1.2. Datasets

We used the CICMalDroid 2020 dataset to evaluate proposed model. The CICMal-
Droid 2020 dataset contains over 17,341 Android samples collected from multiple sources,
spanning from December 2017 to December 2018. The dataset consists of five different
categories: adware, banking malware, SMS malware, riskware, and benign software. We
split the dataset into two parts for training and testing, which contained 80% and 20% of the
data, respectively. To address the discrepancy in the sizes of these categories, the dataset
balances the number of samples in each category. The number of samples in each category
is presented in Table 3. In order to present this dataset more specifically, we selected the
top five behaviors with the highest average occurrence from each sample type for data
presentation. Detailed statistical quantities can be found in Tables 4–8.

Table 3. Statistics of Android samples in each category.

Adware Banking Malware SMS Malware Riskware Benign Software

1253 2100 3904 2546 1795
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Table 4. Statistics of adware.

Behavior Mean Std Max Kurtosis Skewness

clock_gettime 13,059.1 32,481.3 360,863 34.7791 5.12713
futex 5757.32 23,185.8 276,455 36.4728 5.72987
ioctl 4043.3 17,230.8 128,272 29.7745 5.50441

gettimeofday 3594.73 28,124.2 806,979 569.46 21.7608
read 3590.17 37,308.4 644,392 214.096 14.5525

Table 5. Statistics of banking.

Behavior Mean Std Max Kurtosis Skewness

ioctl 9104.17 26,359.2 108,371 6.44,525 2.89218
clock_gettime 7588.85 26,020.9 393,084 84.5683 8.12852

futex 7378.71 23,027.5 300,924 49.7566 5.48555
getuid32 3316.08 8492.74 55,844 6.06572 2.73485

sched_yield 2907.33 96,082 3.69741 × 106 1224.25 34.4471

Table 6. Statistics of SMS.

Behavior Mean Std Max Kurtosis Skewness

clock_gettime 21,292.9 47,517.9 331,348 3.47066 2.16671
epoll_wait 3820.36 8331.85 85,499 6.30296 2.38928
getuid32 2988.28 7085.33 84,106 9.85711 2.71151

getpid 2971.77 7089.95 84,114 9.8658 2.71546
gettimeofday 1877.75 43,337.3 2.57185 × 106 3172.86 53.9353

Table 7. Statistics of riskware.

Behavior Mean Std Max Kurtosis Skewness

clock_gettime 9891.13 26,178 404,323 67.1716 6.82103
read 4486.02 15,008.6 254,813 163.74 11.4057

gettimeofday 3332.5 18,156.1 189,054 52.4767 7.24224
futex 2471.43 10,954.4 365,447 924.772 28.7321

nanosleep 2316.64 16,726.3 176,580 56.6665 7.57559

Table 8. Statistics of benign.

Behavior Mean Std Max Kurtosis Skewness

clock_gettime 32,176.4 80,014.3 1.28078 × 106 73.751 6.7022
epoll_wait 5706.73 18,784.3 410,669 196.998 11.4324

read 5615.82 26,448.3 253,765 70.9409 8.33891
getpid 4475.88 17,066.6 407,515 257.525 13.4318

getuid32 4455.28 17,061.4 407,482 257.828 13.4428

4.1.3. Evaluation Metrics

In order to make the results more convincing, we used Micro-F1 and Macro-F1 to
evaluate the results.

Micro-F1 and Macro-F1

In binary classification tasks, samples can be classified into true positive (TP), false
positive (FP), false negative (FN), and true negative (TN) based on the true class and the
class predicted by the classifier.
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In binary classification tasks, the formulas for calculating Precision, Accuracy, Recall,
and F1-score are as shown in Equations (15)–(18):

Precision =
TP

TP + FP
(15)

Accuracy =
TP + TN

TP + TN + FP + FN
(16)

Recall =
TP

TP + FN
(17)

F1− score =
2 ∗ Precision ∗ Recall

Precision + Recall
(18)

The multi-classification task can be regarded as composed of multiple binary classifi-
cation tasks. The calculation of Precision and Recall requires weighing the Precisioni and
Recalli for each class, with two approaches: Macro and Micro.

In the Macro approach, Precisionma and Recallma respectively represent the average
Precision and Recall for each class. Afterwards, the F1-score is calculated as the Macro-F1,
as shown in Equations (19)–(22). The Macro approach does not consider the quantity of
each class and is highly influenced by high accuracy and recall classes.

Precisionma =
∑n

i=1 precisioni

n
(19)

Accuracyma =
∑n

i=1 accuracyi

n
(20)

Recallma =
∑n

i=1 recalli
n

(21)

F1ma =
2 ∗ Precisionma ∗ Recallma

Precisionma + Recallma
(22)

In the process of using Micro, we first calculate the overall Precision and Recall for
all categories. Then, we calculate F1-score as Micro-F1, as shown in Equations (23)–(26).
The Micro calculation method takes into consideration the quantity of each category and is
applicable in cases of imbalanced data distribution.

Precisionmi =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FPi
(23)

Accuracymi =
∑n

i=1 TPi+∑n
i=1 TNi

∑n
i=1 TPi+∑n

i=1 FPi+∑n
i=1 FNi+∑n

i=1 TNi
(24)

Recallmi =
∑n

i=1 TPi

∑n
i=1 TPi + ∑n

i=1 FNi
(25)

F1mi =
2 ∗ Precisionmi ∗ Recallmi

Precisionmi + Recallmi
(26)

4.2. Experimental Analysis

To verify the effectiveness of the proposed semi-supervised continual learning-based
malware detection model, this section conducts multiple comparative experiments on the
CICMalDroid 2020 dataset. This section first briefly introduces the models involved in the
comparison. Then, we perform experimental analysis on the ablation experiments of each
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component. Afterwards, we analyze the effectiveness of the model based on the experimen-
tal results. Finally, we analyze the impact of hyperparameters on the experimental results.

4.2.1. Comparison Models

The comparison models selected in this section are mainly related to semi-supervised
models and continual learning models, aiming to objectively verify the effectiveness of
the proposed SSCL–TransMD model compared to existing continual learning models and
semi-supervised models:

(1) SSL–MD [28]: SSL–MD is based on the LLGC algorithm and aims to construct
a machine learning classifier using labeled malicious software, benign software, and
unlabeled instances;

(2) DroidDL [16]: The DroidDL framework is a malware detection method based on
online learning methods, capturing security-sensitive behaviors from applications using
the graph neural network algorithm;

(3) DroidEvolver [29]: DroidEvolver employs a model pool which consists of five
different kinds of linear online learning algorithms, including Passive-Aggressive (PA),
Online Gradient-Descent (OGD), Adaptive Regularization of Weight Vectors (AROW),
Regularized Dual Averaging (RDA), and Adaptive Forward–Backward Splitting (Ada-
FOBOS), to process necessary light model updates through computing pseudo-labels;

(4) PLDNN [30]: PLDNN is an efficient Android malware classification system based
on a semi-supervised deep neural network.

The experiment results are shown below. Tables 9 and 10 shows the binary and
multi-classification results of the methods above respectively.

Table 9. Binary classification of CICMalDroid2020.

Model Labeled First Input of
Mixed Samples

Second Input of
Mixed Samples

Third Input of
Mixed Samples

Fourth Input of
Mixed Samples

SSL–MD 0.8375 0.8316 0.8279 0.8225 0.8193
DroidOL 0.8498 0.8463 0.8416 0.8347 0.8278

DroidEvolver 0.8483 0.8413 0.8379 0.8314 0.8298
PLDNN 0.8412 0.8379 0.8341 0.8278 0.8209

SSCL–TransMD 0.8549 0.8537 0.8492 0.8482 0.8406

Table 10. Multi-classification of CICMalDroid2020.

Model Labeled First Input of
Mixed Samples

Second Input of
Mixed Samples

Third Input of
Mixed Samples

Fourth Input of
Mixed Samples

SSL–MD 0.7261 0.7223 0.7198 0.7166 0.7153
DroidOL 0.7407 0.7379 0.7340 0.7301 0.7264

DroidEvolver 0.7396 0.7365 0.7321 0.7287 0.7255
PLDNN 0.7255 0.7214 0.7185 0.7112 0.7076

SSCL-TransMD 0.7528 0.7489 0.7415 0.7355 0.7309

Among them, when conducting binary classification detection, the F1-score has an
average improvement of 1.27% compared to other models. Furthermore, after inputting
hybrid samples four times, which include historical labeled samples and new unlabeled
samples, the F1-score has an average improvement of 1.96%.

When performing multi-class classification using the CICMalDroid 2020 dataset for
labeled training, compared to other models, the Micro-F1 metric saw an average improve-
ment of 2.7%. Furthermore, after inputting a mixture of samples containing historical
labeled samples and new unlabeled samples four times, the Micro-F1 metric saw an aver-
age improvement of 1.7%.

Through comprehensive analysis, it can be concluded that the proposed SSCL–TransMD
detection model in this paper achieves good results in both binary and multiclass classifica-
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tion. Compared to other semi-supervised classification methods SSL–MD and DroidEvolver
based on pseudo-labeling, the pseudo-labeling determination method used in our pro-
posed SSCL–TransMD is more effective in improving the model. Compared to other deep
learning models DroidOL and PLDNN, the Transformer-based model performs better in
the scenario of semi-supervised continual learning.

4.2.2. Analysis of Ablation Experiments

Compared with the Transformer model, the SSCL–TransMD detection model proposed
in Section 4 of this paper has three main differences:

1. The addition of parameter λ to memorize and replay unlabeled input data and
labeled historical data; 2. The adoption of the LLGC algorithm to provide pseudo-labels
before training the information encoding component; 3. The usage of the MLP algorithm to
decode the Encoder and directly output the classification detection results.

The comparison models used in the ablation experiments are as follows:
1. SSCL–Transformer model: The SSCL–Transformer model adds the MLP algorithm

to the Transformer’s encoder to decode and output the classification results. It continuously
inputs semi-supervised malicious software data during the ablation experiment training
process; 2. SSCL–TransMD model: The SSCL–TransMD model adds the LLGC algorithm
to provide pseudo-labels for the Encoder layer in the SSCL–Transformer model, assisting
in the computation of the information encoding layer. Other settings are the same as the
SS–Transformer model.

This subsection primarily discusses the improvement of the similarity calculation component
on the SSCL–TransMD model and proves its effectiveness in the binary classification scenario.

The visualization results for the CICMalDroid 2020 dataset are shown in Figure 4.
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Figure 4. Binary and multi-classification results on CICMalDroid2020. (a) Binary classification on
CICMalDroid2020 shows the F1-score of binary classification during the continuous learning process.
(b) Multi-classification on CICMalDroid2020 shows the Micro-F1 score of multi-classification during
continuous learning.

Based on the ablation experiment results in Figure 5 and Table 11, the analysis of the
similarity calculation component is as follows.

As a pre-training component of the model, the processing of unlabeled data by the
similarity calculation component has a significant impact on the classification accuracy of
the model. With the input of unlabeled malware in the CICMalDroid 2020 dataset, it can
be seen that the F1-score of the SSCL–Transformer model shows a significant downward
trend. After the fourth input, which includes a mixture of historical labeled samples and
new input unlabeled samples, the F1-score is, on average, decreased by 20.59% compared
to the initially trained F1-score in the three datasets. The F1-score of the SSCL–TransMD
model, which calculates similarity scores through the similarity calculation component,
decreases by an average of 2.02%. Therefore, intuitively speaking, the similarity calculation
component avoids catastrophic forgetting issues.
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Figure 5. The impact of pseudo-labels provided by LLGC. Pseudo-labels are not utilized in SSCL–
Transformer.

Table 11. Results for ablation experiments.

Model Labeled First Input of
Mixed Samples

Second Input of
Mixed Samples

Third Input of
Mixed Samples

Fourth Input of
Mixed Samples

SSCL–Transformer 0.8618 0.8441 0.8119 0.7846 0.7311

SSCL–TransMD 0.8549 0.8537 0.8492 0.8482 0.8406

4.2.3. Model Parameter Sensitivity Analysis

The SSCL–TransMD model for malicious software detection is based on semi-supervised
continual learning and contains multiple hyperparameters. Different parameters have a
significant impact on the accuracy of malicious software detection. In this section, multiple
sets of comparative experiments are conducted on the CICMalDroid 2020 dataset to observe
the influence of hyperparameters on the experimental results. The proportion of the training
set in the experiment is set to 0.5. All parameters except the one being tested are set to their
default values. The selected hyperparameters for this experiment are the baseline weight
λbase in the memory replay component and the number of iterations T in the similarity
calculation component.

(1) Baseline weight λbase

The baseline weight λbase in the memory replay component determines the adaptive
weight λnew, which is the core parameter to address sample imbalance. In this section, λbase
is successively set to 0.2, 0.4, 0.5, 0.6, and 0.8 for binary classification and multi-classification
experiments. Only the metrics after four rounds of mixed-sample training are recorded.
The experimental results are shown in Figure 6.

By observing Figure 6a,b, it can be found that, as λbase increases, the model’s classifica-
tion accuracy initially increases and then decreases. The highest classification accuracy is
achieved when λbase is 0.5, indicating that sample balance is best achieved when λbase = 0.5.
Therefore, the default value of λbase in the training process of the SSCL–TransMD detection
model is set to 0.5.

(2) Iteration number T

The iteration number T in the similarity calculation component is a key parameter for
calculating the similarity of pseudo-labels. In this section, we set T to 60, 80, 100, 120, 140,
and 160 for binary classification experiment training and multi-classification experiment
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training. We only record the metrics after four rounds of mixed sample training, and the
experimental results are shown in Figure 6c,d.
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Figure 6. The impact of parameters on the model. (a) The impact of parameter λbase on the binary
classification results of the SSCL–TransMD model. (b) The impact of parameter λbase on the multi-
class classification results of the SSCL–TransMD model. (c) The impact of parameter T on the binary
classification results of the SSCL–TransMD model. (d) The impact of parameter T on the multi-class
classification results of the SSCL–TransMD model.

By observing Figure 6c,d, it can be observed that, as the parameter T increases, the
model’s classification accuracy shows an upward trend. However, after 120 iterations,
the classification accuracy does not show a significant improvement, indicating that the
accuracy of pseudo labels is already close to the true labels at this time. Considering the
increasing number of unlabeled samples in subsequent inputs, the iteration number can
be appropriately increased. In this paper, considering that the scale of each piece of input
unlabeled sample data is similar in SSCL–TransMD detection model, the default value of T
is set to 120.

5. Discussion

Continuous learning is one effective way to maintain model learning. However, it also
brings some new challenges: (1) it needs stable and high-quality source of samples, which
requires enough labeled samples; (2) the fixed structure of deep learning neural networks
directly determines the limited capacity of the model, which leads to the result that neural
networks forget historical data to learn new data.

To address the aforementioned challenges, we have introduced a novel approach
known as semi-supervised continuous learning Transformer malware detection (SSCL–
TransMD). In order to mitigate the issue of catastrophic forgetting that often occurs during
the training process, we have employed an enhanced version of LUMP. Additionally, we
have utilized LLGC to accurately determine the peusdo-label of newly acquired data.

With continuous learning, the proposed method possesses the ability to keep learn-
ing new samples, which means that the proposed method is able to detect unknown
malware-like samples. Meanwhile, LUMP solves the catastrophic forgetting in the process
of continuous learning. Furthermore, because of the incorporation of pseudo-labeling, the
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continuous learning of the model is no longer confined to high-quality labeled sampled
data, thereby significantly enhancing the practicality of the model.

However, there are also some shortcomes in our proposed method. Due to the pre-
dominant focus of the method proposed in this article on adapting to unknown samples,
the detection accuracy is not high when facing ordinary labeled detection tasks. This aspect
can be observed from the first column in Table 9. Also, the proposed model requires more
computational resources than the detection models that are only trained once. Based on
these two points, we propose two potential future directions: (1) Improve the structure of
the detection model to raise the detection rate; (2) Reduce the cost of detection model.

6. Conclusions

With the advent of the smartphone era, the utilization of mobile phones has become
increasingly widespread, which leads to the situation that smartphones have become the
front line of cyberspace security. Unfortunately, with the evolution of malware detection
methods, the malware itself is also incessantly upgrading. This has led to a precipitous
decline in the detection rate of many deep learning-based malware detection systems when
detecting unknown samples. Continuous learning is one of the solutions to this problem,
but, in the process of continuous learning, deep learning models may experience a phe-
nomenon of forgetting what they have already learned, known as catastrophic forgetting.
Due to this challenging catastrophic issue of forgetting during model retraining, the field
of malware detection still faces immense challenges.

To address the catastrophic forgetting issue during the continuous updating process
of malware models, building upon existing theoretical achievements, a malware detection
model based on semi-supervised continuous learning (SSCL–TransMD) is proposed. The
SSCL–TransMD model first adopts the lifelong unsupervised learning algorithm LUMP
as the foundation and introduces modifications, mainly in the weight calculation method,
to incorporate adaptive weight calculation. The improved LUMP algorithm is used to
dynamically sample a mixture of labeled historical samples and unlabeled new input
samples proportionally, thereby alleviating the adverse effects caused by sample imbalance.
Furthermore, the LLGC semi-supervised algorithm is employed to iteratively compute
similarity scores for the unlabeled samples in the mixture samples, obtaining pseudo-labels.
Lastly, an MLP-based neural network is designed to classify malicious software and provide
output results. Finally, we evaluated and examined the proposed method on dataset
CICMalDroid2020. The results showed that our proposed method significantly outperforms
other methods in continuous learning scenarios. More specifically, the deterioration rate
of detection performance for the proposed method is significantly lower when facing the
continuous input of new samples compared to other methods, which means that SSCL–
TransMD can outperform other detection models when encountering unknown samples in
a real-world network.

Unfortunately, the detection accuracy of SSCL–TransMD is still not good enough in
the scenario of supervised learning. In the future, we will place our attention on improving
the detection accuracy.
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