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Abstract: Hemodynamic models provide a mathematical representation and computational frame-
work that describe the changes in blood flow, blood volume, and oxygenation levels that occur in
response to neural activity and systemic changes, while near-infrared spectroscopy (NIRS) measures
deoxyhemoglobin, oxyhemoglobin, and other chromophores to analyze cerebral hemodynamics
and metabolism. In this study, we apply a dynamic hemometabolic model to NIRS data acquired
during cardiac arrest and cardiopulmonary resuscitation (CPR) in pigs. Our goals were to test the
model’s ability to accurately describe the observed phenomena, to gain an understanding of the
intricate behavior of cerebral microvasculature, and to compare the obtained parameters with known
values. By employing the inverse of the hemometabolic model, we measured a range of significant
physiological parameters, such as the rate of oxygen diffusion from blood to tissue, the arteriole and
venule volume fractions, and the Fåhraeus factor. Statistical analysis uncovered significant differences
in the baseline and post-cardiac arrest values of some of the parameters.

Keywords: near-infrared spectroscopy; NIRS; brain; neuronal activity; cardiac arrest; hemodynamic
model; cardiopulmonary resuscitation; CPR; hyperspectral near-infrared spectroscopy; microvascu-
lature; hemodynamic model; hemometabolic model; laser Doppler flowmetry; diffuse correlation
spectroscopy

1. Introduction

Out-of-hospital cardiac arrest (CA) is a major public health challenge, with an average
global incidence among adults of 55 CAs per 100,000 person-years [1]. Among CA patients
who receive cardiopulmonary resuscitation (CPR), the survival rates are as follows: 29.7%
upon achieving return of spontaneous circulation (ROSC), 22.0% upon hospital admission,
and 8.8% upon hospital discharge. The pooled 1-month survival rate is 10.7% and the
1-year survival rate is 7.7% [1]. Monitoring the cerebral perfusion and metabolic parameters
such as cerebral tissue oxygen saturation, cerebral blood volume (CBV), cerebral blood flow
(CBF), cerebral metabolic rate of oxygen (CMRO2), and mitochondrial oxygen metabolism
is crucial for improving survival and recovery rates. Near-infrared spectroscopy (NIRS)
measures changes in oxyhemoglobin (HbO2) and deoxyhemoglobin (HHb), reflecting
alterations in CBV, CBF, and CMRO2 [2]. However, current NIRS techniques are limited in
their sensitivity to the brain [2], cytochrome C oxidase [3], and CMRO2 [4], necessitating
further improvements. Another vital aspect in the realm of NIRS is the interpretation of its
recordings with respect to physiological dynamics. In this regard, hemodynamic models
have been introduced to establish relationships between physiological perturbations and
measured quantities. Hemodynamic models have advanced significantly, notably with
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the integration of imaging techniques such as NIRS and functional magnetic resonance
imaging (fMRI). In this study, a novel coherent hemodynamic spectroscopy (CHS) model [5]
is applied to invasively obtained cerebral hyperspectral NIRS (hNIRS) data obtained from
pigs during induced CA to assess changes in CBV, CBF, and CMRO2 during CA and CPR,
providing valuable insights into the capturing of perturbations associated with CA and
CPR. Several hemometabolic parameters were utilized to derive quantitative predictions
from the model.

The CHS model [5] calculates blood oxygen saturations for both simple and complex
vascular topologies, resulting in equations for the values of the average tissue oxyhe-
moglobin (HbO2) and deoxyhemoglobin (HHb) concentrations over the arteriole, capillary,
and venule compartments. For straightforward topologies, the assumption centers on
a sequence of a single arteriole, followed by a capillary, and finally a venule. In more
complex scenarios, various orders and additional components are considered. Dynamic
equations governing oxygen saturation in all three components—arterioles, capillaries,
and venules—generate the values used to compute changes in oxy- and deoxyhemoglobin
over time.

Direct applications have been found for the CHS model in various studies related to
cerebral hemodynamics and functional neuroimaging. Hiura et al. [6] utilized the CHS
model to explore the relationships between cerebral oxygen metabolism and perfusion
during exercise using NIRS. Blaney et al. [7] applied dual-slope imaging of cerebral hemo-
dynamics with frequency-domain NIRS, incorporating the principles of the CHS model.
Furthermore, the algorithm introduced by Blaney et al. [8] for determining significant
coherence thresholds in time–frequency analyses was based on the CHS model’s principles.
These investigations collectively highlight the adaptability and significance of the CHS
model in advancing our comprehension of brain physiology and its utility in functional
neuroimaging [6–8]. The CHS model is a dynamic model that quantifies the temporal evo-
lution of the concentration and oxygen saturation of hemoglobin in tissue, as determined
by time-varying hemodynamic and metabolic parameters: blood volume, flow velocity,
and oxygen consumption [9]. Initially, the linear version of the model [9] was tested in the
context of a study on cardiac arrest in pigs; however, this yielded no acceptable outcomes,
aligning with the authors’ assertion that the linear model is effective for perturbations
smaller than 10% of the baseline in capillary blood flow velocity. Subsequently, our investi-
gation turned to the non-linear version of this model [5]. A distinctive characteristic of the
non-linear version is the non-linear dependence on the flow velocity in both capillary and
venous compartments, a feature not present in the linear version.

Another hemometabolic model presented by Banaji et al. [10] has been widely em-
braced in diverse inquiries concerning cerebral circulation, metabolism, and changes in
NIRS signals. Russell-Buckland and Tachtsidis [11] employed this model to simulate the in-
fluence of hypothermia on cerebral blood flow and metabolism. Russell-Buckland et al. [12]
introduced a Bayesian framework for the examination of systems biology models of the
brain which encompasses the referenced model. Siddiqui et al. [13] employed the model for
the non-invasive assessment of markers of infant brain function, while Caldwell et al. [14]
employed it to model extracerebral contamination and systemic factors when analyzing
fNIRS data. Hapuarachchi et al. [15] simulated preterm neonatal brain metabolism during
neuronal activation, and Caldwell et al. [16] applied the model to investigate blood flow
and metabolism during neonatal hypoxic–ischemic events. These studies collectively un-
derscore the versatility of the model in investigating brain physiology and the implications
this has for neonatal care, systems biology analysis, and the enhancement of NIRS-based
measurements [10–16]. In a subsequent phase of our research, we plan to investigate
the model proposed in [10] for the study of cardiac arrest in pigs. However, the model
proposed in [10] contains 27 equations for nearly 50 parameters and variables, making it
considerably more complex than the CHS model [5]. Therefore, for our initial investigation
of the applicability of dynamic hemometabolic models to microvascular cerebral changes
during CA, we selected the CHS model.
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2. Materials and Methods
2.1. Hemodynamic Model

The equations of the forward non-linear CHS model [5] are presented in the Appendix A.
According to this model, the time dependent alterations in HbO2 and HHb resulted from
the changes in blood flow speed and blood volume. The dynamic inputs of the model were
the total hemoglobin concentration measured using NIRS and the blood flow velocity index
measured using laser Doppler flowmetry (see Figure 1a).
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Figure 1. Changes in physiological data from a single experiment. The data include (a) total
hemoglobin and cerebral blood flow velocity; (b) oxy− and deoxyhemoglobin; (c) oxygen saturation
and cytochrome c oxidase; (d) aortic pressure; (e) right arterial pressure; and (f) airway pressure. The
left vertical line shows the onset of VF, while the right vertical line shows the onset of CPR.

A number of hemometabolic parameters were used to derive the quantitative predic-
tions of the model. These parameters included the average microvascular concentration of
the total hemoglobin in the blood (ctHb), the rate constant of oxygen diffusion from blood
to tissue (αo. ), the effective combined length of the small arterioles and capillaries (L(c)), the
effective combined length of the venules (L(v)), the capillary baseline blood volume ratio
(Fp(c)), the venule blood flow factor (fc(v)), the Fåhraeus factor (F(c)) (the ratio of capillary to
large vessel hematocrit), the baseline arterial oxygen saturation (S (a)

0 ), the average capillary
blood flow speed (v(c)), and the volume fractions of the arterioles (ϕ(a)), capillaries (ϕ(c)),
and venules (ϕ(v)).

Each of these parameters addressed an important physiological characteristic. In
particular, the rate constant of oxygen diffusion represents the speed at which oxygen
molecules move through tissues, reflecting tissue oxygenation dynamics. The Fåhraeus
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factor explains changes in blood viscosity in relation to vessel diameter, which impact
circulatory efficiency.

2.2. Cardiac Arrest and CPR Setup

Twenty-seven female pigs (female pigs were used to remove the bias of sex differences
in susceptibility to ventricular fibrillation (VF) induction and because female pigs have a
higher rate of ROSC) were fasted overnight and then sedated with ketamine (20 mg/kg
intramuscularly, “Ketalean” by Bi-meda-MTC Animal Health, Cambridge, ON, Canada).
Intubation and continuous isoflurane (1–3% mixed with oxygen) ensued. An Ohmeda
ventilator (Ohio Medical Products, Madison, WI, USA) was used to support ventilation
and the appropriate settings were used to stabilize pH, pCO2, and pO2 (pH 7.35–7.45,
PCO2 35–45 mmHg, PO2 > 100 mmHg). A normal saline (NS) infusion (2–4 mL/kg/h) was
delivered via a cannulated ear vein to prevent hypovolemia. Electrocardiogram leads were
attached and defibrillation patch electrodes (Zoll Medical, Inc., Chelmsford, MA, USA) were
used to monitor cardiac status. Aortic pressure and right atrial pressure were recorded in
real time via femoral artery catheters (Mikro-Tip Transducer; Millar Instruments, Houston,
TX, USA). These parameters were used to monitor the condition of each animal at all times,
and thus to determine the occurrence of CA (VF) [17].

All experimental procedures adhered to the Reporting of In Vivo Experiments guide-
lines [18]. Approval of the ethical protocols was granted by the Animal Care Committee of
St. Michael’s Hospital (Toronto, ON, Canada), and all practices were in accordance with the
Guide for the Care and Usage of Laboratory Animals provided by the U.S. National Institutes of
Health (NIH Publication number 85–23, revised 1996).

2.3. Resuscitation Protocol

Before VF was initiated, the delivery of anesthetic gases to the animals was paused
for 15 min, and they received propofol and fentanyl for sedation to minimize the anti-
arrhythmic effects of the anesthetic gases. VF was induced for 2 min by burst pacing at a
minimum of 300 Hz with a 10 mV pulse using a pacing catheter (AM-2200, ADInstruments,
Castle Hill, Australia) which was introduced into the RV. Subsequent CPR involved closed
chest compressions at a rate of 100 per minute using an automatic piston (LUCAS; Physio-
Control Inc./Jolife AB, Lund, Sweden). Mechanical ventilation (Ohmeda ventilator, Ohio
Medical Products, Gurnee, IL, USA) was maintained a rate of 10 breaths per minute with
pure oxygen. An IV bolus dose of 0.015 mg/kg of epinephrine in NS at a concentration of
0.1 mg/mL followed by a 10 mL NS flush was given after 2 min of CPR and administered
every 4 min for a total of three doses. In addition, an IV infusion of an equivalent volume
of NS (as calculated above in the epinephrine infusion group) was started after 2 min of
CPR and administered for a total of 12 min.

2.4. Cerebral hNIRS Setup and Measurements

Hyperspectral NIRS (hNIRS) enables the direct quantification of the absolute levels of
HbO2 and HHb in the tissue as well as the difference between the oxidized and reduced
cytochrome C oxidase, ∆Cyt-ox [19,20]. To carry out the measurements of the cerebral
variables, a custom-designed hNIRS system [19,20] was utilized. This involved positioning
optodes on the dura mater and maintaining a spacing of 20 mm between them. This was
achieved by drilling holes in the skull above the brain. With a differential path length
factor of 5 and an interoptode distance of 20 mm, the average optical path length was
estimated to be around 100 mm, with an approximate penetration depth of 16 mm [21–23].
This optical path length was chosen to mitigate the interference from the ~1 mm thick
dura. The hNIRS system included a highly sensitive spectrometer (AvaSpec, Avantes,
Lafayette, CO, USA) which recorded spectral data in the 700–1000 nm range. The hNIRS
diffusion model analyzed the data to determine changes in cerebral HbO2, HHb, and
Cyt-ox [17]. The dynamic fluctuations in chromophore concentrations were deciphered
using a multi-step data-fitting algorithm which was grounded in the analytical solution to
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the diffusion equation for a semi-infinite medium and which integrated the extrapolated
boundary condition. This algorithm yielded values for the tissue concentrations of HbO2,
HHb, and ∆Cyt-ox [19,24]. The total hemoglobin and tissue oxygen saturation (tSO2) was
computed using the following equation:

Total [Hb] = [HbO2] + [HHb] tSO2 = [HbO2]/(Total [Hb]) × 100%

In addition to hNIRS, the cerebral blood flow velocity index (CBFV) was measured
using a laser Doppler flowmeter (LDF) (Periflux; Perimed Inc., Ardmore, PA, USA), for
which purpose a probe was placed on the dura mater via a hole drilled in the pig’s skull.
Mean aortic pressure and right atrial pressure were also monitored during the experiments
using catheters equipped with micro-manometer tips.

2.5. Analysis Methods

A data analysis was conducted using MATLAB R2023a (MathWorks, Natick, MA,
USA). The calculations were executed over two distinct time periods. Initially, baseline
hemodynamic variables were used to compute the parameters during a 10 min period
before the onset of VF. The subsequent set of calculations focused on a 2 min timespan after
VF was induced; this was selected as the timeframe for data analysis and parameter fitting
processes. This 2 min interval following VF initiation represented a period during which
no actions, such as CPR or drug administration, were undertaken.

To derive numerical results for the parameters, we employed the inverse of the non-
linear version of the hemodynamic model using the MATLAB function fmicon. As inputs,
the model employed total hemoglobin measurements from the hNIRS and CBFV indices
captured using LDF. Its objective was to optimize the aforementioned hemometabolic
parameters to ensure alignment between its outputs (HbO2 and HHb) and the actual NIRS
readings. The calculated parameters and their respective ranges were as follows: ctHb
(2–2.6 mM), αo. (0.6–1.0 s−1), F(c) (0.6–0.9), S(a)

0 (0.8–0.99%), Fp(c) (0.2–0.8), fc(v) (0.1–0.7), L(c)

(0.4–0.8 mm), L(v) (0.5–1.2 mm), v(c) (0.6–1.0 mm/s), and contributions to baseline blood
volume from arterioles (0.001–0.05), capillaries (0.005–0.05), and venules (0.001–0.05) [9].

The cost function for the optimization was the reduced X2 for the combined HbO2
and HHb fits. We also calculated R2 values for the combined HbO2 and HHb fits. For the
final calculation results, we only included the cases for which R2 > 0.5.

We employed a paired t-test to compare the average parameter values during baseline
and after CA.

3. Results

Figure 1 illustrates all the recorded data from the experiment for one of the pigs, while
Figure 2 shows the HbO2 and HHb traces measured using hNIRS, accompanied by the
corresponding data acquired using the forward model of the non-linear version of the
hemodynamic model for the same pig. Data from 27 pigs were collected and analyzed.
Good R2 values between 0.5 and 0.9 occurred for only 17 of the 27 datasets. The statistical
numerical values for the parameters for these cases are presented in Table 1.

Table 1. Values of the fitted parameters averaged across 17 datasets for which R2 > 0.5 (average R2

of 0.719, average X2 of 0.282) for the baseline conditions; reference value ranges obtained from the
literature; average parameter baseline–post-CA differences; and corresponding p-values. Parameters
with p-values less than 0.05 are shown in bold font.

Parameter/Analysis Average ± Std
(Baseline) Reference Range Average Difference p-Value

S(a)
0 (%) 0.906 ± 0.060 0.8–0.99 −0.004 0.855

ctHb (mM) 2.103 ± 0.097 2.0–2.6 +0.065 0.040
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Table 1. Cont.

Parameter/Analysis Average ± Std
(Baseline) Reference Range Average Difference p-Value

Fp(c) 0.559 ± 0.176 0.2–0.8 −0.021 0.760

F(c) 0.705 ± 0.089 0.6–0.9 +0.073 0.008

αo (s−1) 0.762 ± 0.115 0.6–1.0 +0.035 0.399

fc(v) 0.460 ± 0.102 0.1–0.7 +0.008 0.829

L(c) (mm) 0.553 ± 0.092 0.4–0.8 −0.041 0.368

L(v) (mm) 1.012 ± 0.028 0.5–1.2 −0.007 0.637

v(c) (mm/s) 0.819 ± 0.087 0.6–1.0 +0.029 0.466

ϕ(a) 0.031 ± 0.022 0.001–0.05 −0.009 0.177

ϕ(c) 0.012 ± 0.011 0.005–0.05 +0.002 0.438

ϕ(v) 0.009 ± 0.012 0.001–0.05 +0.002 0.561
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4. Discussion

Employing the non-linear CHS model enabled an innovative approach to the inves-
tigation of cerebral hemodynamics and metabolism during cardiac arrest and CPR, and
this yielded notable insights. Using the inverse of the model, we recovered the values of
the physiological parameters related to the interplay between neural activity, blood flow
dynamics, and oxygenation levels.
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The notable consistency between the actual near-infrared spectroscopy measurements
and the model’s outputs (Figure 2) underscores the accuracy with which the proposed
model can capture dynamic shifts in cerebral oxygenation and blood flow. This not only
validates the model, but also opens avenues for potential enhancements in resuscitation
protocols which have the potential to improve outcomes for CA patients.

The reference ranges for the parameters were obtained from the literature. The mean
capillary size ranged from 5.9 to 6.5 µm in diameter and from 0.57 to 0.63 µm in length [25].
The average capillary blood flow velocity was determined to be 0.85 mm/s, with a coef-
ficient of variation equal to 0.99 [26]. The rate constant for oxygen diffusion into tissue
was directly proportional to both the tissue’s oxygen solubility and the microvascular
partial pressure of oxygen [5]. This partial pressure depends on the metabolic rate of
oxygen [27,28]. The blood volume fraction in the brain tissue can vary, with capillaries
accounting for approximately 1–1.5%, and the entire microvasculature comprising about
2–4%. These values depend on the depth within the cortex [25,28]. The average baseline
values we measured were all within their reference ranges. However, we note a lack of
references for the rate of oxygen diffusion from blood to tissue (αo), which was described
only in the works of the group who introduced the CHS model [5,9].

We found significant differences between the baseline and post-CA values for two
parameters (p-value less than 0.05 denoting meaningful distinctions). The average values
for ctHb and F(c) decreased after VF compared to the baseline. Dynamic changes in ctHb,
both increases and decreases, had been observed previously in human CA patients [29,30].
In [29], the authors suggested that decreased ctHb can be associated with worse neurological
outcomes. The authors of [29,30] hypothesized that such changes may reflect the degree
of vascular permeability and may be associated with neurologic function after CA. The
decrease in the Fåhraeus factor is most likely also related to the ctHb change as it quantifies
the ratio of ctHb in the capillaries and larger vessels [5,9,31].

One limitation of our study became apparent following changes in HbO2, HHb,
total hemoglobin, and CBFV which were influenced by simultaneous occurrences such
as spontaneous baseline shifts, the administration of anesthesia and epinephrine, and
various attempts to induce VF prior to its occurrence. The CHS model may be too simple
to properly account for all such events and artifacts. This can at least partially explain why
the application of the model resulted in good data fits when R2 > 0.5 in only 63% of the
datasets (17 out of 27). In future research, we aim to incorporate established techniques for
manipulating CBF during the baseline and ROSC phases, including inducing hypercapnia,
adjusting ventilation rates, and implementing similar approaches.

Another possible reason behind the differences between the model results and the
readings for HHB and HbO2, in particular those seen in Figure 2 after the beginning of
CA, is that in the current version of the CHS model, the parameters listed in Table 1 are
considered to be fixed for a given time interval. However, as our analysis shows, at least
ctHb and F(c)—and possibly other parameters—can change during and after VF, leading to
deviations between the real HHB and HbO2 temporal traces and those predicted by the
model with the fixed parameters. We are currently working on the further development of
our dynamic model and an inversion algorithm to account for the dynamic changes in the
model parameters.

Another important aspect of this study is its applicability to human studies. While
there have been studies that have demonstrated significant structural and cellular com-
patibility between pigs and humans in various organs, such as the liver [32] and those of
the cardiovascular system [33], the compatibility of the microvasculature of the brain in
pigs, which was the focus of our investigation, requires more comprehensive examination.
Although laser Doppler flowmetry (LDF) is an established and commercially available
technique [34], it cannot measure the blood flow in the human brain non-invasively. Diffuse
correlation spectroscopy (DCS) is a novel technique that measures average microvascular
blood flow in tissue volumes [35]. A fast increase in the rate at which DCS is applied
to brain measurements has recently started. In particular, in [36], simultaneous spatially
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resolved DCS and NIRS were used to non-invasively measure cerebral microvascular pa-
rameters in humans during transient hypotension. The cerebral blood flow measurements
were separated from the extracerebral contributions to the DCS signals using a combination
of the short (1.5 cm) and long (2.5 cm) source-detector distances. The feasibility of using
a combined hNIRS/DCS system in cardiac patients during cardiac surgery was shown
in [37].

The application of the CHS model to the hNIRS data from the pig CA experiments
added a practical dimension to the application of CHS, although transitioning to human
parameters presents challenges. Continuing exploration and refinement of this model may
lead to the elucidation of optimal CPR outcomes for the brain. This endeavor, in turn, could
significantly contribute to the improvement of recovery rates following sudden CA.

Hemodynamic models can play a pivotal role in the interpretation of data from
invasive and non-invasive optical imaging methods like NIRS across various microvascular
hemodynamic and oxygen metabolism scenarios. This model’s utility extends to scenarios
involving oscillations, where utilizing the model in the frequency domain is effective. In
our study of cardiac arrest in pigs, because of the singular nature of cardiac arrest and the
absence of repetitive phenomena, we employed the model in the time domain.

Our investigation was initially focused on two models: the CHS model ultimately
employed in our study, and another developed by a research team at the University of
Essex [7]. Integrating the first model into our research marked a significant step forward.
Our choice of the model employed in our study was driven by its simplicity and com-
patibility with our devices (hNIRS and LDF). Our interest in the latter model, which will
form the basis of our future work, stems from its requirement for cytochrome c oxidase
measurements—something our hNIRS device can readily provide.

The current version of our custom MATLAB code requires about 30 min of processing
time per dataset on a PC with a 6-core, 3800 MHz CPU, which is slow for real-time
monitoring. However, we are working on improving the algorithm, and this should
result in a considerable increase in speed. After its translation into a faster programming
language, the improved algorithm may enable the real-time measurement of microvascular
parameters.

5. Conclusions

In this animal cardiac arrest study, we applied a CHS hemometabolic model to as-
sess cerebral hemodynamics and metabolism during CA and CPR, with a particular fo-
cus on microvascular-level physiological changes. Our main conclusion is that the CHS
hemometabolic model could explain the observed changes in 63% of cases. Notably, most
of our measured parameters were in agreement with the known values; this validated our
methodology and reinforced the accuracy of the results. The statistical analysis revealed
significant variations between the baseline and post-VF values for the average hemoglobin
concentration in the blood and the Fåhraeus factor, providing insights into the impact of
CA at the microvascular level.

Author Contributions: Methodology, R.M., S.L. and V.T.; Software, N.K.; Investigation, N.K. and
O.R.; Data curation, R.M., N.K. and O.R.; Writing—original draft, N.K.; Writing—review & editing,
R.M. and V.T.; Supervision, R.M., S.L. and V.T.; Funding acquisition, S.L. All authors have read and
agreed to the published version of the manuscript.

Funding: This study was funded by a ZOLL Foundation grant. O. R. was supported by CREMS
(“Comprehensive Research Experience for Medical Students”) Summer Research Program at the
University of Toronto’s Temerty Faculty of Medicine.

Institutional Review Board Statement: All animals in the project will receive humane and proper
treatment in accordance with the policies formulated by St. Michael’s Hospital Animal Care Commit-
tee, the Animals for Research Act 1968-69 and with the recommendations of the Canadian Council on
Animal Care. PI accepts responsibility for keeping the foregoing information current especially with
respect to methodology. The protocol code is 245ACC #245.



Appl. Sci. 2023, 13, 12303 9 of 11

Informed Consent Statement: Not applicable.

Data Availability Statement: The results of this study are available from the corresponding author
on reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

According to [2], changes in oxyhemoglobin resulting from changes in capillary blood
flow speed and blood volume (∆OF and ∆OV, respectively) (Equations (A1) and (A3),
respectively) and changes in deoxyhemoglobin attributed to variations in capillary blood
flow speed and blood volume (∆DF and ∆DV, respectively) (Equations (A2) and (A4),
respectively) are given by the following equations:

∆OF(t) = ctHb [ϕ(c) F(c) (<S(c) >(t) − <S0
(c)>) + (<S(v)>(t) − S0

(v))] (A1)

∆DF(t) = −∆OF(t) (A2)

∆Ov(t) = ctHb [ϕ(a) S(a) υ(a)(t) + ϕ(a) <S(v)>(t) υ(v)(t)] (A3)

∆Dv(t) = ctHb [ϕ(a) (1 − S(a)) υ(a)(t) + ϕ(a) (1 − <S(v)>(t)) υ(v)(t)] (A4)

where ctHb represents hemoglobin concentration in the blood, ϕ(c) and ϕ(a) denote the
volume fractions of capillary and arterial blood in the tissue, respectively, F(c) stands for
the Fåhræus factor, <S(c)>(t) indicates the average capillary saturation, υ(a) and υ(v) signify
the changes in arterial and venous blood volumes normalized to their baseline values, S(a)

represents arterial saturation, and <S(v)>(t) represents the venule saturation. The capillary
and venule oxygen saturations can be calculated using the following equations [2]:

c(c)(t)
∂S(c)(x, t)

∂x
+

∂S(c)(x, t)
∂t

= −α .
oS(c)(x, t) (A5)

c(v)(t)
∂S(v)(x, t)

∂x
+

∂S(v)(x, t)
∂t

= 0 (A6)
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