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Abstract: To enhance the lane‑changing safety of autonomous vehicles, it is crucial to accurately
identify the driving styles of human drivers in scenarios involving the coexistence of autonomous
and human‑driven vehicles, aiming to avoid encountering vehicles exhibiting hazardous driving pat‑
terns. In this study, based on the real traffic flow data from theNext Generation Simulation (NGSIM)
dataset in the United States, 301 lane‑changing vehicles that meet the criteria are selected. Six evalua‑
tion parameters are chosen, and principal component analysis (PCA) is employed for dimensionality
reduction in the data. The K‑means algorithm is then utilized to cluster the driving styles, classifying
them into three categories. Finally, ant colony optimization (ACO) of a backpropagation (BP) neu‑
ral network model was constructed, utilizing the dimensionality reduction results as inputs and the
clustering results as outputs for the purpose of driving style recognition. Simulation experiments
are conducted using MATLAB Version 9.10 (R2021a) for comparative analysis. The results indicate
that the constructed ACO‑BP model achieved an overall recognition accuracy of 96.7%, significantly
higher than the recognition accuracies of the BP, artificial neural network (ANN), and gradient boost‑
ing machine (GBM) models. The ACO‑BP model also exhibited the fastest recognition speed among
the four models. Moreover, the ACO‑BPmodel shows varied improvements in recognition accuracy
for each of the three driving styles, with an increase of 13.7%, 4.4%, and 4.3%, respectively, compared
to the BP model. The simulation results validate the high accuracy, real‑time capability, and classifi‑
cation effectiveness of this model in driving style recognition, providing new insights for this field.

Keywords: traffic safety; autonomous vehicles; driving style; principal component analysis; K‑means
clustering; ant colony; optimize BP neural network

1. Introduction
Autonomous driving is an advanced automotive technology that utilizes onboard sen‑

sors, computer vision, and machine learning to enable vehicles to autonomously perceive,
analyze, and respond to road environments, achieving full or partial driverless opera‑
tion [1]. Through autonomous driving technology, vehicles can automatically control their
movements, comply with traffic rules, avoid obstacles, and make reasonable driving deci‑
sions based on the actual road conditions [2]. The development of this technology aims to
enhance road safety, reduce traffic accidents, improve traffic efficiency, and provide pas‑
sengers with amore convenient and comfortable travel experience. Although autonomous
driving faces challenges in various traffic environments, with continuous technological ad‑
vancements and practical implementations, it will become a significant direction for future
developments in the transportation field.

With the continuous advancement of autonomous driving technology and the increas‑
ing number of road tests and commercial operations of autonomous vehicles, mixed traffic
flow composed of autonomous and human‑driven vehicles is expected to be a future de‑
velopment trend. As a result, the market share of autonomous vehicles in the automotive
industry is also projected to increase [3]. Currently, research on autonomous driving tech‑
nology is extensive, covering aspects such as trajectory prediction [4], comfort [5], and
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urban road traffic efficiency [6]. In the human–vehicle–road traffic system, drivers, as the
main participants, have a significant impact on road traffic safety [7]. Different driving
styles have varying effects on vehicle lane‑changing safety [8]. For instance, drivers with
aggressive driving styles have higher demands for speed and time benefits, resulting in
reduced safety levels and a higher accident rate. Therefore, researching driver style recog‑
nition technology is of great significance as it can enhance the safety of lane changing for
autonomous vehicles to a certain extent.

The main objective of current research is to improve the accuracy and real‑time capa‑
bility of driver style recognition. At present, onewidely applied technique in various fields,
such as architecture and mathematical analysis, is the ACO‑BP hybrid model, known for
its accurate prediction performance and fast prediction speed [9–11]. Therefore, this study
aims to investigate the practical application of the ACO‑BP hybrid model in the direction
of autonomous driving style recognition. In this paper, real vehicle driving data from the
NGSIMdataset is utilized, and vehicle historical trajectory data thatmeet the requirements
are selected to avoid the risk of overfitting caused by small‑sample data. By using princi‑
pal component analysis for dimensionality reduction and employing K‑means clustering
analysis to categorize driving styles, a driving style recognitionmodel based on ant colony
optimization of a BP neural network is established. This model enables the identification
and prediction of driving styles, thus enabling the timely avoidance of hazardous driving
styles during lane‑changing maneuvers.

The remaining organization of this paper is as follows: Section 2 provides an overview
of the research status of automatic driving style recognition. Section 3 presents themethod‑
ology and data, including a description of the ACO‑BP model, the extraction and pro‑
cessing of vehicle data, feature extraction, and driving style clustering. Section 4 mainly
presents the recognition results of the establishedACO‑BP driving style recognitionmodel.
Section 5 compares the ACO‑BP model with other previously applied automatic driving
style recognition models (ANN and GBM), further discussing the reliability of the ACO‑
BP model. Finally, this paper summarizes the research and provides prospects for future
optimization research directions.

2. Literature Review
In the continuous advancement of autonomous driving technology, many scholars

have come to consider that lane‑changing accidents account for a considerable proportion
of traffic accidents. Aggressive driving styles often involve frequent lane changes, smaller
following distances, and more drastic acceleration changes, which highlights the impor‑
tance of improving the accuracy of lane‑changing recognition in autonomous driving to
reduce safety hazards and mitigate such risky driving styles. Therefore, in the current
research on the safety of autonomous driving lane changing, much attention has been fo‑
cused on the field of automatic driving style recognition technology.

One of the most widely applied technologies is traditional machine learning algo‑
rithms. Traditional machine learning algorithms mainly include support vector machines
(SVMs), decision trees, and random forests. Kumar et al. compared the recognition ef‑
fects of models using SVMs, adaptive boosting (AdaBoost), and random forest algorithms
by extracting data from internal sensors in the engine through the On‑Board Diagnostics
II (OBD‑II) protocol, achieving good recognition accuracy [12]. Peng et al. proposed a
driving style recognition model based on the Classification and Regression Tree (CART)
decision‑makingmethod by clustering indicators such as following distance, time gap, and
accelerator pedal opening, and their experimental results demonstrated its good recogni‑
tion accuracy [13]. Zhao et al. collected natural driving trajectory data in freewaydiverging
areas using unmanned aerial vehicles and applied K‑means++ to cluster the driving styles
in lane‑changing sections. They achieved an accuracy of 93% using a random forest model
for driving style identification and prediction [14].

With the advancement of onboard sensor technology, vehicles are capable of collect‑
ing a large amount of data for deep learning training. Simultaneously, due to improve‑
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ments in computational power, algorithms, and other factors, deep learning has gained
popularity in the field of automated driving style recognition [15]. Milardo et al. proposed
a deep neural network architecture using unsupervised feature extraction, feature selec‑
tion algorithms, and automated machine learning (AutoML) techniques. They validated
the model using real road driving data in random environments, achieving a driving style
recognition accuracy of 95% [16]. Bejani et al. developed an adaptive regularization convo‑
lutional neural network (CNN) to avoid overfitting when performing driving style recog‑
nition on smartphones [17]. Xu et al. introduced a driving style recognition system with
a combination of a fully convolutional network (FCN) and a squeeze‑and‑excitation (SE)
block. They used psychophysical and behavioral data for driving style recognition and
validation [18]. Liang et al. proposed a comprehensive driving style recognition model
based on driving cycle identification. They constructed a driving style cycle and recogni‑
tion model using an artificial neural network (ANN), enabling more comprehensive and
accurate long‑term driving style recognition [19].

Nowadays, with the increase in vehicle ownership and the complexity of urban road
networks, higher demands are being placed on autonomous driving technology. In re‑
sponse, hybridmodels combining traditionalmachine learning algorithmswith deep learn‑
ing have emerged. Zhang et al. utilized the Next Generation Simulation (NGSIM) traffic
flow dataset and proposed the Adaptive Multivariate Continuous Gaussian Mixture Hid‑
den Markov Model (AMCGM‑HMM) for dynamic driving intention recognition of sur‑
rounding vehicles, thereby enhancing vehicle driving safety [20]. Cai et al. addressed in‑
complete traffic data and proposed a Convolutional Neural Network—Long Short‑Term
Memory (CNN‑LSTM)‑based driving style recognition model, which improved recogni‑
tion accuracy and generalization capabilities [21]. Additionally, Kim et al. proposed a
DeepConvolutional Long Short‑TermMemory (DCLSTM)‑based driving style recognition
model to improve the safety of autonomous vehicle trajectories and predict future trajec‑
tories [22].

Despite extensive research on automatic driving style recognition, there are still some
limitations. In general:
1. The advantages of traditional machine learning models include easy interpretabil‑

ity, high computational efficiency, and good classification performance on linearly
separable problems such as SVMs. However, their disadvantages include poor per‑
formance on high‑dimensional complex datasets and inadequate classification per‑
formance on nonlinearly separable problems.

2. The advantages of deep learning lie in its ability to handle high‑dimensional, nonlin‑
ear, and complex problems, and it performs well on different types of data, such as
images, speech, and text. However, its disadvantages include the tendency to over‑
fit, the requirement for large datasets to achieve good performance, and the need for
substantial computational resources for network design and parameter tuning.

3. Hybrid models combine the strengths of both traditional machine learning and deep
learning, offering good generalization to different datasets and tasks, strong inter‑
pretability, computational efficiency, and expressive power. However, their disad‑
vantages lie in their increased complexity, which adds to the development difficulty,
and their increased demand for computational resources in terms of model fusion
and parameter optimization.
Therefore, in practical research on automatic driving style recognition, the choice of

suitable algorithms should be made by considering specific problems and dataset charac‑
teristics. Factors to be considered include the size and complexity of the dataset, computa‑
tional requirements, real‑time constraints, accuracy, and robustness of the algorithm.
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3. Methodology
3.1. Introduction to the ACO‑BP Model
3.1.1. BP Neural Network

The BP neural network is a common type of artificial neural network that can be ap‑
plied to problems such as recognition, classification, and prediction [23]. The BP neural
network exhibits several key benefits:
1. Strong nonlinear fitting ability, capable of handling complex nonlinear problems.
2. Good adaptive ability, able to automatically adjust the network parameters according

to the changes in the input data, to improve the robustness of the model and general‑
ization ability.

3. It has good fault tolerance and can maintain good performance even if some neurons
or connections in the network fail.

4. Good interpretability, with the network structure and parameters capable of adjust‑
ing to understand the workings of the network and the decision‑making process.
The transfer function for the input and hidden layers of the BP neural network is set as

tansig, while the transfer function for the output layer is defined as purelin. The training
function selected for the network is trainlm. The hidden layer can have more than one
layer, but due to the requirements of the accuracy of the recognition of the driving style,
this paper’s implicit layer selected a layer with the specific topology shown in Figure 1.
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Training Steps for the BP Neural Network:
Step 1: Determine the basic structure of the BP neural network, including the number

of nodes in the input layer (n), the number of nodes in the hidden layer (r), and the number
of nodes in the output layer (l). Set the initial parameter values.

Step 2: Calculate the outputs of the hidden layer, as shown in Equation (1):

Hj = f (
n

∑
i=1

wijxi − aj), i = 1, 2, · · · , r (1)

In Equation (1), wij is the connection weight between the input layer and the hidden
layer, xi represents the input vector, aj is the threshold of the hidden layer, and tansig is
the transfer function, as shown in Equation (2):

y =
2

1 − e−2x − 1 (2)
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Step 3: Calculate the actual output of the output layer, as shown in Equation (3):

Ok =
r

∑
j=1

Hjwjk − bk (3)

Step 4: Calculate the error ek between the network output and the true value, as shown
in Equation (4):

ek = Ok − Yk (4)

In Equation (4), Ok represents the predicted value and Yk represents the true value.
Step 5: Update the weights and thresholds, as follows:

wij = wij + ηHj(1 − Hj)xi

m

∑
k=1

wijek, i = 1, 2, · · · , n; j = 1, 2, · · · , r (5)

wjk = wjk + ηHjek, j = 1, 2, · · · , r; k = 1, 2, · · · , m (6)

aj = aj + ηHj(1 − Hj)
m

∑
k=1

wjkek, j = 1, 2, · · · , r (7)

bk = bk + ek, k = 1, 2, · · · , m (8)

3.1.2. Ant Colony Algorithm
The ant colony algorithm is a heuristic algorithm developed by simulating ants’ be‑

havior in searching for food. It finds the optimal solution by searching and optimizing
the problem space. In the ant colony algorithm, ants search the problem space by releas‑
ing pheromones and guide the choices of other ants based on the change in pheromone
concentration. The commonly used formula is as follows:

Calculate the probability pk
ij(t) that ant k is at position i going to position j at time

t [24] with the following equation:

pk
ij(t) =


[τij(t)]

α
[ηij(t)]

β

∑s∈allowedk
[τis(t)]

α [ηis(t)]
β , j ∈ allowedk

0, otherwise
(9)

In Equation (3), τij is the pheromone; ηij(t) = 1/dij is the heuristic function, which in‑
dicates the expected degree of transferring ants from position i to position j; and allowedk
(k = 1, 2, · · · , m) is the set of positions to be visited by the ant k. α represents the pheromone
importance factor, and as its value increases, the significance of pheromone concentration
in the transfer process also increases. β represents the significance coefficient of the heuris‑
tic function, whereby a higher value signifies a greater influence of the heuristic function
on the transfer process. In other words, as β increases, the likelihood of ants transferring
to locations with shorter distances also increases.

Once every ant in the system finishes a cycle, it becomes necessary to dynamically
update the pheromone concentration on the path connecting each location in real‑time [25],
and the expression of the update equation is shown below:{

τij(t + 1) = (1 − ρ)× τij(t) + ∆τij, 0 < ρ < 1

∆τij = ∑n
k=1 ∆τk

ij
(10)

In Equation (4), ∆τk
ij is the amount of information left by the ant k on the path between

position i and position j in this cycle, and ∆τij is the sum of pheromone concentration
released by all ants on the path connecting position i and j.
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3.1.3. Utilizing the Ant Colony Algorithm for BP Neural Network Optimization
The basic idea of the optimization is to extract the elements of the weight matrix and

threshold vector to form the path coordinates of the ant population. These elements col‑
lectively form the path coordinates of the ant population, constituting the fundamental
concept underlying this approach. Because the shorter the path for ants to reach the food
source, the higher the pheromone content on the path, the ants’ fitness value is determined
by considering the mean square error. The shortest path determined by the final ant pop‑
ulation is used as the optimal initial weights and threshold parameters, which are then
assigned to the BP neural network, trained, and tested. To validate the rationality of the
ACO‑BP model, a comparison was conducted between its results and those obtained from
the BP neural network. Figure 2 depicts the optimization process.
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ACO‑BP algorithm‑specific steps:
Step 1: Read the data, initialize the structure of the BP neural network and the param‑

eters of the ant colony optimization algorithm, and set the parameter set IPi.
Step 2: Place each ant on the initial starting point, where the number of ants is denoted

as m and the number of paths chosen by ants is denoted as n. The ant k can randomly
choose its element j according to the following probability:

P(τk
j (IPi)) =

τj(IPi)
n
∑

j=1
τj(IPi)

(11)
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Step 3: Train the model, record the optimal solution, and update the pheromone τ
in the set IPi. The pheromones on the paths from the initial position to the destination for
each ant need to be adjusted according to the following equations:

τj(IPi)(t + h) = ρτj(IPi)(t) + ∆τj(IPi) (12)

∆τj(IPi) =
m

∑
k=1

∆τk
j (IPi) (13)

In Equations (12) and (13), ∆τk
j (IPi) represents the amount of pheromone that ant k

deposits on element j in one iteration, as shown in the equation:

∆τk
j (IPi) =

{
Q/ek,the i − th ant selects element Pj(IPi)
0, other

(14)

In Equation (14), Q is the fixed value of the pheromone, and ek is the output error of
the neural network corresponding to ant k.

Step 4: Repeat steps 2 and 3 until the maximum number of iterations is reached, then
proceed to step 5.

Step 5: Extract the coordinates of the best ant position after optimization and assign
them to the BP neural network to obtain the optimal initial weight matrix and threshold
vector.

Step 6: Train and test the optimized BP neural model and compare the recognition
performance of the BP neural network before and after optimization.

Although ant colony optimization (ACO) sometimes falls into local optima, making
it difficult to find the globally optimal configuration of neural networks, in ACO‑BP, the
ACO algorithm updates ant positions in each iteration based on certain rules (such as
pheromone concentration and heuristic information) to explore new potential solutions.
Additionally, ACOemploys pheromone evaporationmechanisms and state transition rules
to prevent premature convergence to local optima. In this process, the ACO algorithm not
only retains the current best solution found (global optimum) but also stores the best so‑
lution found by each ant (local optimum). These local optima are reconsidered in subse‑
quent iterations, thereby enhancing the algorithm’s ability to escape local optima. More‑
over, when ACO is used for training BP neural networks, after each iteration, the gradient
descent method can assist the ACO algorithm in achieving local optimization.

3.2. Data Processing and Screening
3.2.1. Data Source

In this paper, the NGSIM (Next Generation Simulation) traffic dataset is used for the
study as a source of simulation data [26]. Its main advantages are as follows:
(1) The NGSIM dataset contains a large amount of traffic flow data, including different

time periods and different road types and traffic conditions, which can provide com‑
prehensive traffic behavior information.

(2) The NGSIM dataset has a high degree of authenticity, accuracy, and more compre‑
hensive data [27], which can provide a reliable research basis and is widely used in
microscopic traffic simulation modeling.

(3) The NGSIM dataset has a sampling accuracy of 0.1 s, which provides high temporal
and spatial resolution traffic data, and continuously records traveling data such as
vehicle category, speed, acceleration, headway, and headway hourly distance, which
accurately describes the traveling state of vehicles.
In this paper, we selected the US‑101 freeway collection section data from the NGSIM

dataset to screen the suitable lane‑changing vehicles, and the specific applicable conditions
are as follows:
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(1) Vehicle driving road conditions are freeways.
(2) Only small cars are used as research objects.
(3) Screening for free lane changing and single lane changing vehicles: only lane chang‑

ing vehicles in lanes 1 to 5 are considered due to the impact of converging traffic on
ramps 7 and 8.

(4) Screening of vehicles with a distance of 5 m to 60 m between the following vehicles.
(5) The process of lane‑changing for a vehicle encompasses the leading vehicle in the

current lane, the leading vehicle in the intended lane, and the trailing vehicle in the
intended lane.

Taking ID64 vehicles as an example, the screening data is shown in Table 1.

Table 1. Partial screening data for ID64 vehicles.

Vehicle ID Frame Rate Vehicle Speed (m·s−1) Acc (m·s−2) Following Distance (m) Following Distance (s)

64

163 10.912 0 23.35 1.56
… … … … …
363 17.145 −2.920 54.15 3.09
… … … … …
576 20.888 0 46.92 2.72

3.2.2. Data Processing
However, in the actual study, it was found that the dataset has non‑conforming veloc‑

ities and accelerations as well asmany anomalies and noises, whichwill affect the accuracy
of subsequent studies if the original data is not processed [28], so it is necessary to smooth
the extracted lane‑changing vehicle data.

Compared to methods such as Kalman filtering and local regression [29,30], the sym‑
metric exponential moving average method offers several advantages:
1. It provides a more intuitive and user‑friendly approach to processing.
2. The method exhibits fast response speed, enabling it to adapt to sudden fluctuations

and promptly respond to changes in data.
3. It produces a good smoothing effect by reducing the impact of noise and outliers

while maintaining the overall trend of the data [31].
4. The method has a wide applicability range and can be employed on various types of

time series data, including upward, downward, and oscillating trends.
The symmetric exponentialmoving averagemethod is directly convenient for process‑

ing data, and the smoothing process is faster, so the symmetric exponential moving aver‑
agemethod is used to smooth the extracted data. Using the vehicle data of ID64, the impact
of the data smoothing process is illustrated in Figures 3 and 4. From the data smoothing
effects, it is easy to see that the fluctuating area of the smoothed data is obviously reduced,
and the curve is obviously smoother and more in line with the actual state of vehicle op‑
eration. The processed data not only retains the basic attributes of the original data, but
the vehicle driving is also smoother, and it will not affect the accuracy of the subsequent
research due to outliers and excessive noise. When applying the symmetric exponential
moving average method to smooth the sample data, the average delay time is 2 ms with
minimal time loss.
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3.3. Principal Component Analysis (PCA)
Principal component analysis (PCA) is a commonly used data dimensionality reduc‑

tion technique that can transformhigh‑dimensional data into lower‑dimensional datawhile
preserving the essential information from the original data [32]. Themain idea behind PCA
is to project the original data onto a new coordinate system in such away that the projected
data has the maximum variance. These new coordinate axes are called principal compo‑
nents, and they are linear combinations of the original data. By retaining a few of the most
important principal components, data can be reduced in dimensionality while retaining
important information.

At present, in the field of autonomous driving, two commonly used methods for
data dimensionality reduction are principal component analysis (PCA) and factor anal‑
ysis [33,34]. In comparison to factor analysis, PCA possesses three advantages in terms of
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dimensionality reduction. Firstly, PCA is an unsupervised algorithm that does not require
the prior specification of latent variables or latent models, whereas factor analysis usually
necessitates the specification of the number of latent factors and the model structure. Sec‑
ondly, PCA selects principal components by maximizing data variance, thereby retaining
the maximum information contained in the data. This aids in preserving the primary in‑
formation within the data. Lastly, PCA offers interpretability of the data. The principal
component vectors can explain the variance within the data, helping us understand the
data structure and relationships. Therefore, PCA exhibits advantages in efficient unsuper‑
vised dimensionality reduction and data interpretability, particularly when dealing with
large‑scale data.

Selecting appropriate feature parameters is a prerequisite in order to better study the
driving styles of different drivers using PCA dimensionality reduction. According to re‑
lated research, speed, acceleration, following distance, following time distance, and other
parameters have amore obvious influence on driving style. For example, the average value
can characterize the vehicle’s driving over a period of time, while the standard deviation
can reflect the degree of dispersion of the speed and acceleration, that is, the speed stabil‑
ity of the vehicle’s acceleration or deceleration behavior. Hence, six driving style‑related
characteristic parameters are chosen, utilizing the data presented in Table 2.

Table 2. Selection of feature parameters.

Serial Number Characteristic Parameter

X1 Average vehicle speed
X2 Standard deviation of velocity
X3 Mean value of acceleration
X4 Standard deviation of acceleration
X5 Average following distance
X6 Average distance between the following vehicles

Before solving the principal components, the raw data need to be standardized in or‑
der to make the units and scales the same among different variables and to eliminate the
effect of magnitude [35]. The standardized data are used as input for principal compo‑
nent analysis. After performing linear mapping on the data, the principal components
are assessed and ranked based on their respective contribution rates. The selection of
the principal components is then carried out by considering the cumulative contribution
rate. The equations for variance contribution ratio and cumulative contribution ratio are
shown below:

αk =
λk

∑n
i=1 λi

(15)

In Equation (15), αk is the variance contribution of principal component k, and λ is the
eigenvalue.

G(k) =
∑k

i=1 λk

∑n
i=1 λi

(16)

In Equation (16), G(k) is the cumulative contribution.
The variance contribution rates for each principal component are shown in Figure 5,

and in the selection of principal components, the top k principal components with a cu‑
mulative contribution greater than 85% are generally selected. With reference to Figure 5,
the cumulative contribution of the primary components, accounting for the four highest
variance contributions, exceeds 85%.
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Hence, the scores obtained from the first four principal components [Y1, Y2, Y3, Y4]
were selected as inputs for the subsequent analysis. The scores of the initial four princi‑
pal components can be derived by multiplying the standardized variables of the original
sample data matrix with the coefficient matrix, as presented in Equations (17) and (18):

Yk = azx1 + bzx2 + . . . + f zx6; k = 1, 2, 3, 4 (17)

In Equation (17), zxi(i ∈ [1, 6]) is a standardized variable for xi.


Y1
Y2
Y3
Y4

 =


0.4018 0.4417 0.4709 0.2197 0.5621 0.2398
0.4489 0.1031 −0.0321 0.4735 −0.2598 −0.7036
0.4399 −0.5851 −0.4788 0.0948 0.4625 0.1099
−0.3535 0.2428 −0.4160 0.7320 −0.0152 0.3272




X1
X2
X3
X4
X5
X6

 (18)

Table 3 displays the scores of the initial four principal components, which were sub‑
sequently utilized as inputs for conducting K‑means cluster analysis.

Table 3. Principal component scores.

Sample Number Y1 Y2 Y3 Y4
1 0.3145 −0.096 −0.6892 0.3413
2 0.6533 −1.6115 −1.0683 1.1215
3 0.4303 −0.0566 −0.722 −0.2946
4 0.5054 −0.3687 −1.2341 −0.3897
︙ ︙ ︙ ︙ ︙
301 −0.3487 −0.6473 0.612 1.1598

3.4. K‑Means Cluster Analysis
The K‑means clustering algorithm is widely utilized in unsupervised machine learn‑

ing to partition a dataset into K‑distinct clusters or classes [36]. It aims to achieve clustering
by minimizing the squared distance between data points and the center of the cluster to
which they belong. The current researchmostly divides driving styles into three categories:
conservative, ordinary, and aggressive. Therefore, in order to obtain the ideal clustering
results, the clustering centers were set to 3. The specific clustering results are shown in
Table 4.
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Table 4. K‑means clustering results.

Center of Clustering Cluster I Cluster II Cluster III

3 76 148 78

Based on the clustering results, it is evident that with three clusters, there is a small
distance observed between each class cluster. By examining the sample counts of the three
class clusters, there is no problem of underclassification or overclassification [37]. There‑
fore, the sample size classification of each class cluster is more reasonable. Moreover, com‑
bining the existing qualitative knowledge of driving styles and the magnitude of the corre‑
sponding characteristic parameter values of the three driving styles, it can be judged that
the three driving styles are aggressive, ordinary, and conservative in order [37]. As shown
in Figure 6, the clustering effect diagram of the 3 driving styles, it can be clearly seen that
the driving styles are divided into 3 types and the boundaries are obvious, which further
proves the rationality of the K‑means clustering results. Among them, the first type of clus‑
ters is aggressive, and the clustering centroids are (1.7,−0.31,−0.43, 0.06); the second type
of clusters is ordinary, and the clustering centroids are (−0.33, 0.67, 0.43, −0.19); and the
third type of clusters is conservative, and the clustering centroids are (−1.03, −0.95, −0.4,
0.3). The results of the K‑means clustering analysis, denoted as dataset γ, are used as the
output of the subsequent driving style recognition model to demonstrate the recognition
effectiveness of the model.
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4. Results
4.1. Model Parameter Setting

Determining the optimal number of nodes in the hidden layer entails finding the right
balance between fitting capacity, computational efficiency, and feature representation. As
specified in Equation (19):

m =
√

n + l + α (19)

In Equation (19), m is the implicit layer’s node count; n is the input layer’s node count;
l is the output layer’s node count; and α is an integer from 1 to 10.

The evaluation criteria for BP neural networks are MSE, RMSE, and MAE, which
are used to compare the performance of the BP model with that of the ACO‑BP model, as
specified in Equations (20)–(22):

MSE =
1
n ∑n

i=1(xi − yi)
2 (20)
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RMSE =

√
1
n ∑n

i=1(xi − yi)
2 (21)

MAE =
1
n ∑n

i=1|xi − yi| (22)

In Equations (20)–(22), n denotes the total number of samples; xi denotes the i sam‑
ple j’s true value; and yi signifies the predicted value of the model for the same sample i.
The smaller the value of MSE, RMSE, and MAE, the more reasonable the corresponding
hidden layer’s node count.

Based on Equation (9), the range of the hidden layer’s node count in the BP neural
network is set between 3 and 12. Using MATLAB to increase or decrease the number of
hidden layer nodes, it is determined that the hidden layer’s node count is 8, and the cor‑
responding mean square error is the smallest, as shown in Table 5. Therefore, the optimal
hidden layer’s node count for the BP neural network is 8. The remaining parameters are
determined according to the actual learning rate and stability, and the learning rate is set
to 0.01, the number of training times is 1000, and the minimum error of the training target
is 10−7.

Table 5. Hidden layer node count of the neural network and the corresponding mean square error.

Number of Nodes in the Hidden Layer MSE

3 0.10167
4 0.11395
5 0.073247
6 0.083814
7 0.12816
8 0.069163
9 0.093453
10 0.11717
11 0.10744
12 0.099546

The parameter setting of the ant colony optimization (ACO) algorithm is mainly con‑
sidered to determine the accuracy of the algorithm and the computing rate. After repeated
validation experiments, the pheromone volatility coefficient is ρ = 0.9, the number of ants
is 10, the momentum factor is 0.1, the learning rate is 0.01, the number of iterations is 1000,
the transfer probability constant is 0.2, the total amount of pheromone release is 1, the
weighting threshold takes the range of [–3, 3], and the maximum number of evolutionary
generations is 50.

The fitness function used for evaluating the performance of the training and test sets
as a whole is the MSE, which is represented by the following equation:

F =
MSEtraingingSet + MSEtestingSet

2
(23)

In Equation (23), trainingSet is the training set sample and testingSet is the test set
sample.

The evolutionary convergence curve of the ant colony algorithm is shown in Figure 7.
It can be observed that the convergence curve has a steep slope, indicating that the ant
colony algorithm tends to stabilize at generation 29. This suggests a fast convergence rate
andminimal fluctuations. The algorithm gradually stabilizes near a good solutionwithin a
smaller number of iterations, illustrating its fast convergence speed. The final convergence
point of the convergence curve is (29, 0.083), which corresponds to 29 evolutionary gener‑
ations. The lower MSE value indicates a better solution, suggesting that the algorithm
has found a higher‑quality optimal solution [38]. This validates the reasonableness of the
selected parameters, which can be used as initial values for the algorithm’s parameters.
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4.2. ACO‑BP‑Based Driving Style Model Identification and Result Analysis
The US‑101 freeway vehicle data in the NGSIM dataset was selected and screened to

identify 301 free‑lane‑changing vehicles that met the requirements. Table 6 presents the
specific sample data.

Table 6. Sample data.

Test Track Sample
Dimension Sample Size Training

Data Test Data Selection
Method

US‑101 6 301 211 90 even‑handed

After the sample data were analyzed by PCA downscaling and K‑means clustering
analysis, the inputs of the driving style model were the top 4 principal component scores
[Y1, Y2, Y3, Y4] with a cumulative variance contribution rate greater than 85%, and the clus‑
tering result dataset of the K‑means clustering analysis was the output of the model. In
order to ensure that the neural network can fully learn the features and patterns of the data,
70% of the data is classified as the training data of the neural network, and the remaining
30% is classified as the test data of the neural network. To ensure the validity of the test
data and enhance the accuracy of the model’s recognition, the selection of data samples
was determined based on the outcomes of the K‑means clustering analysis. Specifically,
the sample set is composed of 25% radical data, 49% ordinary data, and 26% conserva‑
tive data.

MATLAB is used to simulate and analyze theACO‑BPdriving style recognitionmodel,
and the errors and accuracies of the simulated model are shown in Table 7. The ACO‑BP
model achieves a recognition accuracy of 96.7%, showing a significant improvement of
6.7% compared to the BP model’s recognition accuracy of 90%. The errors of the ACO‑BP
model are smaller than those of the BP model, and the accuracy of recognition surpasses
that of the BP model. The simulation results comparing the recognition errors of the BP
model and the ACO‑BP model are shown in Figure 8. It is evident that the optimized
model has fewer error points, resulting in smoother graphs. The error values of all points
tend to be closer to 0.
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Table 7. Simulation results of the driving style model.

Model MAE MSE RMSE Recognition Accuracy

BP 0.1222 0.1444 0.38006 90%
ACO‑BP 0.0333 0.0333 0.1937 96.7%
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The ACO‑BP driving style recognition model has a clear advantage in terms of the
overall error of the two models, with higher recognition accuracy. However, according
to the relevant research, due to the more uncertain and dangerous driving behavior of
aggressive‑style drivers, they have significantly higher accident rates than the other two
driving styles. Therefore, at the same time, the ACO‑BP model is required to recognize
the effect of each driving style and cannot have a large error in order to prevent the over‑
fitting problem.

To further investigate themodel’s effectiveness in recognizing driving styles in amore
detailed manner, individual simulations are conducted to examine the impacts of identify‑
ing the three driving styles. The simulation results are shown in Figures 9 and 10, which
clearly show that the ACO‑BP model has only 1, 0, and 2 samples producing recognition
errors for each of the three driving styles of aggressive, ordinary, and conservative, respec‑
tively, while the BP model has 4, 2, and 3 samples producing recognition errors for each of
the three driving styles, respectively. This indicates that, more than just the overall error,
the ACO‑BP model has better recognition accuracy than the BP model. When targeting
different types of driving styles, the ACO‑BP model is able to perform good recognition,
and the recognition accuracy does not vary greatly due to the change in driving styles.

The specific recognition accuracy results for the 3 driving styles are shown in Table 8,
which shows that for different driving styles, the recognition accuracy of the ACO‑BP
model is higher than that of the BP model. For the three driving styles of aggressive, nor‑
mal, and conservative, the recognition accuracies are much improved, respectively: 13.7%,
4.4%, and 4.3%. It further proves the recognition accuracy and recognition value reliabil‑
ity of the ACO‑BP model, and the recognition effect has obvious advantages for such an
accident‑prone driving population as the aggressive type.
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Table 8. Model recognition accuracy of different driving styles.

Model Aggressive Ordinary Conservative

BP 81.8% 95.6% 87%

ACO‑BP 95.5 100% 91.3%

The driving style recognition speeds of the BP driving style recognitionmodel and the
ACO‑BP driving style recognitionmodel are shown in Figures 11 and 12, respectively. The
slowest recognition speed for the BP driving style recognitionmodel is 8ms, and the fastest
recognition speed is 5 ms. For the ACO‑BP driving style recognition model, the slowest
recognition speed is 7 ms, and the fastest recognition speed is 5 ms, with a relatively uni‑
form distribution within the range. The results indicate that, although ACO‑BP is a hybrid
model, it has not been significantly affected, as the recognition speed remains fast. Com‑
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pared to the BP model, the recognition speed of the ACO‑BP model is more even, and
the speed range is more compact. Therefore, the ACO‑BP driving style recognition model
demonstrates better real‑time performance compared to the BP driving style recognition
model, enabling better adaptation to the actual road conditions of autonomous vehicles. It
allows for timely recognition of driving styles, the avoidance of hazardous driving behav‑
iors, and the improvement of driving safety.
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5. Discussions
The comparison of the ACO‑BP driving style recognition model with the BP driv‑

ing style recognition model alone yields relatively limited results. Therefore, the artificial
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neural network (ANN) driving style recognitionmodel and the gradient boostingmachine
(GBM) driving style recognitionmodelwere introduced to compare accuracy and real‑time
performance. The simulation results are shown in Figure 13. It can be observed that, com‑
pared to the ACO‑BP model’s three error points, the ANN model has eight error points,
and the GBM model has 18 error points. The ACO‑BP model exhibits significantly fewer
errors in sample recognition in comparison to the ANN and GBM models. This indicates
that the ACO‑BPmodel possesses a greater advantage in terms of recognition accuracy, en‑
abling better differentiation of driving styles. The chances of avoiding aggressive driving
styles are enhanced, which ensures better road safety in autonomous driving.
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The driving style recognition speeds of the artificial neural network (ANN) driving
style recognition model and gradient boosting machine (GBM) driving style recognition
model are shown in Figures 14 and 15, respectively. The slowest recognition speed for
the ANN model is 9 ms, while the fastest recognition speed is 5 ms. On the other hand,
the fastest recognition speed for the GBMmodel is 10 ms, whereas the slowest recognition
speed is 7 ms. Compared to the ANN model, the GBM model exhibits relatively slower
recognition speed.

In this paper, the recognition accuracy and speed ranges of the four driving style
recognition models mentioned are shown in Table 9. First, in terms of recognition accu‑
racy, the ACO‑BP model has the highest recognition accuracy, significantly higher than
the other three driving style recognition models. This ensures the ability of autonomous
vehicles to accurately distinguish risky driving behaviors and timely avoid driving risks.
Secondly, the recognition speed range of theACO‑BPmodel is close to that of the BPmodel,
and it is the lowest among the four models. However, by observing the simulation results
of the recognition speed of the four models, it is evident that the recognition speed range
distribution of the ACO‑BP model is the most uniform, with most samples having a recog‑
nition speed of 5 ms or 6 ms and only a small number of samples having a recognition
speed of 7 ms. This ensures the real‑time recognition of driving styles for autonomous
vehicles, allowing them to make the fastest recognition while driving on actual roads.
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Table 9. Recognition results of driving styles for each model.

Model Recognition Accuracy Recognition Speed Range (ms)

ACO‑BP 96.7% [5,7]
BP 90% [5,8]

ANN 91.11% [5,9]
GBM 80% [7,10]
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6. Conclusions
To summarize, the key findings of this research are:

1. Throughprincipal components analysis andK‑means clustering analysis, itwas found
that when driving styles were divided into three classes, the clustering effect was bet‑
ter, and there was no underclassification or overclassification problem.

2. The model error simulation results before and after ACO show that the ACO‑BP
model demonstrates superior overall recognition accuracy compared to the BPmodel,
indicating that the recognition accuracy of the ACO‑BP driving style recognition
model was improved and the reliability was better.

3. The recognition effect of the ACO‑BP and BP driving style recognition models on
different driving styles shows that, in terms of classification and recognition accuracy,
theACO‑BPmodel has a better classification and recognition effect than the BPmodel,
especially for aggressive‑type accident‑prone people, and the accurate recognition of
this kind of driving style is conducive to the timely avoidance of risks.

4. To further verify the identification accuracy and real‑time performance of the ACO‑
BP model, the ANN and GBM models are introduced. The results demonstrate that
the ACO‑BP model achieves optimal identification accuracy and real‑time recogni‑
tion speed.
In general, the ant colony optimization of the BP neural network demonstrates higher

reliability in autonomous driving style recognition. However, due to the limitations of set‑
ting conditions when screening the data, the sample data is small, and the driving style
recognition results are poor in macroscopic. The following research will incorporate prac‑
tical autonomous vehicles to conduct identification experiments in various road environ‑
ments and optimize the system accordingly.
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