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Abstract: Current–voltage characteristic curves of NFinFET are presented and fitted with modified
current–voltage (I-V) formulas, where the modified term in the triode region is demonstrated to
be indispensable. In the as-known I-V formula, important parameters need to be determined to
make both the measured data and the fitting data as close as possible. These parameters include kN

(associated with the sizes of the transistor and mobility), λ (associated with early voltage), and Vth

(the threshold voltage). The differences between the measured data and the fitting data vary with the
applied source–drain bias, proving that the mobility of the carriers is not consistently constant. On
the other hand, a modified formula, called the kink effect factor, is negatively or positively added,
simulating solitary heat waves or lattice vibration, which disturb the propagation of carriers and thus
influence the source–drain current (IDS). The new statistical standard deviations (δ) are then found to
be effectively suppressed as the kink effect is taken into account.

Keywords: kink effect; solitary wave; phonons

1. Introduction

Transistors fabricated in the semiconductor industry successfully achieve various
desired functions, including signal processing, data calculation, and decision making. All
the functions are associated with memory transfer at a comparable speed. So, the size of
the transistor continues to shrink, not mainly for the benefits of increasing the number of
integrated circuits (IC). The speed of the ICs somehow becomes the pursued goal. Three
concerns appear manifested in a sense. They are the outrageous loss of controllability,
unavoidable heat, and unexpected limitations of photolithographs. The controllability,
closely related to the leakage current, is due to proportional dimension shrinkage, even if
some adopted prevention, including halo implant or pocket implant, is taken into account
at the planar device level. In addition, the promotion of electrical performance at the
same scale using the compressive or tensile stress technique is seriously considered as well.
Unfortunately, channel lengths below tens of nanometers seem not to work out any more
as desired, no matter what has been adopted. Instead of a planar bulk silicon substrate,
there comes a 3D structural fin-like field effect transistor (FinFET) and gates all around
the field effect transistor (GAAFET), which make use of a slim strip of epitaxial silicon as
a body substrate wrapped by insulator-separated gate poly-silicon. The strip of channel
substrate is depleted as the gate poly-silicon is applied with a bias. This bias causes the
depletion region of the substrate strip to impressively and effectively block the leakage
current in between the source and drain. As for the generated heat, it is basically linked
to the equivalent resistors, whose resistance is actually proportional to the length of the
resistor and inversely dependent on the area of the cross-section. The resistance of the
decreasing dimension soars, making the increasing Ohm’s heat tremendously degrade its
electrical performance and thus competitively lose leading status. Therefore, the conduction
of heat dominates the whole process flow and material choice. Copper is thus preferred for
its higher conductivity. The exposure of ultra-violet rays suggests diffraction immunity,
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which is identified as the use of a shorter wavelength, improvement in the refraction angle
(refractive index, n), and subtle design and combination of masks. Traditional optics and
modern optics are both utilized or designed to resolve diffraction issues.

Furthermore, the electrical performances for any transistor have to be reliable and
repeatable. Models are thus proposed to address these electrical performances. They are
able to fit the measured characteristic curves. All the circuit designs, including analog and
digital, rely solely on the established model. Research has to be undertaken to understand
the electrical data. The most commonly used formulas have been posed for over many
decades, and they surely reduce the tremendous work on the design level. Therefore,
current-versus-voltage characteristic curves showing the electrical performances of transis-
tors are necessarily parameter-extracted in the model. Nevertheless, researchers are still
intrigued to know if the “modified” conventional formula is applicable for fitting repeated
characteristic curves [1–14]. Useful parameters are supposed to be constants in the model,
even though they need interpreting. For example, mobility is a constant at a certain fixed
VGS. But the mobility may be different at different VGS [15].

Moreover, one thing that causes attention is carriers traveling in crystallized silicon,
which is a diamond structure. The crystal thermally vibrates at a certain temperature,
causing trouble for the carriers. As the carriers speed up, they confront more obstacles.
More obstacles generate more heat and more friction, which may slow down the carriers,
especially in the triode region. For example, in our daily life, rain falls at an almost constant
terminal speed near the ground, addressing a similar situation.

In this study, the as-measured (IDS and VDS) data are referred to the transistors fabri-
cated using the 3D FinFET structure process. Each piece of (IDS and VDS) data corresponds
to the terminal speed that determines the IDS at the applied bias, VDS. The “modified”
conventional I-V characteristic curve formulas in Equation (1) with λ (the inverse of the
absolute value of the early voltage, VA) are deliberately introduced in the triode region
for a VDS less than (VGS-Vth), whereas Equation (2) is kept unchanged for the saturation
regime. A delta deviation in Equation (3) for the whole fitting is suggested and effectively
reduces the discrepancy between the fitting data and the measured data. In addition,
the solution to a non-linear differential equation, called the sine-Gordon equation, is first
proposed for addressing a solitary wave, which is some kind of phonon coming from
quantized sounds or vibrations. The drawn curve of the function of this nonlinear solution
against time is intriguing, because the curve is quite similar to the characteristic curves
of MOSFET transistors or bipolar transistors. The derivative of the solution is proven
to be somewhat Gaussian and is introduced to further reduce the delta deviation in the
electrical characteristic curves, which is really encouraging. A transistor with a channel
length L = 100 nm is first posed to demonstrate the fitting capability without or with a kink
effect. For transistors with a longer channel length, such as a 180 nm long transistor, fittings
without or with kink are again tried and shown to be useful even with a gate bias as high
as 3 V applied. Finally, newer data at channel length L = 90 nm are then expected to repeat
the same as that proposed.

2. Preparation of as Measured Data and Fitting
2.1. Preparation

The as-measured (IDS and VDS) data are obtained through the probe station on FinFET
technology, which uses epitaxial silicon grown on silicon wafer and a dry-etched floated
island “I” with two head ends as the source and drain and the channel in between two ends.
The dry oxide of 14 angstrom film on the slim sides of the floated island “I” followed by
4000 angstrom poly-silicon as Gate makes the transistor look like a fin after polysilicon dry-
etching. The measured data and self-generated data coming from the modified conventional
formulas in Equations (1) and (2), as following in the next paragraph, are merged into one
graph for a comparison of fitting.
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2.2. Fitting IDS-VDS and IDS-VGS

For MOSFET devices, the commonly conventional formula is derived as follows by
starting with JDS, the current density:

IDS
WD = JDS = neµ dV

dl ;
L∫

0
IDSdl =

VDS∫
0

µW(neD)dV;

IDS = µW
L

VDS∫
0

(neD)dV

where W and D denote the channel width and channel depth after strong inversion, n
means the density of the carriers, and e = 1.6 × 10−19 coulomb signifies the charge of the
carriers. Also, neD = Q(1) = C(1)∆V = C(1)(VGS−Vth−V) is treated as the carrier charge per
unit area charging in the unit capacitance C(1), and µ (the mobility of carriers) is treated as
a constant at a fixed VGS for the integration over the channel voltage from 0 V to VDS. In
addition, the term, (1 + λVDS), is deliberately added in the triode region as compared to
the conventional one when both the short-channel effect and charging sharing model are
taken into account to address the channel length, L = Lo(1 + ∆L/Lo). The modified formulas
are then proposed in Equation (1):

IDS(triode) = µWC(1)

Lo
[(VGS −Vth)VDS −

V2
DS
2 ](1 + λVDS)

−α exp[−β(V DS − χ)2]
(1)

and
IDS(saturation) = µWC(1)

Lo
[ (VGS−Vth)

2

2 ](1 + λVDS)

− α exp[−β(V DS − χ)2]
(2)

Somehow, without or with the added term, (1 + λVDS), in the triode region in
Equation (1), the discontinuity may appear or disappear as the triode region goes on to the
saturation region, as shown in Figure 1. The coefficients (α and β) in Equations (1) and (2)
are referencing parameters for the kink effects. α (A) is mainly the maximum subtracted or
added current, and β (1/V2) is from −10 to −20, depending on how wide the kink is. χ is
always found to be located around χ = VGS − Vth.

2.3. The Delta Deviation

The fitting data from Equations (1) and (2) are deliberately used to fit the as-measured I-
V characteristic curves. Those parameters are mainly determined predominantly according
to the minimum delta (δ) in the following Equation (3):

δ =

√√√√√ N
∑

i=1
(I f itting − Imeasured)i

2

N
(3)

For example, the final value of kN is determined to be 1.49 × 10−4(A/V2) through the
smiling curve as the minimum delta is located in Figure 2 [16,17].
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Figure 1. IDS-VDS characteristic curves of FinFET transistor (fin width = 120 nm and channel
length = 90 nm) and the corresponding fitting (a) without the term, (1 + λVDS), in the triode re-
gion in Equation (1) and (b) with the term, (1 + λVDS), in the triode region in Equation (1).

2.4. The Kink Effect

The gate bias strongly inverses the channel layer, whose thickness is about
200 Angstroms [15,16]. The collective free carriers (electrons) travel through the chan-
nel, which is a grossly periodic diamond structure of silicon (double face-center cubic).
For simplicity, the electrons are assumed to travel in one dimension from source to drain
(1, 0, 0) via center to center or corner to corner. Even if those carriers are collective, the
interactions among them are thought to be weak enough to be ignored, such that each
of them is treated as individual without losing generality. The variation in the potential
energy of an electron is realized as sinusoid due to the periodic diamond structure. A free
electron is also supposed to surpass the attraction force from the field of the periodic ion
cores. Therefore, instead of V = Vo [1 − cos(2πx/lo)], with lo as a periodic referencing
length, the potential energy density is deliberately written as V(φe) = (a/b)[1 − cos(bφe)],
where V(φe) is non-negative. Actually, φe inside the argument is nothing new, e.g., the
differential equation of the azimuth angle of a pendulum swinging back and forth. An
electron moves from a constant potential (ground/source) to the next constant potential
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(VDS/drain), where a collective IDS is measured and marked. As the VDS is increased, the
corresponding collective IDS is measured and recorded again until the current becomes
saturated when the applied VDS is high enough. The whole characteristics are then con-
structed, just like a series of (VDS and IDS) pictures, which are applicable for digital usages,
amplifiers, and mixers, etc. Wherever an electron is located in the channel, the electric field
varies not only because of different locations, but also because of different VDS. This may be
the reason why a nonlinear equation is considered. The carriers and electrons are fermions,
but there is no loss of generality to treat the electron wave function as Ψe = ∑

α
ϕe_αψ f _α,

where ψ f obeys Fermi–Dirac statistics. The non-linear differential equation, addressing a
moving electron scalar field, ϕe, in the strongly inversed layer, refers to the Lagrangian as
follows:

L = 1
2 (

∂ϕe
c∂t )

2
− 1

2 (
∂ϕe
∂x )

2
−V(ϕe)

where
V(ϕe) =

a
b (1− cos bϕe)

and
∂
∂t

∂L
∂(

∂ϕe
∂t )

+ ∂
∂x

∂L
∂(

∂ϕe
∂x )
− ∂L

∂ϕe
= 0

∂2 ϕe

c2∂t2 −
∂2 ϕe

∂x2 + a sin bϕe = 0 (4)

which is named as the sine-Gordon equation [18]. The moving electrons accelerated by the
electrical field confront phonons with a group velocity c of thousands of meters per second
in the lattice [18]. These electrons quickly reach the speeds that are sometimes higher than
and sometimes lower than the so-called terminal speed. The space–time variables are
adjusted with respect to the referencing frame as follows:

ϕe(x, t) = fe(x− vt) = fe(ξ)

where
ξ ≡ x− vt

Equation (4) thus reduces to the following form, with b as a dimensional adjusting
parameter:

∂2 ϕe

∂ξ2 − ab−1(1− v2

c2 )
−1

sin bϕe = 0 (5)

The non-linear solution of Equation (5) is expressed as:

fe(ξ) =
4
b arctane±γξ

where

γ =
√

a(1− v2

c2 )
−1/2

(6)

If the nonlinear solution y = arctan[exp(t/2)] versus t looks like IDS −VDS characteristic
curves of transistors, such as MOSFET or Bipolar Junction Transistor (BJT), the slopes of
the curves result in speed variations in the carriers that would cause heat dissipation
problems, because the slope maximum is equivalent to the speed maximum that causes
extra heat. Referring to the IDS derivative to the VDS with the VGS fixed, the slope means
the speed variations in carriers, which may cause a heat dissipation issue and thus a
corresponding mini-scale impact on adjusting the speeds of the carriers microscopically.
The peak of the derivatives is always at the center, meaning that the maximum changing
pace leaves heat radiation, called Bremsstrahlung radiation, or braking radiation. Some
other similar examples like synchrotron radiation may happen. These radiations causing
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the corresponding current corrections are intrinsically proportional to the slope (the peak,
which is proven to be Gaussian-like).

d f (ξ)
dξ = (4/b)γeγξ

1+e2γξ = (4/b)γ
eγξ+e−γξ

→ (2/b)γ(1− γ2ξ2

2 )→ (2/b)γ exp[− γ2ξ2

2 ]
(7)
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skill in the following Equation (3) (b) Nonlinear solution y = arctan[exp(t/2)] versus t looks like
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slope maximum is equivalent to the speed maximum variation (acceleration) that causes extra heat.
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Therefore, the variations in IDS in Figure 3a are easier to modify by using the above
Gaussian form, followed by Figure 3b with the minimum delta reduced. The final fitting
results are shown in Figure 3c.
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3. Application

The minimum delta (δ) in Equation (3) can be used to determine the chosen parameters
without considering kink effects, which are listed in Table 1 [8]. In the table, the minimum
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delta at different gate biases requires different kn, lambda (λ), and threshold voltages. For
one thing, the slope of lambda addressing the leakage current dominates a rough minimum
delta. As referred to Figure 4a, the fitting is not as good. The differences between the fitting
current and the measured current at various VDS’s are demonstrated in Figure 4b, where the
peaks at different VGS are located at different VDS, named “kinks” in Table 1. Surprisingly,
the strong correlation gives a straight line passing the origin as the kink is plotted against
(VGS − Vth), as shown in Figure 5a. That is to say, the kink is always proportional to
(VGS − Vth). In addition, kN containing mobility, µ, is proportional to (VGS − Vth)−1/3, as
shown in Figure 5b [15].

Table 1. Transistors using 0.18 micron process technology with where kink is located.

Gate Bias (V) kN (A/V2) Vth_fit (V) λ (1/V) Kink (V)

VGS = 1.00 V 0.2 0.625 0.134 0.35
VGS = 1.50 V 0.176 0.880 0.084 0.58
VGS = 2.00 V 0.156 1.14 0.048 0.80
VGS = 2.50 V 0.143 1.46 0.05 0.94
VGS = 3.00 V 0.128 1.78 0.05 1.06
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(VGS − Vth)−1/3. (c) IDS − VDS characteristic curves and the corresponding fitting closely appear
through elimination on kinks. (d) The differences between the fitting current and the measured
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With taking kink effects into account, as shown in Figure 5, the deviation (delta) can
be suppressed as low as 10−7, and the fitting is improved a lot in Figure 5c,d. When
turning off kink effects, as shown in Figure 5a,b, the fitting curves are always lifted up at
VDS ~ (VGS − Vth) as compared to the as-measured data. To take care of the issue in which
fitting curves are commonly lower than as-measured currents, the kink effects are thus
considered. The solitary waves can be in thermal form, or maybe in phonons. The electron
might be deflected because of collisions with phonons, and those collisions may cause the
degradation of electrical performances. The item is thus introduced and subtracted, which
is proportional to the exponential with the Gaussian form, as seen in Equations (1) and (2).
In Figure 5c,d, the fitting is really encouraging. The enlarged figure in Figure 5d does
enhance the fitting.

4. Discussions

The as-measured data redrawn as characteristic curves can be fitted with the ones
based on the modified conventional current–voltage formula. Even though it is quite
engineering, such a fitting may be quite easy to be undertaken. The parameters are easily
determined if the parameters are not required to keep the same. Instead, the trends or
scales of some specific parameters always give some information [16,17]. Moreover, the
kink effects really exist, as referred to Figure 4a,b, for the 0.18-micron process, where the
determined parameters for characteristic curves are listed in Table 1, as well as Figure 6a,b
for the 0.09-micron process, where the determined parameters for characteristic curves are
listed in Table 2. A kink effect model will efficiently help to work out the fitting, e.g., the
sets, (Figures 4a,b, 5c,d, 6a,b and 7a,b), where the minimum delta (δ) is highly reduced,
as expected.
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Figure 6. FinFET 0.090 micron process (a) IDS-VDS characteristic curves and the correspond-
ing fitting without taking kink-effect factor into account. (b) The differences between the fit-
ting current and the measured current at various VDS’s are demonstrated. Standard deviations:
δ0.25 = 2.28 × 10−7, δ0.5 = 2.11 × 10−7, δ0.75 = 2.32 × 10−7, δ1.0 = 2.27 × 10−7.

Table 2. Transistors using 0.09 micron process technology with where kink is located.

Gate Bias (V) kN (A/V2) Vth_fit (V) λ (1/V) Kink (V)

VG = 0.25 V 8.90 × 10−5 −0.132 0.138 0.35
VG = 0.50 V 7.40 × 10−5 −0.140 0.120 0.58
VG = 0.75 V 6.88 × 10−5 −0.100 0.110 0.79
VG = 1.00 V 6.60 × 10−5 −0.020 0.106 0.89

By comparing the FinFET 0.09-micron process with the TSMC 0.18-micron process,
both share the same characteristics: one is for where the kinks are located and the other
is for the electrical-field-associated mobility. As demonstrated in Figure 5a,c, kinks, χ’s,
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are almost located at VDS, which is linearly dependent on (VGS − Vth), meaning that there
exists a strong correlation between the kink and the connection at the end of the triode
region. Also, Figure 5b,d show that kN tends to be proportional to (VGS − Vth)−1/3 and
that the mobility (µ) of the carriers is then understood to be due to delaying effects at the
interface of the strongly inversed layer with the oxide, as shown in Equation (8): [15]

µ = κ(VGS −Vth)
−1
3 (8)

As for α and β in Equations (1) and (2), the maximum discrepancy between the fitting
current and the measured current always helps to identify α, while the width of the kinks
at a certain VGS determines what β value is more adequate. Both parameters are intriguing
to explore profoundly in the near future [19].
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The as-measured current–voltage characteristic curves are fitted with three main pa-
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course, identifying α, β, and χ in Equations (1) and (2) may be according to the preliminary 
fitting results. Furthermore, the abstracted kN is associated with the mobility, which is 

Figure 7. Shows 0.090 micron process (a) IDS − VDS characteristic curves and the corresponding
fitting through elimination on kink. (b) The differences between the fitting current and the mea-
sured current at various VDS’s are demonstrated through elimination on kink. Standard deviations:
δ0.25 = 5.28 × 10−8, δ0.5 = 9.78× 10−8, δ0.75 = 6.06× 10−8, δ1.0 = 5.88× 10−8 (c) the strong correlation
gives a straight line passing the origin as the kink is plotted against (VGS − Vth) (d) kN containing
mobility, µ, is inversely proportional to (VGS − Vth)−1/3. on kinks.

Nevertheless, a model might be useful, especially for circuit design, including digital
and analog circuits. A useful generated model provides well-fitted curves and matches
the measured characteristic curves as possible as expected. In this study, some parameters
are used to fit the characteristic curves, which, instead of using many equivalent circuits
to complete the fitting, is thought to be more practical and feasible. Once the process



Appl. Sci. 2023, 13, 12379 14 of 15

technique is mature and all the transistors repeat from wafer to wafer, there will be stable
manufacturing that supports the model establishment [20].

5. Conclusions

The as-measured current–voltage characteristic curves are fitted with three main
parameters, (kN, Vth, and λ). In this study, the cited kinks are supposed to be associated
heat or phonons, and the eliminations of those kinks make the fitting more advisable. Of
course, identifying α, β, and χ in Equations (1) and (2) may be according to the preliminary
fitting results. Furthermore, the abstracted kN is associated with the mobility, which is
dependent on the applied gate biases. Wishfully, in the near future, the Vth and λ may help
to provide extra information after fitting as well. This fitting algorithm may be a feasible
way of helping to profoundly understand transistors.
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