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Abstract: In order to design a low-noise water-filled pipeline system, it is necessary to obtain
knowledge of the dispersion characteristics of axial propagation modes in different water-filled elastic
tubes. In this work, an algorithm is developed based on the spectral method, which has previously
been used to solve the dispersion of axisymmetric modes in cylindrical structures but has not yet been
applied to non-axisymmetric modes. The algorithm can obtain the dispersion characteristics, modal
displacement, and stress distribution of axial propagation modes in a fluid-filled elastic multi-layer
tube. The algorithm behaves well both at low and ultrasonic frequencies, and it is suitable for any
tube dimensions, wall thickness and layers. The results of a water-filled PMMA tube obtained using
the spectral method algorithm were verified using a COMSOL simulation, while the dispersion
curves of the same tube from the literature were found to be missing some low-order modes. In
addition, the dispersion curves of a water-filled three-layer tube are given. The spectral method
algorithm has the advantages of fast calculation speed, less computational resources consumed,
accurate results, and no modal omission.

Keywords: spectral method; non-axisymmetric modes; fluid-filled elastic tubes; dispersion characteristics

1. Introduction

Fluid-filled pipeline systems are widely used in engineering. Pumps, valves, and
other pipeline system components often vibrate during operation. Vibrational energy
propagates in the fluid and pipe walls in the form of waves, producing a negative effect on
the system performance and the surrounding environment. Axially propagating waves
contain axisymmetric and non-axisymmetric modes related to frequencies. The accurate
and efficient calculation of dispersion curves of theses modes and the corresponding
displacement and stress distribution is a key step in studying the dispersion characteristics
of propagation modes in a fluid-filled elastic tube, which lays a theoretical foundation
for the subsequent design of low-noise pipeline systems and non-destructive pipeline
testing tools.

A great deal of research has been carried out on the dispersion characteristics of axi-
ally propagating modes in hollow cylindrical shells and fluid-filled tubes. Jacobi [1] took
the ideal liquid cylinder as a research object and obtained the dispersion curves of low-
frequency axisymmetric modes under various non-dissipative boundary conditions: rigid
walls, pressure-release walls, an infinite liquid boundary, liquid walls, and thin solid walls.
In order to study propagation modes over a wider frequency range, Lin and Morgan [2]
used the approximate equations governing the motion of an elastic tube wall to derive the
characteristic equation of the modes. Gazis [3,4] described the motion of cylindrical shells
using the linear elastic theory proposed by Pochhammer [5] and Chree [6] and obtained
the eigenmode characteristic equation of an infinitely long isotropic hollow cylinder. Del
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Grosso [7] calculated the dispersion relation of axially propagating modes in liquid-filled
tubes with arbitrary wall thicknesses based on the exact longitudinal and transverse wave
equations. Kumar [8] obtained the dispersion equation of axially propagating modes in a
liquid-filled cylindrical shell using the exact three-dimensional linear elastic equation and
the fluid motion equation and discussed the characteristics of the bending mode (n = 1).
Using the theory of Del Grosso [7], Lafleur and Shields [9] calculated the dispersion relation
of axisymmetric propagating modes in a water-filled elastic tube. Using linear elasticity and
classical perfect slip boundary conditions at the solid–fluid boundary, Sinha et al. [10,11]
analyzed the behavior of axisymmetric longitudinal waves in cylindrical shells with differ-
ent internal and external fluids and also carried out an experimental verification. Easwaran
and Munjal [12] used the same method to study the lowest-order acoustic modes in a
liquid-filled impedance tube. Greenspon and Singer [13] replaced the elastic constants in
the three-dimensional elastic equation with complex viscoelastic material parameters and
studied the axisymmetric modes and non-axisymmetric modes in a liquid-filled viscoelastic
tube. Berliner and Solecki [14,15] also derived the dispersion equation of wave propagation
in a transversely isotropic elastic tube from the three-dimensional elastic equation and
discussed the dispersion characteristics of the non-axisymmetric mode n = 1. Baik [16]
applied Del Grosso’s [7] theory to viscous liquids to predict the decay of axisymmetric
modes in liquid-filled tubes.

The common aspect of the above research is that the modal dispersion characteristics
were obtained by the so-called “root-finding method”. As for a multi-layer wave guide, the
traditional ways of constructing system matrices are the transfer matrix [17,18] technique
and the global matrix [19] technique. When the thickness of the multi-layer model is large
or the solving frequencies are high, the transfer matrix technique is prone to numerical
instability [20], and although the global matrix technique does not have this problem, its
matrix size becomes larger as the number of model layers increases, and the solving process
of the characteristic equation becomes extremely slow.

The spectral method has been widely used in fluid dynamics since the 1970s [21,22],
but it was not until 2004 that it was first introduced to acoustic engineering by Adamou [23]
for solving the dispersion equation of modes in elastic waveguide structures. Research has
shown that the spectral method is easier to implement in a numerical program than the
traditional root-finding method, provides faster calculation speeds, and is more suitable
for dealing with curving, damping, and inhomogeneous and anisotropic model problems.
Using the spectral method, Karpfinger et al. [24,25] developed a set of algorithms for solving
the dispersion characteristics of axisymmetric modes in multi-layer cylindrical structures.

To date, there has been no research on the dispersion characteristics of non-axisymmetric
modes in fluid-filled elastic tubes using the spectral method. In this paper, a new algorithm
based on the spectral method is proposed, which obtains the dispersion curves of the
axial propagation modes in fluid-filled elastic tubes. It can also calculate the displacement
distribution and stress distribution of the axial propagation modes in the radial direction.
The algorithm proposed here works well in spite of tube dimensions, wall thickness, layers
and frequency ranges. The results of the algorithm are verified using a COMSOL simulation.
We found that there existed some modes omission of the dispersion curves presented in the
literature [26].

2. Theory
2.1. Wave Equations

In this section, using linear elastic theory, the governing wave propagation equations
in the elastic tube wall and the fluid are derived, respectively. The corresponding boundary
conditions at different interfaces are given.

Figure 1 shows an infinite, homogeneous, and isotropic fluid-filled elastic tube model.
The inner radius of the tube is r1, the outer radius is r2, and the cylindrical coordinate
system (r, θ, z) is established with the axis of the cylindrical tube as the z-axis. Waves
propagating along the axial direction in a fluid-filled elastic tube can be divided into
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longitudinal waves and torsional waves, both of which have axisymmetric modes and non-
axisymmetric modes [27]. In some references, longitudinal and torsional waves are defined
as waves with only axisymmetric modes, and waves with non-axisymmetric modes are
collectively called flexural waves. In this paper, the positive integer n is used to represent
the circumferential order of the mode, and the axisymmetric mode satisfies n = 0.
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Figure 1. The infinitely long, uniform, isotropic fluid-filled elastic tube model.

For the elastic tube model in Figure 1, assuming that the outer surface satisfies the
stress-free boundary condition, the wave equation governing the propagation of elastic
waves [27] is

µ∇2
→
U + (λ + µ)∇∇ ·

→
U = ρ

∂2
→
U

∂t2 (1)

where
→
U represents the displacement field, which is a function of the three cylindrical

coordinates and time. The bulk wave velocities in the elastic material are determined by
the density ρ and the Lamé constants λ and µ. If c1 represents the dilatational longitudinal
bulk wave velocity and c2 is the shear bulk wave velocity, then

c1 =

√
λ + 2µ

ρ
(2)

c2 =

√
µ

ρ
(3)

The displacement field
→
U can be described using the dilatational scalar potential Φ

and the equivoluminal vector potential
→
Ψ:

→
U = ∇Φ +∇×

→
Ψ (4)

Substituting Equation (4) into Equation (1) gives

∇2Φ =
1
c2

1

∂2Φ
∂t2 (5)

∇2
→
Ψ =

1
c2

2

∂2
→
Ψ

∂t2 (6)

Using elasticity theory, the potentials Φ and
→
Ψ have the following form in cylindri-

cal coordinates:

∇2Φ =

(
∂2

∂r2 +
1
r

∂

∂r
+

1
r2

∂2

∂θ2 +
∂2

∂z2

)
Φ (7)
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∇2
→
Ψ = ∇2

(
ϕr
→
e r + ϕθ

→
e θ + ϕz

→
e z

)
=
(
∇2 ϕr − 1

r2 ϕr − 2
r2

∂ϕθ
∂θ

)→
e r +

(
∇2 ϕθ − 1

r2 ϕθ +
2
r2

∂ϕr
∂θ

)→
e θ +∇2 ϕz

→
e z

(8)

Gazis [3] presented expressions for the potentials satisfying Equations (5) and (6):

Φ = φ cos nθei(kzz−ωt)

ϕz = ϕ1 sin nθei(kzz−ωt)

ϕr = ϕ2 sin nθei(kzz−ωt)

ϕθ = ϕ3 cos nθei(kzz−ωt)

(9)

where the integer n is known as the circumferential order of a wave mode and kz is the
axial wavenumber. φ, ϕ1, ϕ2, and ϕ3 are unknown functions related only to r.

Let
h1 = ϕ2 + ϕ3
h2 = ϕ2 − ϕ3
h3 = ϕ1

(10)

Substituting Equation (9) into Equations (5) and (6), and dropping ei(kzz−ωt), after a
series of mathematical transformations, the equation of a wave propagating in an infinitely
long, homogeneous, and isotropic elastic tube wall can be obtained as(

∂2

∂r2 +
1
r

∂
∂r −

n2

r2 + ω2

c2
1

)
φ = k2

zφ(
∂2

∂r2 +
1
r

∂
∂r −

(n−1)2

r2 + ω2

c2
2

)
h1 = k2

zh1(
∂2

∂r2 +
1
r

∂
∂r −

(n+1)2

r2 + ω2

c2
2

)
h2 = k2

zh2(
∂2

∂r2 +
1
r

∂
∂r −

n2

r2 + ω2

c2
2

)
h3 = k2

zh3

(11)

The wave equation in the fluid is

∇2Φ f l =
1

c2
f l

∂2Φ f l

∂t2 (12)

where the subscript f l represents the fluid and c f l is the sound velocity of the fluid in
the tube.

The displacement potential function Φ f l is

Φ f l = φ f l cos nθei(kzz−ωt) (13)

Substituting Equation (13) into Equation (12), the equation of an acoustic wave propa-
gating in the fluid is obtained as(

∂2

∂r2 +
1
r

∂

∂r
− n2

r2 +
ω2

c2
f l

)
φ f l = k2

zφ f l (14)

2.2. Boundary Conditions

In order to obtain the dispersion equation of axial propagation modes in a fluid-filled
elastic tube, it is necessary to set reasonable boundary conditions.

If the elastic tube wall is composed of multi-layer materials, at the solid 1–solid 2
interface, the continuous condition to be satisfied is that the displacement components
ur, uθ , uz and the surface stress components τrr, τrθ , τrz in the solid 1 are equal to the
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corresponding components in the solid 2, as shown in Equation (15). Subscripts s1 and s2
represent the solid 1 and the solid 2, respectively, and r = ri represents the interface.

[urs1, uθs1, uzs1]r=ri
= [urs2, uθs2, uzs2]r=ri

[τrrs1, τrθs1, τrzs1]r=ri
= [τrrs2, τrθs2, τrzs2]r=ri

(15)

For the solid–fluid interface, if the viscosity of the fluid cannot be ignored, the con-
tinuous condition at the interface is that the displacement components and the surface
stress components in the solid are equal to the corresponding components in the viscous
fluid, as shown in Equation (16). Subscripts s and f represent the solid and the viscous
fluid, respectively.

[urs, uθs, uzs]r=ri
=
[
ur f , uθ f , uz f

]
r=ri

[τrrs, τrθs, τrzs]r=ri
=
[
τrr f , τrθ f , τrz f

]
r=ri

(16)

If the viscosity of the fluid is negligible, the boundary condition at the interface is a
perfect slip boundary condition. That is, the radial component of the displacement of the
solid and the fluid are equal, the circumferential component and the axial component of
the displacement are discontinuous, and the surface stress components are still equal. The
shear stress of the non-viscous fluid does not exist, that is, τrθ f = τrz f = 0, as shown in
Equation (17):

[urs]r=ri
=
[
ur f

]
r=ri

[τrrs, τrθs, τrzs]r=ri
=
[
τrr f , 0, 0

]
r=ri

(17)

The outer tube wall satisfies the stress-free boundary condition, as shown in Equation (18).
The subscript s represents the tube wall and r = r2 represents the outer tube wall.

[τrrs, τrθs, τrzs]r=r2
= [0, 0, 0]r=r2

(18)

In addition, for an infinitely long tube, the inner and outer wall of the tube should meet:

∇ ·
→
Ψ = 0 (19)

The above Equations (15)–(19) constitute the boundary conditions that a fluid-filled
elastic tube needs to be satisfied under different conditions. Expressions for these physical
quantities in the above boundary conditions are given below.

2.2.1. Physical Quantities in the Tube Wall

From elastic theory, the displacement vector of the elastic tube wall is
→
U = ur

→
e r +

uθ
→
e θ + uz

→
e z [27], where

ur =
∂

∂r
Φ +

1
r

∂

∂θ
ϕz −

∂

∂z
ϕθ (20)

uθ =
1
r

∂

∂θ
Φ +

∂

∂z
ϕr −

∂

∂r
ϕz (21)

uz =
∂

∂z
Φ +

1
r

∂

∂r
(rϕθ)−

1
r

∂

∂θ
ϕr (22)

Substituting Equation (9) into Equations (20)–(22) and using h1, h2, h3 to represent
ϕ1, ϕ2, ϕ3 accruing to Equation (10), yields the displacement field:

ur =

(
∂

∂r
φ− 1

2
ĥ1 +

1
2

ĥ2 +
n
r

h3

)
cos nθ · ei(kzz−ωt) (23)
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uθ =

(
−n

r
φ +

1
2

ĥ1 +
1
2

ĥ2 −
∂

∂r
h3

)
sin nθ · ei(kzz−ωt) (24)

ûz = ikzuz

=
[
−k2

zφ + 1
2

(
∂
∂r +

1−n
r

)
ĥ1 − 1

2

(
∂
∂r +

1+n
r

)
ĥ2

]
cos nθ · ei(kzz−ωt)

(25)

where

ĥ1 = ikzh1
ĥ2 = ikzh2

(26)

The stress tensor components in the elastic tube wall can be obtained using the
following equations [27]:

τrr = λ

(
∂ur

∂r
+

ur

r
+

1
r

∂uθ

∂θ
+

∂uz

∂z

)
+ 2µ

∂ur

∂r
(27)

τrθ = µ

(
1
r

∂ur

∂θ
+

∂uθ

∂r
− uθ

r

)
(28)

τrz = µ

(
∂ur

∂z
+

∂uz

∂r

)
(29)

Substituting Equations (23)–(25) into equations for τrr, τrθ , and τrz, one obtains the
stress field:

τrr =
{
[λ( ∂2

∂r2 +
1
r

∂
∂r −

n2

r2 − k2
z) + 2µ ∂2

∂r2 ]φ− µ ∂
∂r ĥ1

+µ ∂
∂r ĥ2 + 2µ(− n

r2 +
n
r

∂
∂r )h3

}
cos nθ · ei(kzz−ωt)

(30)

τrθ = [2µ( n
r2 − n

r
∂
∂r )φ + 1

2 µ( ∂
∂r +

n−1
r )ĥ1 +

1
2 µ( ∂

∂r −
n+1

r )ĥ2

+µ(− ∂2

∂r2 +
1
r

∂
∂r −

n2

r2 )h3] sin nθ · ei(kzz−ωt)
(31)

τ̂rz = ikzτrz

= [−2µk2
z

∂
∂r φ + µ

2 (
∂2

∂r2 +
1−n

r
∂
∂r +

n−1
r2 + k2

z)ĥ1

+ µ
2 (−

∂2

∂r2 − n+1
r

∂
∂r +

n+1
r2 − k2

z)ĥ2 − µk2
z

n
r h3] cos nθ · ei(kzz−ωt)

(32)

In addition, in the cylindrical coordinate system,

∇ ·
→
Ψ =

1
r

∂(rϕr)

∂r
+

1
r

∂ϕθ

∂θ
+

∂ϕz

∂z
(33)

Using ĥ1, ĥ2, ĥ3 to represent ikz∇ ·
→
Ψ, one obtains

ikz∇ ·
→
Ψ =

[
1
2

(
∂

∂r
+

1− n
r

)
ĥ1 +

1
2

(
∂

∂r
+

1 + n
r

)
ĥ2 − k2

zh3

]
sin nθ · ei(kzz−ωt) (34)

2.2.2. Physical Quantities in the Fluid

The displacement components of the non-viscous fluid are expressed as

ur f =
∂Φ f l

∂r
=

∂

∂r
φ f l cos nθei(kzz−ωt) (35)

uθ f =
1
r

∂Φ f l

∂θ
= −n

r
φ f l sin nθei(kzz−ωt) (36)
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ûz f = ikzuz f = ikz
∂Φ f l

∂z
= −k2

zφ f l cos nθei(kzz−ωt) (37)

The stress tensor components of the inviscid fluid are

τrr f = −λ
ω2

c2
f l

φ f l cos nθ · ei(kzz−ωt) (38)

τrθ f = τrz f = 0 (39)

The wave equations in Equation (11), Equation (14), and the boundary conditions
in Equations (15)–(19) constitute an eigenvalue problem. The traditional root-finding
method is to select the appropriate general solution form of the wave equations, and to
substitute the general solution into the appropriate boundary conditions to obtain a set
of uniform linear geometric equations. The determinant of the coefficient matrix is set
equal to zero, and the so-called dispersion equation is obtained. Finally, the root of the
dispersion equation is found using numerical methods, and the dispersion relationship
ω(kz) of modes is obtained.

The general solution of the wave equations in the cylindrical coordinate system
contains various forms of Bessel functions, and it is often difficult to separate and determine
the root of different modes. If factors such as fluid viscosity and solid loss need to be
considered, the dispersion equation becomes more difficult to solve. The spectral method
introduced in the next section can help effectively avoid these problems.

3. The Spectral Method Algorithm for a Fluid-Filled Elastic Tube
3.1. The Spectral Method Theory

The advantage of the spectral method is that it does not require calculation of the
root of the Bessel functions, but instead uses the differential matrix to solve the eigenvalue
problem. The core idea is to approximate unknown functions to be solved in the differential
equation through global interpolation using high-order orthogonal polynomials. As for the
eigenvalue problem of a fluid-filled elastic tube, the differentiation occurs on a bounded
interval, 0 ≤ r ≤ r2; the appropriate choice is to use Chebyshev polynomials to construct
the differential matrix according to Boyd [28]. The choice of polynomials for different
unknown function f (x) is listed in Appendix A, Table A1.

The differential matrix D(n)
x is defined as follows according to Adamou [23]:


f (n)1

f (n)2
...

f (n)N

 ≈


D(n)
11 D(n)

12 · · · D(n)
1N

D(n)
21

. . .
...

...
. . .

...
D(n)

N1 · · · · · · D(n)
NN


︸ ︷︷ ︸

D(n)
x


f1
f2
...

fN

 (40)

where fi is the value of the function f (x) evaluated at the interpolation point xi, i = 1, 2, ...N,
fi
(n) is the nth derivative of f (xi), and the N × N matrix D(n)

x is the differential matrix.
The MATLAB program chebdif [29] generates interpolation points on the interval

−1 ≤ x ≤ 1:

xi = cos
(
(i− 1)π

N − 1

)
(41)

Here, interpolation points for r are
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ri =
(r2 − r1)xi + r1 + r2

2
(42)

where r2 denotes the outer radius, r1 denotes the inner radius.
D(n)

x generated by chebdif [29] approximates dm/dxm, but here requires the approxi-
mation of dm/drm, which is given by

D(n)
r =

(
2

r2 − r1

)
D(n)

x (43)

Wave equations and boundary conditions only deal with r derivatives, so the spectral
method algorithm in the next section uses D(n) to represent D(n)

r for simplicity.
Adamou [23] gave a heuristic argument about the theoretical accuracy of the spectral

method. For f (x) on the Chebshev interval−1 ≤ x ≤ 1, it requires at least two interpolation
points per wavelength to accurately resolve f (x). If N is large enough, the interpoint
spacing is asymptotically π

N according to Equation (41). Assuming the wavelength of
f (x) is λ, and it is roughly constant across the domain, then the condition for accurate
resolution is

π

N
≤ λ

2
(44)

A more formal demonstration based on the convergence rates of Chebyshev series can
be found in the study of Gottlieb and Orszag [30].

3.2. The Spectral Method Algorithm

Wave equations and the corresponding boundary conditions in Section 2 are expressed
in terms of the differential matrix as follows.

The wave Equation (11) in the elastic tube wall can be written as
L1 0 0 0
0 L2 0 0
0 0 L3 0
0 0 0 L4


︸ ︷︷ ︸

L


φ

ĥ1
ĥ2
h3


︸ ︷︷ ︸

Θ

= k2
z


φ

ĥ1
ĥ2
h3

 (45)

where L is a 4N × 4N differential matrix and expressions for Li(i = 1, 2, 3, 4) are

L1 = D(2) + diag
(

1
r

)
D(1) − n2 · diag

(
1
r2

)
+

(
ω2

c2
1

)
I (46)

L2 = D(2) + diag
(

1
r

)
D(1) − (n− 1)2 · diag

(
1
r2

)
+

(
ω2

c2
2

)
I (47)

L3 = D(2) + diag
(

1
r

)
D(1) − (n + 1)2 · diag

(
1
r2

)
+

(
ω2

c2
2

)
I (48)

L4 = D(2) + diag
(

1
r

)
D(1) − n2 · diag

(
1
r2

)
+

(
ω2

c2
2

)
I (49)

In Equations (46)–(49), diag denotes a diagonal matrix and I denotes an N×N unit matrix.
The wave Equation (14) in the fluid is expressed in the form of the differential matrix as

L f = D(2) + diag
(

1
r

)
D(1) − n2diag

(
1
r2

)
+

(
ω2

c2
f l

)
I (50)
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Thus, the differential matrix expression of equations for wave propagation in a fluid-
filled elastic tube is as follows:

L f
L1

L2
L3

L4


︸ ︷︷ ︸

L


φ f l
φ

ĥ1
ĥ2
h3


︸ ︷︷ ︸

Θ

= k2
z


φ f l
φ

ĥ1
ĥ2
h3

 (51)

Similarly, the differential matrix expressions for the displacement vector components
in the elastic pipe wall are

ur
uθ

ûz

 =

urs1 urs2 urs3 urs4
uts1 uts2 uts3 uts4
uzs1 uzs2 uzs3 uzs4




φ

ĥ1
ĥ2
h3

 (52)

The corresponding coefficients are

urs1 = D(1)

urs2 = − 1
2 I

urs3 = 1
2 I

urs4 = n · diag
(

1
r

) (53)

uts1 = −n · diag
(

1
r

)
uts2 = 1

2 I

uts3 = 1
2 I

uts4 = −D(1)

(54)

uzs1 = −D(2) − diag
(

1
r

)
D(1) + n2 · diag

(
1
r2

)
−
(

ω2

c2
1

)
I

uzs2 = 1
2

[
D(1) + (1− n) · diag

(
1
r

)]
uzs3 = − 1

2

[
D(1) + (1 + n) · diag

(
1
r

)]
uzs4= 0 · I

(55)

The differential matrix expressions for the stress tensor components in the elastic tube
wall are τrr

τrθ

τ̂rz

 =

rrs1 rrs2 rrs3 rrs4
rts1 rts2 rts3 rts4
rzs1 rzs2 rzs3 rzs4




φ

ĥ1
ĥ2
h3

 (56)

The corresponding coefficients are

rrs1 = −λ ω2

c2
1

I + 2µD(2)

rrs2 = −µD(1)

rrs3 = µD(1)

rrs4 = 2µn
[
diag

(
1
r

)
D(1) − diag

(
1
r2

)]
(57)
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rts1 = −2µn
[
diag

(
1
r

)
D(1) − diag

(
1
r2

)]
rts2 = µ

2

[
D(1) + (n− 1)diag

(
1
r

)]
rts3 = µ

2

[
D(1) − (n + 1)diag

(
1
r

)]
rts4 = µ

[
−D(2) + diag

(
1
r

)
D(1) − n2diag

(
1
r2

)]
(58)

rzs1 = −2µ

 D(3) + diag
(

1
r

)
D(2) −

(
n2 + 1

)
diag

(
1
r2

)
D(1)

+2n2diag
(

1
r3

)
+ ω2

c2
1

D(1)


rzs2 = µ

2

[
D(2) − (n− 1)diag

(
1
r

)
D(1) + (n− 1)diag

(
1
r2

)
+ L2

]
rzs3 = − µ

2

[
D(2) + (n + 1)diag

(
1
r

)
D(1) − (n + 1)diag

(
1
r2

)
+ L3

]
rzs4 = −µn

[
diag

(
1
r

)
D(2)+diag

(
1
r2

)
D(1) − n2diag

(
1
r3

)
+ ω2

c2
2

diag
(

1
r

)]
(59)

The differential matrix expression of Equation (34) is

ikz∇ ·
→
Ψ =

(
gs1 gs2 gs3 gs4

)
φ

ĥ1
ĥ2
h3

 (60)

The coefficients can be given as

gs1 = 0 · I

gs2 = 1
2

[
D(1) + (1− n)diag

(
1
r

)]
gs3 = 1

2

[
D(1) + (1 + n)diag

(
1
r

)]
gs4 = −D(2) − diag

(
1
r

)
D(1) + n2diag

(
1
r2

)
−
(

ω2

c2
2

)
I

(61)

For the fluid, the differential matrix expressions of the displacement vector components
are as follows: ur f

uθ f
ûz f

 =

ufd1
ufd2
ufd3

φ f l (62)

ufd1 = D(1) (63)

ufd2 = −ndiag
(

1
r

)
(64)

ufd3 = −L f (65)

The differential matrix expression of the stress tensor component τrr f of the fluid is

τrr f = (rs1)φ f l (66)
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rs1 = −λ
ω2

c2
f l
· I (67)

Taking the fluid-filled elastic tube with a single-layer wall as an example, Figure 2
shows the appropriate position of the boundary conditions in the L matrix.
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This can be performed by introducing a matrix Q on the right-hand side of Equation (51),
as shown in Equation (68):

L̃Θ = k2
zQΘ (68)

where Θ is a matrix consisting of potential functions:

Θ =
(

φ f l φ ĥ1 ĥ2 h3

)T
(69)

Q is a 5N × 5N matrix and can be defined as follows:

Q =


M

M
M

M
M

 (70)

where M is an N × N diagonal matrix with the following form:

M =


0

1
. . .

1
0

 (71)

Equation (68) is a generalized eigenvalue problem that can be solved using the MAT-
LAB routine EIG

(
L̃, Q

)
[24].
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By changing the value of the frequency ω, a different dispersion relation (ω, kz) can
be obtained from Equation (68). For a given relationship between (ω, kz), the dispersion
curves of the modes can be drawn. At the same time, the potential functions in Equation (69)
are substituted into Equation (52), Equation (56), Equation (62), and Equation (66), which
are the displacement vector components and stress tensor components of the modes in the
tube wall and in the fluid. One can then obtain the displacement and stress distribution of
the axial propagation modes in the fluid-filled tube with frequency ω with respect to the
radial direction.

The flowchart of the proposed spectral method algorithm is shown in Figure 3.
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4. Discussion

In this section, the dispersion characteristics of axial propagation modes in a water-
filled PMMA tube, whose parameters are from Baik [26], were calculated using the algo-
rithm described in Section 3. The results of the algorithm were verified using a COMSOL
simulation. In addition, differences between dispersion curves obtained from the algorithm
and Baik [26] were analyzed. Finally, the dispersion curves of a water-filled multi-layer
tube were given.

4.1. Comparison between the Spectral Method Algorithm and the COMSOL Simulation

The parameters of the water-filled PMMA tube adopted by Baik [26] are shown in
Table 1, where b is the inner radius of the tube, h is the wall thickness, vp, vs are the
longitudinal and shear sound speed of PMMA, respectively, c1 is the sound speed in water,
ρs is the density of PMMA, and ρ1 is the density of water.

Table 1. Parameters of the water-filled PMMA tube [26].

b (cm) h (cm) vp (m/s) vs (m/s) c1 (m/s) ρs(kg/m3) ρ1 (kg/m3)

4.445 0.5 2690 1340 1479 1190 1000

The two-dimensional model of the water-filled PMMA tube with the above parameters
was established in COMSOL, as shown in Figure 4.
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The inner part was water, and its physical field was set to be a “Pressure Acoustics”
field. The wave equation for time-harmonic acoustic waves in 2D geometry is Equation (72),

∇ ·
(
− 1

ρc

(
∇pt −

→
q d

))
−

k2
eq pt

ρc
= Qm (72)

p = p(x, y)e−ikzz (73)

Where pt means total pressure, which is the sum of p and the possible background
pressure field pb, as shown in Equation (74):

pt = p + pb (74)

k2
eq is shown as Equation (75), where kz is the out-of-plane wave number:

k2
eq =

(
ω

cc

)2
− k2

z (75)

The subscript “c” in ρc and cc means that they may be complex-valued. Lossy media,
like porous materials or highly viscous fluids, can be modeled by using the complex-valued
speed of sound and density.

In Equation (72),
→
q d is the dipole domain source, which corresponds to a domain force

source on the right-hand side of the momentum equation, and Qm is the monopole domain
source, which corresponds to a mass source on the right-hand side of the continuity equation.

In the mode analysis study of COMSOL, −ikz is used as the eigenvalue.
The outer part is the PMMA tube wall, and its physical field, is set to be a “Solid

Mechanics” field. The governing equation used here is

−ρω2→u = ∇ ·
(

C : ∇ ·→u
)

(76)

In Equation (76),
→
u is the structural displacement vector, and C is the elasticity tensor.

The outer tube wall is the free boundary, which satisfies the stress-free boundary
condition, and the inner tube wall is set to be the “Acoustic-Structure Boundary”, which
is used to couple a Pressure Acoustics model to any structural component. The coupling
includes the fluid load on the structure and the structural acceleration as experienced by
the fluid.

The condition on exterior boundaries is shown as Equations (77) and (78):

−→n ·
(
− 1

ρc

(
∇pt −

→
q d

))
= −→n · utt (77)

FA = pt
→
n (78)

where utt is the structural acceleration,
→
n is the surface normal, pt is the total acoustic

pressure and FA is the load (force per unit area) experienced by the structure.
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The condition on interior boundaries is shown as follows:

−→n ·
(
− 1

ρc

(
∇pt −

→
q d

))
up

= −→n · utt (79)

−→n ·
(
− 1

ρc

(
∇pt −

→
q d

))
down

= −→n · utt (80)

FA =
(

pt,down − pt,up
)→

n (81)

such that the acoustic load is given by the pressure drop across the thin structure. The up
and down subscripts refer to the two sides of the interior boundary.

In order to find out the influence of mesh grids on the COMSOL simulation results,
five different meshes were used to calculate the mode wavenumber, as shown in Table 2.

Table 2. COMSOL mesh file and their numbers of elements.

Mesh Mesh 1 Mesh 2 Mesh 3 Mesh 4 Mesh 5

Element Number 2214 3146 4644 8698 27,842

The wave number kz of the axial propagation modes in the water-filled PMMA tube
at f = 20 kHz was calculated using COMSOL with five different mesh files, as shown in
in Table 2. The differences in kz at each mode between mesh 1–4 and mesh 5 are plotted
in Figure 5. The horizontal axis is the mode index, meaning that there exist 22 modes at
f = 20 kHz. The vertical axis is the absolute value of the difference between mesh 1–4 and
mesh 5 at each mode. Figure 5 shows that the simulation result kz of each mode tends to be
consistent with the increase in the number of grid elements. In order to achieve the most
accurate calculation results, the following simulation used mesh 5.
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Figure 5. The difference of kz between mesh 1–4 and mesh 5 at each mode.

The mode analysis in COMSOL can calculate the wave number and mode shape of
a propagation mode at a specific frequency. Combined with sweep analysis, dispersion
curves of the axial propagation mode of the water-filled PMMA tube can be obtained. The
frequency range calculated here is 0–90 kHz and the frequency interval is 200 Hz.

Figure 6 shows the comparison of the dispersion curves obtained from the COMSOL
simulation and the spectral method algorithm.
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In Figure 6, the horizontal axis is the dimensionless parameter k1b, as shown in
Equation (82), and the vertical axis is the normalized phase velocity cp/c1. The vertical axis
uses logarithmic coordinates.

k1b =
ω

c1
b (82)

The curves in Figure 6 represent the calculation results from the spectral method
algorithm and the dots represent the COMSOL simulation results. It can be seen from
Figure 6 that the dispersion curves of the axial propagation modes in the water-filled
PMMA tube obtained from the spectral method algorithm were completely consistent with
the COMSOL simulation results.

Table 3 shows the time consumed by the COMSOL Multiphysics 5.6 software and
the spectral method algorithm implemented in MATLAB R2022b to obtain the dispersion
curves in Figure 6. The computer used here to run the COMSOL simulation and the
MATLAB program of the proposed algorithm was a Lenovo desktop workstation, which
has 2 Intel® Xeon® Silver 4110 CPU, and 128 GB RAM. The spectral method algorithm not
only provides an accurate calculation but requires much less time and CPU resources to do
so than the COMSOL simulation software.

Table 3. The calculation time of the COMSOL simulation and the spectral method algorithm.

Calculation Methods Calculation Time

COMSOL Multiphysics Approximately 10 h
The spectral method algorithm A few tens of seconds

Table 4 compares the wavenumbers kz of the axial propagation modes in the water-
filled PMMA tube at f = 8 kHz provided by the COMSOL simulation and the spectral
method algorithm. The error in the table was calculated using Equation (83), where kz(s)
represents the axial wavenumber calculated using the spectral method and kz(c) represents
the axial wavenumber calculated using the COMSOL simulation.

E =

∣∣∣kz(s) − kz(c)

∣∣∣
kz(c)

(83)
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Table 4. kz calculated using the COMSOL simulation and the spectral method algorithm at f = 8 kHz.

Axial Wavenumber kz

COMSOL
Multiphysics

4.3629 21.9621 30.1711 35.6921 37.5116 84.0532
107.1383 121.4523 130.5509 136.0542 138.9479 139.8424

Spectral
Method

4.3678 21.9621 30.1706 35.6932 37.5116 84.0534
107.1380 121.4523 130.5509 136.0542 138.9479 139.8424

Error
1.12 × 10−3 0 1.66 × 10−5 3.08 × 10−5 0 2.38 × 10−6

2.80 × 10−6 0 0 0 0 0

It can be seen from Table 4 that both the COMSOL simulation and the spectral method
algorithm can find 12 different modes at 8 kHz, and the axial wavenumber corresponding
to the same mode is identical under two different calculation ways.

Figure 7 shows the radial distribution of the displacement components ur, uθ , uz of
some non-axisymmetric modes in the tube wall at f = 8 kHz. The modes are indexed
as (n, m), where n is the circumferential order. The transverse axis r represents the radial
component in cylindrical coordinates, and the longitudinal axis is the normalized value of
each displacement component. It can be seen from the figure that the distribution of the
displacement components of the non-axisymmetric modes (n 6= 0) in the tube wall obtained
by the spectral method algorithm was consistent with the COMSOL simulation results.
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In conclusion, the dispersion curves of axial propagation modes in the water-filled
tube obtained using the spectral method algorithm are consistent with the results from the
COMSOL simulation. In addition, the algorithm can find all the axial propagation modes at
any frequency correctly, and obtain the precise mode displacement distribution in the tube
wall. The spectral method algorithm consumes much less time and computation resources
to acquire such results.

4.2. Differences between the Results from the Spectral Method Algorithm and Baik [26]

Figure 8 shows the phase velocity curves of the axisymmetric modes (n = 0) and the
non-axisymmetric modes (n = 1, 2, 3, ...) of a water-filled PMMA tube propagating along
the axis, as obtained from the spectral method algorithm. Figure 9 shows the group velocity
curves of the corresponding modes. In the graphs, the horizontal axis is the dimensionless
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parameter k1b and the vertical axis is the phase velocity or group velocity normalized by the
sound velocity in water as cp/c1 or cg/c1. All figures use n to represent the circumferential
order of the modes. The different color of lines in Figures 8 and 9 denote a different group
number of the modes with the same n. Figures 8 and 9 are compared with Figure 2 in
Baik [26], which shows the dispersion curves of phase speed and group speed of modes for
the water-filled PMMA tube obtained.
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Table 5 shows the modal correspondence between the dispersion curves obtained
using the spectral method algorithm and results from Baik [26]. For example, the (0, 1)
mode in Figure 8 corresponds to the (0, 0) mode in Figure 2 of Baik [26], et cetera. This
work only analyzed the modes listed in Table 5. The following analysis was based on the
mode indices in Figure 8.
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Table 5. Modes calculated using the spectral method versus the same modes from Baik [26].

Circumferential Order Spectral Method Results Results from Baik [26]

n = 0 (0, 1) , (0, 3) , (0, 4) , (0, 5) (0, 0) , (0, 1) , (0, 2) , (0, 3)
n = 1 (1, 3) , (1, 4) , (1, 5) (1, 1) , (1, 2) , (1, 3)
n = 2 (2, 3) , (2, 4) , (2, 5) (2, 1) , (2, 2) , (2, 3)
n = 3 (3, 3) , (3, 4) , (3, 5) (3, 1) , (3, 2) , (3, 3)

For the axisymmetric modes (n = 0), Baik [26] did not find the (0, 2) mode in Figure 8,
obtained with the spectral method algorithm. For the non-axisymmetric modes (n 6= 0),
Baik [26] lacked the modes (1, 1), (1, 2), (2, 1), (2, 2), (3, 1),(3, 2) in Figure 8. The accuracy of
the spectral method algorithm was verified using the results from the COMSOL simulation
in the previous section.

It can be seen from Figure 8 that the phase velocity of mode (0, 2) did not change
with the frequency, and was equal to the bulk shear wave velocity of the PMMA tube. Its
group velocity was also equal to the bulk shear wave velocity, as shown in Figure 9. This
is consistent with the description of the dispersion characteristics of the torsional wave
provided by Gazis [3].

The phase velocities of modes (0, 1), (1, 1), (2, 1), and (3, 1) in Figure 8 were lower
than the sound velocity in water, and the longitudinal and shear bulk wave velocities
of the PMMA tube. Figures 10 and 11 show the radial distribution of the displacement
components and the stress tensor components of the above four modes at f = 8 kHz,
obtained using the spectral method algorithm.
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Figure 10. The radial distribution of the displacement components of the modes at f = 8 kHz.

In Figure 10, the solid line represents ur, the dotted line represents uθ , and the dashed
line represents uz. In Figure 11, the solid line represents τrr, the dotted line represents
τrθ , and the dashed line represents τrz. It can be seen from Figure 10 that the maximum
amplitude of the axial displacement component uz of these four modes in the water was
larger than that in the tube wall, and the energy carried in the water was higher than
that in the tube wall. These phenomena are similar to a Scholte wave propagating at the
solid–fluid interface. Baik [26] only obtained the (0, 1) mode, which is labeled as the (0, 0)
mode in Figure 10.

The modes (1, 2), (2, 2), and (3, 2) in Figure 8 are flexural waves propagating along
the axial direction.
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In conclusion, dispersion curves of the water-filled PMMA tube provided by Baik [26]
missed the torsional wave mode (0, 2), Scholte wave modes (1, 1), (2, 1), and (3, 1), and
flexural wave modes (1, 2), (2, 2), and (3, 2). In contrast, the spectral method algorithm can
find all the axial propagation modes precisely without missing any low-order modes.

4.3. A Water-Filled Elastic Multi-Layer Tube Model

The calculation model used in the above has only one layer in the tube wall. Here,
the spectral method algorithm was used to obtain the dispersion curves of a water-filled
multi-layer elastic tube. The cross section of the tube is shown in Figure 12. The materials
of Layer 1, Layer 2 and Layer 3 were PVC, iron and PVC, respectively.
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Figure 12. The cross section of the water-filled multi-layer elastic tube.

The parameters of the tube are shown in Table 6, where b is the inner radius of the
tube, h1, h2,h3 are thickness of Layer 1, Layer 2 and Layer 3, respectively, vp, vs are the
longitudinal and shear sound speed of the solid material, respectively, ρs is the density of
the solid material, c1 = 1479 m/s is the sound speed in water, and ρ1 = 1000 kg/m3 is the
density of water.
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Table 6. The parameters of the water-filled multi-layer elastic tube.

Dimension
b (cm) h1 (cm) h2 (cm) h3 (cm)

50 5 5 5

PVC
vp (m/s) vs (m/s) ρs (kg/m3)

2388 1060 1380

Iron
vp (m/s) vs (m/s) ρs (kg/m3)

5893 3230 7800

The phase velocity curves of the water-filled multi-layer elastic tube are shown in
Figure 13; the horizontal axis is the frequency (kHz) and the vertical axis is cp/c1. The
frequency range in Figure 13 is 0–2 kHz. In Figure 13, the axial propagation modes are
plotted in different subgraphs according to the circumferential order n. It shows that the
spectral method algorithm worked well for the large-dimension, thick-wall, multi-layer
tube model.
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5. Conclusions

We have shown that the algorithm based on the spectral method can obtain the
dispersion characteristics of non-axisymmetric modes in the fluid-filled tube accurately
and efficiently. Compared to the commercial software COMSOL, it consumes far fewer
resources to obtain the same results. The algorithm is suitable for dealing with a multi-
layer tube model, and it has no demands on the dimension of the tube and wall thickness.
In addition, the algorithm can find all the axial propagation modes, while some of the
low-order modes have been found to be missing in the relevant literature.

The limitations of this paper are that the spectral method algorithm proposed here
worked under the assumption that the tube wall material was homogeneous and isotropic.
For future work, the algorithm should be adjusted to deal with damped, inhomogeneous
and anisotropic problems. In addition, the experiment of wave propagation in a fluid-filled
elastic tube should be carried out to validate the numerical algorithm.
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Appendix A

The following table presents which basis function to choose for spectral methods when
dealing with different unknown functions f (x). The complete process of argumentation
can be found in Boyd [28].

Table A1. The choice of basis functions for different unknown functions.

If Basis Set Is

f (x) is periodic Fourier series
f (x) is periodic & symmetric about x = 0 Fourier cosine

f (x) is periodic & antisymmetric about x = 0 Fourier sine
x ∈ [a, b] & f (x) is non-periodic Chebyshev polys, Legendre polys.
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