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Abstract: Aiming at the problems of uneven light reflectivity on the spherical surface and high
similarity between the stems/calyxes and scars that exist in the detection of surface defects in
apples, this paper proposed a defect detection method based on image segmentation and stem/calyx
recognition to realize the detection and recognition of surface defects in apples. Preliminary defect
segmentation results were obtained by eliminating the interference of light reflection inhomogeneity
through adaptive bilateral filtering-based single-scale Retinex (SSR) luminance correction and using
adaptive gamma correction to enhance the Retinex reflective layer, and later segmenting the Retinex
reflective layer by using a region-growing algorithm. The texture features of apple surface defects
under different image processing methods were analyzed based on the gray level co-occurrence
matrix, and a support vector machine was introduced for binary classification to differentiate between
stems/calyxes and scars. Deploying the proposed defect detection method into the embedded
device OpenMV4H7Plus, the accuracy of stem/calyx recognition reached 93.7%, and the accuracy
of scar detection reached 94.2%. It has conclusively been shown that the proposed defect detection
method can effectively detect apple surface defects in the presence of uneven light reflectivity and

stem/calyx interference.

Keywords: defect detection; adaptive bilateral filtering; Retinex; regional growth; gamma correction;
gray level co-occurrence matrix; support vector machine

1. Introduction

In China, there are about six main types of apples grown, including Red Fuji, Gala, and
Yellow Marshal, to name a few. The skin color is mostly red and greenish-yellow. China’s
total apple production reached 45.973 million tons in 2021 [1]. This amount of production
causes difficulties for traditional manual defect detection methods. Surface defects are also
an entry point and breeding ground for disease, which can cause severe economic losses
during the production and storage of apples [2].

Much of the current literature on defect detection pays particular attention to machine
vision and image processing techniques. Azgomi et al., utilized a multilayer perceptual
neural network to detect apple surface defects based on color and texture features [3].
Lu et al. utilized DC and AC images and their combined machine learning classification
methods for enhanced detection of surface and subsurface defects in apples [4]. Zhang
et al., extracted color features in HSV color space and texture features in RGB color space,
respectively, to establish a deep multiscale dual-channel convolutional neural network
for detecting surface defects of apples [5]. Kahraman et al. analyzed the advantages and
disadvantages of deep learning methods for fabric defect detection [6]. Zhang et al. utilized
a complete convolutional network based on deep learning to detect internal damage in
blueberries based on hyperspectral transmittance images [7]. Ismail et al., detected fruit
freshness by deep learning and stacking ensemble methods [8]. Xie et al., proposed a
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lightweight model based on machine vision combined with DCNN for detecting defective
carrots [9]. Hu et al. optimized the YOLO V5 model to detect citrus surface defects by
integrating an attention mechanism and modifying the loss function [10]. Tian et al. utilized
hyperspectral imaging combined with an improved watershed algorithm to detect early
citrus rot [11]. Yang et al. utilized the YOLO V3-tiny detection model to detect multispectral
images covering 25 bands for potato defects [12]. Rama et al., used a UV-A light source to
detect mango anthracnose by early semantic segmentation of healthy and diseased regions
of mango images [13].

However, the spherical surface of the apple causes a change in the intensity of light
reflection from the surface, the extent of which is determined by the distance of the region
from the center region. This is reflected in the image as the grayscale intensity of the edge
region of the apple is generally lower than that of the middle part. Therefore, the defects
present different grayscale intensities at different locations, which easily interferes with
the correct detection of the defects. In addition, the models obtained from the training of
the above image segmentation methods are relatively large, which are not favorable to be
deployed on embedded real-time inspection devices. The more lightweight FOMO target
detection model, however, can only output the defect location and cannot obtain the defect
size information. There is, therefore, a definite need for defect detection, which requires an
adjustment of the image light reflectivity, while the defect detection method has to consider
the possibilities in practical applications.

Most researchers investigating classification issues have utilized artificial neural net-
works, support vector machines, decision tree classification, etc. Ge et al., classified apple
tree organs using a support vector machine based on multi-feature fusion of color and
shape [14]. Caceres-Hernandez et al. investigated feature extraction and classification of
watermelons based on image, acoustics, and spectroscopy using machine learning meth-
ods [15]. Bird et al. proposed a machine learning approach that combines fine-tuning,
transfer learning, and generative model-based training data augmentation to improve fruit
quality image classification [16]. Moch et al. used a plain Bayesian approach to classify
apple defects based on apple texture features [17]. Wang et al. used a deep learning- based
YOLO V5 model to recognize the calyx of apple stems using a transfer learning training
method [18].

In addition to classification methods, the key research question of stem/calyx recogni-
tion is how to extract features to maximize differences between stems/calyxes and scars.
Numerous studies have attempted to highlight the defect features by special imaging
modalities and use machine vision techniques for defect features. Zhang et al. recognized
the calyx of apple stems based on near-infrared linear-array structured lighting and 3D
reconstruction techniques [19]. Zhang et al. obtained the basis for distinguishing the
stems/calyxes from the scar from near-infrared spectra and utilized machine vision tech-
niques to accomplish apple stem/calyx recognition [20]. Yuan et al. used NIR camera
imaging to access the YOLO V5s model to extract defect features [21]. Lin et al. intro-
duced cold excitation to improve the sensitivity of bruise detection, then constructed a
simple long-wavelength infrared range (7.5-13 um) TI system to obtain the thermal image
features of bruised apples, and then performed the feature extraction of apple surface
defects based on the YOLO V5s network [22]. Li et al. investigated an emerging structured
light reflectance imaging technique to extract early decay defect characteristics of navel
oranges [23]. Matsui et al. proposed an X-ray based machine vision classification method
for detecting avocado stem end rot defects [24]. Zhou et al. utilized a mask region-based
convolutional neural network method to detect bruise scar features in strawberry images
imaged under incandescent and ultraviolet irradiation [25]. Zheng et al. proposed an
Attention Feature Fusion Network based on the U-Net architecture with the addition of
a mixing loss and residual refinement module (RRM) to extract the cracking features of
jujube [26]. Tian et al. proposed a diameter correction method to reduce the effect of
fruit size on the projected spectra and then used a one-dimensional convolutional neural
network to detect citrus frostbite features [27]. Min et al. described hyperspectral imaging
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for defective feature detection and extraction in other berries, such as citrus, apple, and
peach, in the early stages of fungal infection [28]. Mahanti et al. presented the advantages
and limitations of NDT techniques, including bio-scattering, X-ray imaging, hyperspectral
imaging, and thermal imaging for defect feature extraction [29].

Special imaging modalities can be beneficial in highlighting defect features. However,
the main weakness of the method is that hardware imaging systems are not easily optimized
once they are in place, and imaging conditions are costly to maintain. Therefore, a method
for highlighting defect features under simple imaging conditions is needed to enhance the
applicability of the inspection system.

Based on this, this paper proposed a defect detection method that relies on image seg-
mentation and stem/calyx identification. The proposed method should not only solve the
defect detection problem under uneven light reflectivity but also eliminate the interference
of the peduncle calyx on the final results.

The main contributions of this paper are as follows: (1) An apple image surface
defected segmentation method based on improved SSR image enhancement and region-
growing algorithm was proposed. The method could better cope with the uneven light
reflectivity due to the spherical surface of apples and improve the segmentation accuracy.
(2) A stem/calyx recognition method based on improved SSR image enhancement and gray
level co-occurrence matrix was proposed. The method highlighted the stem/calyx texture
through improved SSR image enhancement, then collected the texture featured through a
gray level co-occurrence matrix, and later classified the obtained feature data through a
support vector machine to achieve the purpose of stem/calyx recognition. Experimentally,
it was proved that improved SSR image enhancement could amplify the texture difference
between the stem/calyx and the scar and improve the classification accuracy.

The rest of the paper is organized as follows. The second part describes the materials
used in this paper and the methods proposed in this paper. Experimental results with
specific analysis are given in the third part. Finally, conclusions are drawn in the fourth part.

2. Materials and Methods
2.1. Materials and Instruments

The research sample was drawn from Wuhan's local fruit market. The types of defects
to be measured included apple stems, calyxes, lightly browned scars, and severely browned
scars in four categories, as shown in Figure 1. Defects vary in size and color from a lighter
brown browning to a darker black browning, with some heavily decayed scars producing
white mold.

(a) )

(d)
Figure 1. Defect type. (a) Stem; (b) calyx; (c) lightly browned scar; (d) heavily browned scar.

The apple surface defect detection system is shown in Figure 2. The system consisted of
four sections: computer (ASUSAsus Computer Inc. of Taiwan, China, AMD Ryzen 7 5800H
CPU @ 3.2 GHz, RAM 16.0 GB), machine vision module OpenMV4H7Plus (Guangzhou
Sing Town Information Technology Co. (Guangzhou, China), STM32H743I1, 480 MHz,
RAM 32 MB, flash 32 MB), OV5640 CMOS (Guangzhou Sing Town Information Technology
Co.) image sensor, and led light source.
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Figure 2. Detection device sketch.

2.2. Sample Preparation

In this study, apples were placed on a white background plate, and images of apples
were captured at different imaging angles, which were used to restore various possible
lighting situations. The image was background-segmented according to the histogram
bimodal method, and only the apple part of the image was kept as the experimental image.

According to the bimodal nature of the histogram, an iterative method was utilized to
automatically find the trough point for the segmentation threshold to enhance its adaptabil-
ity. However, the lighting situation affects the effect of segmentation of specific components
of a given color space. For LAB-B color space for the darker places (apple stemmed, edges)
and RGB-B color space for the brighter areas (light produced by the bright spots), there was
a certain misjudgment rate. So, the background segmentation results obtained from the
two color spaces or operation (math.) to make up for their respective shortcomings were
stable to obtain the background segmentation image, as shown in Figure 3.

crop Function
b_and Functior”

Final Mask Size cut Result

LAB-B Mask

Figure 3. Schematic of the background segmentation process.

2.3. Proposed Method

The framework of the algorithm in this paper is shown in Figure 4. First, the R-
component map of the background segmentation image was taken to reduce the interfer-
ence of the apple surface color and magnify the difference between the normal surface and
the scar. Secondly, the image gradient was calculated and the weighting coefficients of the
bilateral filter were adaptively adjusted according to the local gradient of the filter and
the distance of the filter center from the image center for adaptive filtering. Illumination
layer separation was performed by Retinex to obtain the reflection layer. Adaptive gamma
correction was performed on the reflective layer to improve the internal contrast of the
scar. The scar was segmented, the ROI region marked by the region-growing algorithm,
and features extracted according to the ROI region and the internal texture of the scar and
sent to the support vector machine for classification. According to the classification result,
the calyx region was eliminated and only the scar region was retained as the final defect
detection result.
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Figure 4. The algorithmic framework of this paper.

2.3.1. SSR Image Enhancement Based on Adaptive Bilateral Filtering

Awareness of Retinex is not recent, having first been described in 1964 by Land
et al. [30]. The theory is based on the physiological process by which the human eye
perceives the color and luminance of objects. Although the amount of visible light reaching
the eye depends on the product of the object’s reflectivity and illuminance, human beings
distinguishing the color and brightness of the object is still mainly dependent on the result
of the object’s reflection of the visible light. The schematic principle of Retinex is shown in
Figure 5.

illumination component

image acquisition light source

equipment \ /

scenery

Figure 5. Schematic diagram of the Retinex principle.

So, Retinex theory views an image as the multiplication of the amount of reflection
and the amount of illumination, i.e.,

I(x,y) = R(x,y) x L(x,y) 1

where (x,y) is the two-dimensional coordinates of the image pixel; I is the observed image;
R is the reflection component, reflecting the color and luminance information of the object;
and L is the illuminance component, reflecting the overall brightness of the environment.

The Retinex theory aims to model the ambient illuminance component image to
separate the reflective component image, which represents the object’s own characteristics,
from the observed image for the purpose of image enhancement [31]. Logarithmic domain
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operations not only convert multiplication to addition to speed up the algorithm operation,
but also conform to the physiological property of the human eye to perceive the brightness
of the environment in a nonlinear manner. So, the reflection component can be derived in
the following way:

log R(x,y) =logI(x,y) —log L(x,y) 2)

A specific filter size can only obtain the illuminance and reflection components of a
particular feature, which is apparently lacking. Smaller filters retain more information about
the details of the image itself, while larger filters can better simulate the real illumination
component. Therefore, it is necessary to combine the combined information of various
scales for correction. This extends the multi-scale Retinex (MSR) brightness correction
method [32], which is calculated as follows:

N
logR(x,y) = ) wu{logI(x,y) — log[F(x,y) * I(x,y)]} €))

n=1

where R is the output of MSR; w;, is the corresponding weight value of each scale; I is the
original image input; N is the number of scales; F;, is the filter function at each scale. The
MSR algorithm includes features from multiple scales simultaneously, enabling a more
extensive range of dynamic compression [33].

The halo phenomenon, also known as the artifact effect at the edges, arises due to
the Retinex theory on the assumptions about the illuminance components. The theory
suggests that the light situation changes spatially smoothly, but in fact, at the edges or the
junction of light and dark, the light situation changes abruptly [34]. A halo phenomenon
is created in the reflection component after further separation of the illumination and

reflection components, as shown in Figure 6.
[’J
(b)

(a)

Figure 6. Halation phenomenon. (a) Apple image; (b) MSR reflection component image.

Bilateral filtering is used as the center-surround function of the Retinex algorithm.
Compared to Gaussian filtering, bilateral filtering considers both spatial distance differences
and color value differences in denoising, thus retaining more details while denoising. In
contrast, Gaussian filtering only considers the spatial distance difference, which would lose
some details and textures. Therefore, a bilateral filter was used instead of a Gaussian filter as
the center-surround function to more accurately restore the spatial illumination variations.

For the Retinex theory, the degree of spatial light reproduction determines how realistic
the reflected component is. For scarred areas, we need such enhancement. Smooth areas,
on the other hand, contain less useful information, and over-enhancement would be
redundant. Secondly, during imaging, the spherical fruiting body of the apple causes the
light reflectance to change too quickly at shorter distances. The Retinex theory does not
cope well with this situation and some compensation is needed. Based on this, the bilateral
filter function was improved. The smoothness of the region was reflected by the mean value
of the gradient in the filter neighborhood, and the grayscale domain weighting coefficients
were adaptively adjusted according to the smoothness, then adaptively adjusted the spatial
domain weighting coefficient according to the distance of the filter center from the image
center to cope with the above problems. The specific calculation process is as follows:
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Let any point on the image be P(x,y) and the center of the filter be Q(xc, y.); then the
bilateral filter function is calculated as follows:

fflttered(x ]/ — Z IQf ”P QH 5 ( V) 4)
_ (=xe P+ (y—ye)?
fUIP=Ql,d) =e 2057 (5)
_Up=Ig)
8( )=e = ®)

where ffitrered (X, y) represents the output value of pixel P; Ig denotes the original value of
pixel point Q; Ip denotes the original value of pixel point P; w is the neighborhood region
of the pixel; f(||P — Q||, Js) denotes the spatial distance weight function, which is usually
weighted using a Gaussian function; g( r) denotes the pixel variance weight
function, which is also weighted using a Gaussian function; J; and 6, denote the weighting
coefficients in the spatial and gray domains, respectively; and w, is the normalization
coefficient, which is used to make sure that the output pixel value is in the range of 0 to 255.

Let the image size be mn and the filter neighborhood size be (2a +1)(2a + 1). The
gradient Py,q4(x, y) of the experimental image is calculated using the Sobel operator with
the following expression:

Pyraa(x,y) = P(x,y) * Sobely + P(x,y) * Sobely (7)
-1 0 1
Sobelg = |—-2 0 2 (8)
-1 0 1
-1 -2 -1
Sobely = |0 0 0 )
1 2 1

Then the full graph gradient mean mean,;; and the filter neighborhood gradient mean
meanyy are calculated as follows:

meangy = — Z Z rud X, y (10)
n,= 0 y=0
Xc+a Yeta
_ 11
meany (2a—|—1 Y24 + 1) rxz—ﬂ/yzca grad (x,y) (11)

Let the gray-scale standard deviation of the filter neighborhood be std;¢; then the
gray-scale domain weighting coefficients are adjusted as

K X meany;

5, = Stdbf X meanbf

(12)

Here, « is the weighting constant for obtaining the weighting coefficients in the gray
domain. The smaller the value, the smaller the filter intensity adjustment range. On the
contrary, the larger « is, the larger the filter intensity adjustment range and the larger the
difference between the filter intensity in the smoothing and fringe regions.

In the smoothing area, meany,; < mean,, 6, becomes larger, and the degree of bilateral
filtering becomes larger, which can better restore the spatial illumination situation; in
the edge area, meanys > meang;, d» becomes smaller, the weight of the pixel points with
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the larger gray difference in the filtering neighborhood becomes smaller, which has less
influence on the filtering result, and the edge can be better preserved.

For the filter compensation at the edge of the image, the intensity of the bilateral filter
should be reduced as the distance of the filter from the center of the image increases so as
to prevent over-enhancement of the Retinex reflective layer at the edge of the image.

So, the spatial domain weighting coefficient J; is adjusted to

Ve = 25"+ e - 5Y)
2 2
@R+ @)

Here,  is the weighting constant to obtain the spatial domain weighting coefficients.
The larger the value, the greater the difference between the filtered intensity at the edges
and the filtered intensity at the center.

The adaptive adjustment of the filter function gave the SSR algorithm the advantage
over the MSR algorithm to consider the features of multiple scales at the same time, and
the computational complexity was greatly simplified. At the same time, it compensated for

the rapid change of light reflectance on the spherical surface, which made the calculation
results of the Retinex reflective layer more reasonable.

6s=a(l—p ) (13)

2.3.2. Reflected Component Adaptive Gamma Correction

Gamma correction enhances the luminance and contrast of an image to better match

the physiological properties of the human eye, which perceives brightness non-linearly [35].
The formula is as follows:

fout = i (14)

where ij,, is the input image luminance value, iy, is the output image luminance value, and
7 is the gamma value, which usually takes a value between 0.5 and 2.5.

The luminance and contrast of an image can be adjusted by controlling the gamma
value. However, the optimal gamma value is different for different images under differ-
ent lighting conditions. Therefore, it is necessary to adaptively adjust the gamma value
according to the characteristics of the image itself.

The histogram reflects the characteristics of the image well, the position of the main
peaks reflects the brightness of the image, and the degree of concentration of the peaks
reflects the range of variation of the brightness of the image, which is the conclusion
from visual observation. Measured from the data, the histogram mean corresponds to the
brightness of the image, and the standard deviation corresponds to the range of variation in
the brightness of the image. Based on the above principle, adaptive adjustment of gamma
value was achieved by the following equation, i.e.,

_ log(% +0.01) (15)
log (5% + 0.01)
where v is the gamma value, u is the mean value of the image histogram, ¢ is the standard
deviation of the image histogram, and the 0.01 constant is added to avoid the situation of
the denominator being 0 in practical applications.
The adaptive adjustment method was negatively correlated with the image brightness
and positively correlated with the change in image brightness. The above gamma correction
facilitated the subsequent extraction of texture features.

2.3.3. Defect Segmentation Based on Region-Growing Algorithm

Region growing is a process of aggregating pixels or sub-regions into larger regions
based on pre-defined similarity criteria. The basic method is to start by selecting one or
more pixels as seed points. Then, according to some similarity criterion, neighboring pixels
or regions with similar properties are grouped together to grow the region until there are
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no more pixels or other small regions to be grouped together [36]. In practical applications,
the key issues are the manner of seed point picking and the establishment of similarity
criteria [37].

Traditional defect detection content based on region-growing algorithms generally
involves segmenting the target region in the interference region, which has relatively
complex features, while the target region generally has similar features. After improved
SSR image enhancement, the defective areas were affected by the halo phenomenon and
the degree of decay itself with a different gray scale starting points and trends. However,
the normal surface area showed greater similarity. Thus, the effect of segmenting defects
could be achieved by segmenting the normal surface area.

The normal surface area features were obvious, the gray intensity was above 250, and
the distinction with defects was obvious. However, in order to prevent errors caused by
large spatial distances, the image needed to be partitioned by a certain size, and a seed
point was selected by gray intensity within each region.

The similarity criteria was adaptive thresholding based on the standard deviation and
mean of the gray scale of the growing region. Let R be the grown area; then the mean gray
value m and standard deviation ¢ within the grown area are calculated as follows:

m=1 Y fy (16)
(xy)ER
o= |7 T IfGoy) - mP 7)
(xy)€R

where f(x,y) is the gray value of the pixel at the point; n is the number of pixels in the
grown area.
Let the initial threshold be T; then the growth region changes to generate a new
threshold T*, which is calculated as
o
T"=T(1-— 1
1=—) (18)
The initial threshold is determined based on the grayscale histogram of the reflected
component. Let T = (255 — gray,,) /2, where gray,, is the grayscale histogram grayscale
mean value.

2.3.4. Support Vector Machine Classification Based on Texture Features

Gray level co-occurrence matrix (GLCM) is an image analysis method based on statis-
tical methods for reflecting image texture features that carry spatial relationships between
pixels. The method describes the probability of occurrence of a pair of image elements
with gray levels i and j, respectively, separated by a distance of d image elements in the
direction [38,39]. The calculation is as follows:

P(i,j,d,0) = {((x,y), (x + Dx,y + Dy)|f(x,y) = i;

where (x,y) is the pixel coordinate of any point on the image; i is the pixel gray level of
the point; (x + Dy, y + Dy) is the pixel distance D from the point in the direction 8 of the
deviation point; j is the pixel gray level of the deviation point; 6 is the direction that can be
selected, generally 0°, 45°, 90° and 135°; d is the computation step length of the gray level
coevolution matrix.

The gray level co-occurrence matrix does not provide a direct reference for texture
feature extraction, while the secondary statistics derived from it provide an important basis
for measuring texture features. The secondary statistics used include the following;:

f(x+Dy,y+Dy) =)} (19)

(1) Angular Second Moment (ASM), which reflects the degree of uniformity of the image
grayscale distribution and texture coarseness and fineness, is calculated as follows:



Appl. Sci. 2023,13, 12481

10 of 20

ASM =YY P(i,j) (20)
P

(2) Entropy (ENT), which reflects the randomness of the amount of information contained
in the image, is calculated as follows:

ENT = —ZZP(i,j) x log[P(i,})] (21)
i

(38) Contrast (CON), reflecting the sharpness of the image and the depth of the texture
grooves, is calculated as follows:

CON = ZZ(i —)* x P(i,j) (22)
i

(4) Inverse Differential Moment (IDM), reflecting the clarity and regularity of the texture,
is calculated as follows:

IDM =YY P(i, )/ [+ (i = j)’] (23)
i

(5) Correlation (COR), reflecting the degree of similarity of spatial gray scale covariance
matrix elements in the row or column direction, is calculated as follows:

COR =YY (i — mean) x (j — mean) x P(i,j)*/var (24)
ij

where P(i, j) is the number of occurrences of a pair of image elements with gray level i
and j, respectively; mean is the mean of the gray level covariance matrix; and var is the
standard deviation.

The support vector machine is a method based on statistical learning theory, which
can apply undifferentiated learning ability to seek the best mathematical model in limited
and complex sample information [40,41].

A major advantage of the support vector machine is that if the appropriate decision
hyperplane cannot be solved under the original dimension, the feature data in the low-
latitude space can be mapped to the high-dimensional space using a nonlinear mapping
function. The appropriate decision hyperplane can be researched in the high-dimensional
space to achieve the purpose of classification [42].

Take two-dimensional space as an example; let x; be the eigenvalue and y; be the data
category the positive hyperplane is 1, and the negative hyperplane is —1. As shown in
Figure 7, the optimal solution solved by the support vector machine is to find the decision
hyperplane having the maximum soft interval with proper allowance for outliers. The
larger the soft interval, the better the classification results.

x2

x1

Figure 7. Support vector machine model.
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Mathematically, the original problem solved by the support vector machine is the
minimization problem f(w) under constraint g;(w, b). The formulas for f(w) and g;(w, b)
are as follows:

% 2
<
flw) = (25)
2
qi(w,b) =y (w-xi+b)—1>0,i=1,23,-,s (26)

where w is the decision hyperplane parameter, b is the intercept, and s is the full sample size.

Since the constraints are inequalities and cannot be simplified by introducing Lagrange
multipliers, the non-negative variable p,? is introduced for the time being. According to the
Lagrange multiplier method, we can turn the above convex optimization problem under
the affine function constraint into a problem of finding the extreme value of the Lagrange
expression. Let A; be the penalty coefficient for violating the constraints, and the Lagrange
expression is as follows:

*> 2
B

=

1=

L(w,b,Aj, pi) = Ai(yi(w - x; +b) =1 - p?) (27)
1

By analyzing the results brought about by the violation of the constraints, it is clear
that A; > 0 and p;> = 0. Then the full KKT condition can be obtained from the first-order
derivative zeros of the Lagrangian. According to the Lagrange multiplier method and the
KKT conditions, the dual of the original problem, i.e., the problem of maximizing q(A;)
under the constraints A; > 0, can be found, and g(A;) is calculated as follows:

5 1& & - =
(M) = Y Ai— 50 Y Ak % (28)
- =3

From the above equation, the optimum solution of the dyadic question is determined
only by the result of the dot products of the support vectors (the spatial similarity of
the support vectors), and the spatial similarity can be obtained directly from the kernel
function. Therefore, kernel functions such as linear kernel k(x, x;) = x-x;, polynomial

2
kernel k(x,x;) = ((x-x;) +1)?, and Gaussian kernel k(x, x;) = exp(—%) can be

introduced to replace the nonlinear mapping function in the dimensional transformation,
and the computational complexity can be greatly simplified.

The above five texture features were fed into the support vector machine for classifi-
cation model training. In the experiment, the order of magnitude difference between the
computed results of the five texture features was too large. Thus, they were first standard-
ized and then trained and predicted according to the ratio of training set to test set, which
was 7:3.

The size of the penalty factor balances the algorithmic complexity and stability of the
support vector machine. Thus, for the penalty factor, kernel function, and gamma value
(some kernel functions used gamma value), the best combination of parameters can be
found by grid search.

Image texture data from each stage of image processing were acquired separately for
classification model training to verify the effectiveness of Retinex image enhancement and
gamma correction in highlighting the differences between scars and stems/calyxes.

3. Results
3.1. Experimental Setting
The size of the experimentally captured original image was about 100 x 100, and in

order to evaluate the performance of the proposed method, existing image segmentation
techniques and texture feature extraction methods were compared.



Appl. Sci. 2023,13, 12481

12 of 20

First, the weighting constant « of the gray-domain weighting coefficients used in
the SSR luminance decomposition process is based on adaptive bilateral filtering, which
controlled the adjustment range of the filtering intensity. During the experiment, the range

of %ZZ” was between 0.5 and 2.3. During the transition from the smooth area to the edge

area, the process of filter intensity reduction was too fast. When the filter size became larger,

the range of %ZZ? became smaller accordingly, which made the process of filter intensity

change more reasonable but caused the loss of detailed information on the reflection layer.
This experiment used a filter size of 40 x 40, in which the weighting constant « = 0.85 was
taken, the adjustment process of filter intensity was more reasonable, and the reflection
layer separation effect was better.

The weighting constant 5 of the gray-domain weighting coefficients was used in the
SSR luminance decomposition process of adaptive bilateral filtering by which the degree of
filtering compensation at the edges was adjusted. This degree of compensation could not
be too large. Otherwise, it would be in the reflection layer at the edge of the image directly
producing shadow interference. After experimental testing and verification, from the center
of the image to the edge, the filter strength was reduced to two-thirds of the original, which
was more reasonable. So, by taking g = %, the filtering could be compensated at the edges
of the image without shadow interference from the reflective layer.

Regarding the parameter determination of the support vector machine, among the
kernel functions (linear kernel, polynomial kernel, Gaussian kernel), the penalty factor
size (0.01, 0.1, 1, 10), and the gamma value (0.01, 0.1, 1, 10), the optimal combination of
parameters determined by means of grid search was to use the linear kernel function
with the penalty factor size of 1 and no gamma value (the linear kernel function had no
gamma value).

3.2. Experimental Results and Comparisons
3.2.1. SSR Luminance Decomposition Results Based on Adaptive Bilateral Filtering

The RGB decomposition of the obtained background segmentation image was per-
formed first, as shown in Figure 8. It could be seen that the defects had the greatest contrast
with the normal surface in the R-component map, so the R-component map was enhanced
as the original image for SSR image enhancement.

(a) (b) (c) (d)

Figure 8. RGB color space decomposition results. (a) Original picture; (b) R-component picture;

(c) G-component picture; (d) B-component picture.

The brightness decomposition of SSR (filter size 40 x 40), MSR (filter size 20 x 20,
30 x 30,40 x 40) based on bilateral filtering, and SSR (filter size base size 40 x 40) based on
adaptive bilateral filtering were carried out for Figure 8a, respectively, and the results for the
reflection layer obtained are shown in Figure 9. As could be seen from the figure, compared
with the SSR algorithm, the decomposition results of the improved SSR algorithm in the
normal surface region were basically the same as the SSR decomposition results, and the
smoothing region did not cause much change in the filter strength. Compared to MSR, the
decomposition results of the improved SSR algorithm in the scar region were equally good
in preserving the inner edges of the scars with a clearly visible texture. Meanwhile, the
scar information at the edge was also recovered by appropriately reducing the intensity of
bilateral filtering close to the image edge. As could be seen from Figure 9c, when the scar
appeared at the image edge, a slight interference region appeared at the image edge scar.
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This may be caused by the fact that the bilateral filter adaptive adjustment method made
both spatial and gray domain weight coefficients appear to be adaptively reduced, and the
adjustment effect of both was superimposed. Further discussion on this issue is required in
the follow-up.

GG

Figure 9. Luminance decomposition effect. (a) SSR result; (b) MSR result; (¢) improved SSR decom-
position result.

3.2.2. Reflected Component Adaptive Gamma Correction Results

The effect of adaptive gamma correction is shown in Figure 10. As could be seen from
the reflected component maps, the internal contrast of the corrected defective area was
significantly increased, and the texture features were clearer. From the observation of the
gray intensity surface map (the gray intensity of the image was inverted, and then the
gray intensity surface map was produced), the corrected defective area was richer in each
segment of the internal gray intensity, and the enhancement effect was obvious.

Grayscale

(c) (d)

Figure 10. Adaptive gamma correction effect. (a) Reflected component figure; (b) adaptive gamma
correction result; (c) reflected component gray intensity surface figure; (d) adaptive gamma correction
resulting in gray intensity surface figure.
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3.2.3. Defect Segmentation Results of Improved SSR Image Enhancement and Region-
Growing Algorithm

In order to verify the effectiveness and practicality of the defect detection method in
this paper, four representative apple images were selected as experimental images, which
were compared and analyzed with the image segmentation method based on the genetic
algorithm (with OSTU algorithm as the fitness function and roulette algorithm as the
selection algorithm) and the segmentation method based on the canny operator for edge
detection built into the machine vision module OpenMV.

Figure 11ais characterized by a natural depression at the apple fruit stalk, which results
in a certain degree of abrupt change in light reflectance near this region. The detection
results of each method for this image are shown in Figure 11. The genetic algorithm-based
segmentation method detected a large area of the fruit stalk, and the boundary between the
normal surface and the fruit stalk was not obvious. The edge detection algorithm only had
some detection ability for the deepest gray level zero part of the fruit stalk. Comparatively,
the proposed segmentation method could detect the whole depressed area where the light
reflectivity had changed abruptly, and the boundary was more reasonable, providing a
more reliable texture basis for the subsequent identification of the peduncle calyx.

(@) (b) (c) (d)

Figure 11. Effectiveness of each method for detection of apple stem images. (a) Original figure;
(b) genetic algorithm segmentation result; (c) edge detection algorithm result; (d) segmentation effect
of the proposed image segmentation method.

Figure 12a is characterized by the same natural depression at the calyx of the apple
and a significant uneven light reflectivity at the right edge of the apple. The detection
effect of each method on this image is shown in Figure 12. In the extraction of calyx
defects, the segmentation method based on the genetic algorithm had a better detection
effect at the calyx, and the boundary between the calyx and the normal surface was more
reasonable, but it was easily disturbed by the uneven light reflectivity phenomenon in the
light-dark area. The segmentation method based on the edge detection algorithm had some
over-segmentation phenomena for the calyx with complex textures. Comparatively, the
proposed segmentation method still had good segmentation ability at the calyx defects
while resisting the uneven interference of light reflectivity.

(a) (b) (c) (d)

Figure 12. Detection effect of each method on calyx images. (a) Original figure; (b) genetic algorithm
segmentation result; (c) edge detection algorithm result; (d) segmentation effect of the proposed
image segmentation method.

Figure 13a is characterized by defects located within a dark zone caused by uneven
light reflectivity, highlighting the disturbance caused by uneven light reflectivity. The
detection effect of each method on this image is shown in Figure 13. The segmentation
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method based on the genetic algorithm had a significantly lower edge detection accuracy
in the light-dark region than in the light-bright region. The segmentation method based on
the edge detection algorithm had a significant difference in the detection effect in the bright
and dark zones caused by the uneven light reflectivity. In the bright area, the contrast
between the gray intensity of the pixels at the edge of the defect and the edge of the normal
surface was obvious, and the segmentation effect was more satisfactory. In the dark area,
the original strong gray contrast at the edge became flat, and the detection effect of the edge
detection algorithm was almost completely lost. Comparatively, the proposed segmentation
method was not affected by the light and dark areas caused by uneven light reflectivity
and had the same detection accuracy in the dark area as in the light area.

(a) (b) (c) (d)

Figure 13. Detection effectiveness of each method on complex images with light reflectance. (a) Orig-

inal figure; (b) genetic algorithm segmentation result; (c) edge detection algorithm result; (d) segmen-
tation effect of the proposed image segmentation method.

Figure 14a is characterized by a more complex defect edge contour. The detection effect
of each method on this image is shown in Figure 14. The segmentation method based on the
genetic algorithm could roughly recover the edge contour, but the recovery ability was low
at the edge and was too complex, which may lead to the destruction of the edge continuity.
Segmentation methods based on edge detection algorithms could detect the general contour
of defects, but the connectivity was poor, and simple image morphological processing could
not recover the defect edges, which needed to be specifically edge connections. In fact, edge
connectivity is more difficult than edge detection. In contrast, the proposed segmentation
method eroded from the normal surface to the inside of the defect and stopped growing
after obtaining the defect edge. The defect edge information could be better restored.

(@) (b) () (d)

Figure 14. Detection effectiveness of each method on complex images with edge information. (a) orig-
inal figure; (b) genetic algorithm segmentation result; (c) edge detection algorithm result; (d) segmen-
tation effect of the proposed image segmentation method.

3.2.4. Support Vector Machine Classification Results Based on Texture Features

As shown in Figure 15, after SSR enhancement, the gray levels inside the scars were
haphazard, which was related to the degree of decay inside the scars, and different scars
presented different gray intensity characteristics. In contrast to the scars, the stem/calyx
area had a distinct regularity to it. Both the apple stem and the calyx showed a gray
intensity characteristic of lower gray intensity internally and then gradually recovered to
the same gray intensity as the normal surface area as the degree of indentation diminished.
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Figure 15. Some SSR image enhancement results. (a) Scars; (b) stems/calyxes.
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In order to investigate the effect of improved SSR image enhancement and adaptive
gamma-corrected image processing methods on texture features, the texture features of
the three image processing stages of extracting the R component, improved SSR image
enhancement, and adaptive gamma correction were collected as sample datasets. A total
of five texture features, angular second moment, contrast, entropy, inverse differential
moment, and correlation, were collected for each sample, and the three-stage stem/calyx
and scar texture features are shown in Figure 16. It can be seen that the distribution of data
for each textural feature of the stems/calyxes has a certain regularity compared to the scars.
Further analysis showed that compared to the R-component maps, the randomness of the
amount of information became larger after SSR image enhancement, and the clarity and
regularity of the texture were significantly improved (the value of the inverse differential
moment reflected this information). The texture contrast was further increased after further
adaptive gamma correction compared to the SSR image enhancement map.

The texture features of the defective samples obtained from the images of the three
image processing stages were fed into the support vector machine for binary classification,
respectively. The results, as shown in Table 1, indicate that SSR image enhancement and
adaptive gamma correction were effective in highlighting differences in textural features
between stems/calyxes and scars.

Table 1. Stem/calyx recognition accuracy.

Image Processing Number of Stem/ Number of Scar o
Stage Calyx Textures Textures Total Accuracy (%)
R-component 200 230 430 84.4
SSR 200 230 430 93.0
Gamma 200 230 430 93.7

The decision hyperplane expression was obtained by training the texture data obtained
by the full image processing process as follows:

y = 0.00473 x ASM + 0.05776 x CON +0.27029 x IDM

+0.03863 x ENT + 0.01327 x COR — 3.60491 (29)

It is worth noting that IDM accounted for a relatively large proportion of the overall
classification judgments, reflecting the fact that the clarity and regularity of the texture
were quite important for stem/calyx identification, as predicted early in this study.



Appl. Sci. 2023,13, 12481 17 of 20

COR COR
20.10 63.80
16.20 1. 04
12.30 48,28
8.40 .52
4.50 12.76
0.60 0.00
The scatter diameter is proportional to CON The scatter diameter is proportional to CON
(a) (b)
../‘\\
e | o COR COR
A . 167. 00 794. 00
1.
1.2
134.06 635. 20
1
0. 101.12 476. 40
g
0.6
o 68.18 317.60
35.24 158.80
2.30 0.00
The scatter diameter is proportional to CON The scatter diameter is proportional to CON
() (d)

84.00

241.20

63.50

160. 80

43.00

80.40

22.50

2.00 0.00

The scatter diameter is proportional to CON The scatter diameter is proportional to CON

(e) (f)

Figure 16. Texture characterization data for each type of defect sample. (a) R-component map
stem/calyx texture data; (b) R-component map scar texture data; (c) SSR image enhanced stem/calyx
texture data; (d) SSR image enhanced scar texture data; (e) stem/calyx texture data corrected by SSR
and gamma; (f) scar texture data corrected by SSR and gamma.

3.2.5. The Results of the Proposed Defect Detection Method

The practical application effects of the two sub-methods of the proposed defect de-
tection method (image segmentation method and stem/calyx recognition method) are
presented above, respectively. Finally, the defect detection method was deployed to the
embedded image processing device OpenMYV for experiments to verify the effectiveness
and practicality of the method. Firstly, after all the defective areas were segmented by the
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proposed image segmentation algorithm, the built-in “find_blobs color block” function of
OpenMV was used to mark the defective areas with ROI regions of interest, extract the
texture featured, and then send them to the support vector machine for binary classification.
According to the classification result, the stem/calyx was eliminated and only the scar area
was retained as the execution result of the proposed method. In this way, on the one hand,
there was no need to open a separate storage space to set labels for the classification results
of the defective areas, which reduced redundant operations. On the other hand, the scar
detection results could be directly displayed graphically, which was more intuitive than the
form of tables, convenient to further summarize some qualities of the scars, and conducive
to judging the health of the apples. Some of the test results are shown in Figure 17.

Figure 17. Detection effect of the proposed defect detection method. (a) Apple samples; (b) detection
results of the proposed defect detection method.

Table 2 shows the defect detection results for 280 pairs of apple images. Using the
criteria that scars were not missed and the stem/calyx was not misclassified as a scar,
healthy and diseased fruits were distinguished by whether the number of scars detected
was zero or not. For the browning heavier defect type, although the detection effect was
better, it was found in practical application that when the disease rot spread over a large
area, the internal rotted degree would appear obvious grading or even white mold, resulting
in the brightness decomposition results being affected, which led to over-segmentation. In
addition, in this paper, only scars with an area larger than 20 pixels (the resolution of the
experimental image was 160 x 120) were counted as the detection results, and the surface
spots on the apples themselves (usually with an area of less than five pixels) were ignored.

Table 2. Detection accuracy of two types of defects under the proposed algorithm.

Number of Correct Disease

Defect Type Sample Size Condition Judgments Accuracy (%)
Normal-stem 70 67 95.7
Normal-calyx 70 65 92.8

Scar-light browning 70 64 91.4
Scar-heavy browning 70 68 97.1
Total 280 264 94.2

4. Conclusions

In this paper, an image segmentation algorithm based on adaptive bilateral filtering
for SSR image enhancement and a region-growing algorithm were proposed for filtering
out the interference of uneven light reflectivity and segmenting the defects. A limitation
of this method was that it could not differentiate between stems/calyxes and scars. To
solve this problem, an algorithm for stem/calyx recognition based on texture features
was also introduced. Finally, a defect detection algorithm was developed from the two
methods. The algorithm could take only the segmentation results of real scars as the final
results. Deploying the proposed defect detection algorithm into the embedded image
processing module OpenMV4H7Plus, the accuracy of stem/calyx recognition was 93.7%,
and the accuracy of scar detection was 94.2%. The results show that the proposed defect
detection algorithm can complete the extraction of apple surface defects and exclude the
interference of stems/calyxes in the case of uneven light reflectivity. The proposed defect
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detection algorithm could be used in automated apple defect detection systems to increase
productivity and reduce labor costs. This may have wide applications in orchards and food
processing plants.

In addition, an issue that was not addressed in this study is whether the segmentation
method suffers from over-segmentation for scars with large areas of obvious decay grad-
ing. Although it does not affect the overall segmentation and extraction of scars and the
judgment of the health of the apple, it causes an additional increase in the number of scars
counted. Further research is needed to follow up on this issue.
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