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Abstract: The development of integrated, compact, and multifunctional photonic circuits is crucial in
increasing the capacity of all-optical signal processing for communications, data management, and
microsystems. Plasmonics brings compactness to numerous photonic functions, but its integration
into circuits is not straightforward due to insertion losses and poor mode matching. The purpose
of this article is to detail the integration strategies of plasmonic structures on dielectric waveg-
uides, and to show through some examples the variety and the application prospect of integrated
plasmonic functions.

Keywords: plasmonics; photonic integrated circuits; surface plasmon; nanotweezers; couplers; strong
coupling; magneto-plasmonics; nanoantennas

1. Introduction

The use of optical signals for the implementation of complex computing, information
processing, or communication networks is nowadays essential to meet the growing demand
for data exchange. The key features of the all-optical solution include the ability to paral-
lelize optical carriers through spectral multiplexing and specific information encodings.
Photonic integrated circuits (PICs) [1–3] have been developed to generate complete optical
systems and to simplify the use of different optical functions from source to modulation
and signal detection. Leveraging manufacturing techniques inspired by microelectronics,
planar waveguide circuits have achieved two complementary objectives: (1) to control the
propagation of the optical signal in a 2D system with very low losses and (2) to facilitate the
serial or parallel association of several functions without the use of spatial optical elements.
Guided planar optics enables the compact integration of optical elements whose lateral
dimension is on the order of the wavelength in the material. However, this dimension
remains diffraction limited and cannot be further reduced.

Plasmonics has been a heavily researched field since the 2000s due to its unique ca-
pability to concentrate light on a sub-wavelength scale [4]. This entails confining light in
the form of surface plasmon polaritons (SPPs); these resonant quasiparticles arise from
the strong coupling between an electromagnetic wave and an electrical polarization wave
carried by the surface conduction electrons of specific metals. Copper, gold, silver, and
aluminum exhibit plasmonic responses, with resonance frequencies ranging from near-
infrared (IR) to near-ultraviolet (UV). The electromagnetic wave that is “hooked” to the
surface of the metal by plasmonic interactions has an evanescent wave profile on either
side of the interface and contains a very high optical power density. Light is slowed down
and concentrated at the subwavelength scale on the metal surface, facilitating enhanced
interactions with any entity or material on or near the surface. Plasmons can exist in two
primary forms: “propagative” on the surface of a metal film and “localized” within metal
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nanostructures [5–7]. These plasmonic states exhibit several unique properties, resulting
from their specific spatial profile and resonance [8]. The integration of plasmonics into
photonic circuits holds significant promise for addressing several major issues and chal-
lenges in photonics and its related fields. The ability to manipulate light propagation at
the subwavelength scale is undeniably of vital importance for future integrated photonic
circuits. Plasmonics can facilitate the miniaturization of optical functions [9–11], enhance
non-linear optical interactions [12,13], display a strong spectral and polarization depen-
dence [14], and enable localized heating [15,16] and control of the thermally activated
phase change materials [17,18], resulting in a high sensitivity of their resonance to the
environment [19]. For instance, by leveraging plasmonic elements, it is possible to strongly
reduce the coupling length between waveguides [20] or the position of self-images in
hybrid photonic-plasmonic multi-mode interferometers (MMIs) [21], thus reducing the
overall footprint of PICs.

Finally, the technological manufacture of plasmonic films and structures is compat-
ible with low-cost processes, requiring a reduced number of steps and demonstrating
improved tolerance. For all these reasons, plasmonics is expected to lead to the densi-
fication of circuits, miniaturization of normal integrated optical functions, and incorpo-
ration of novel capabilities. Furthermore, plasmonic components which are expected to
be ultrafast and ultrasmall [22,23] in the future, can be integrated with photonic circuits
to perform on-chip signal processing tasks. These encompass essential functions such
as mode conversion [24–26], focusing [27,28], modulation [29–37], filtering [38–41], and
switching [32,42–45], which are essential for the development of faster and more efficient
optical communication and data processing systems. In addition, plasmonic materials and
structures can be used to create extremely compact light sources [46], including plasmon
lasers [47–49] and nanoscale light emitters [50–52]. Plasmonics can enhance the capabilities
of purely dielectric platforms thanks to their broadband emitter (with a shorter lifetime)
helping in the design of integrated coherent sources of single photons [53] for quantum
applications [54–57].

However, two types of constraints limit the utilization of plasmons in optical functions:
(1) the high optical losses induced by the interaction of the wave with the metal allow the
use of plasmons only sparingly and (2) the excitation of plasmons from electromagnetic
waves demands complex strategies, primarily due to their propagation constants, which are
intrinsically higher, or even significantly higher, than those of electromagnetic waves in the
surrounding environment. These two limitations can be simultaneously addressed through
a smart integration of photonic circuits and plasmonic structures. In this case, embedding
plasmonic structures on waveguides and photonic circuits [58] allows us to benefit from
the advantages of both components, namely the low losses of dielectric waveguides and
compactness of plasmons. In other words, such an integration allows us to insert plasmonic
structures only where needed, and connecting them with other functions of the circuit
thanks to low loss dielectric waveguides. Nevertheless, this integration poses a significant
challenge due to the substantial differences in spatial extension between dielectric and
plasmonic modes, which are accompanied by contrasting propagation constants. In this
context, the purpose of this article is twofold. On the one hand, it reviews strategies
for integrating plasmonic structures, which support localized or propagative plasmons,
on dielectric waveguides. On the other hand, it demonstrates the diversity of potential
applications where the synergistic integration of plasmonic features can lead to innovations.

2. Integration and Excitation of Plasmonic Structures

The incorporation of plasmonics into photonic circuits poses a significant challenge due
to the contrasting spatial characteristics of plasmonic and dielectric modes. The primary
hurdle lies in achieving optimal optical integration and impedance matching between
metallic structures and dielectric waveguides. This integration typically necessitates a
mode coupling region, the length of which depends on the specific interfacing mechanism.
To assess the quality of the interfacing, the relevant indicator is the coupling efficiency,
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which is defined by the ratio between the power available in the waveguide at the exit of
the transfer zone and that in the dielectric guide before the transfer zone. By this definition,
the coupling efficiency encompasses all types of losses generated in the coupling region,
including ohmic losses and those related to mode mismatch. In this section, we will delve
into the challenges related to interfacing strategies for both propagative and localized
plasmon families.

2.1. Propagative Surface Plasmon

Propagative surface plasmon is generated at the interface between a metal and a
dielectric material. It can propagate at several wavelengths’ distance along this interface.
It has the characteristic profile of a transverse magnetic (TM) wave, featuring its primary
electric field component perpendicular to the interface and a secondary, smaller component
in the propagation direction. Its profile also exhibits an exponential decrease, forming an
evanescent profile on each interface side, as shown in Figure 1a,b.

Propagative SPP is analytically described by its dispersion curve, which is established
by solving the Maxwell equations in the case of the double exponential profile [6]:

ksp(ω) =
ω

c
ne f f =

ω

c

√
εext.εm

εext + εm
(1)

where ksp is the wavevector of the SPP, neff represents the effective refractive index of
the mode, and εext and εm are the permittivity of the dielectric and the metal materials,
respectively. Dispersion curves and dispersion diagrams will be extensively used in this
manuscript as a powerful tool to identify the behavior of plasmonics and hybridized
plasmonic–photonic modes. This tool helps to identify and engineer various coupling
mechanisms. A dispersion diagram shows the relationship between the frequency f (or
angular frequency ω = 2πf) and the wavevector k = (ω/c) × neff of a specific mode within
a given observation range. It is important to note that dispersion curves for non-guided
waves propagating through homogeneous media exhibit a straight-line shape that passes
through the origin of the axes. The slope of these curves indicates the refractive index of the
medium. An interaction between two modes with compatible polarization is expected near
the crossing point of the corresponding two non-interacting dispersion curves. The result
of the interaction will be the formation of two supermodes whose dispersion curves will
manifest a gap (anticrossing) in the vicinity of the aforementioned crossing point. The width
of the gap formed is representative of the “strength” of the interaction between the two
original modes. For more details on reading and using band diagrams, see [59]. In Figure 2,
the SPP dispersion curve is represented in the case of air–gold and InP–gold plasmonic
modes, where gold permittivity spectrum is approximated by the Drude model [60,61] and
ωp represents the plasma resonance angular frequency in the metal. These curves reveal
the primary properties of SPPs: (1) the SPP dispersion curve consistently remains below
the light line of the surrounding dielectric medium, indicating that SPPs propagate with
a higher wavevector (or equivalently a higher effective index) than the electromagnetic
wave in this medium; (2) as the SPP frequency approaches the plasmonic resonance, i.e.,
fsp =ωsp/2π, the dispersion curve becomes quasi-horizontal. This indicates that SPPs
propagate very slowly, with a near-zero group velocity, and becomes highly confined near
the metal (featuring a high k). (3) The plasmonic resonance frequency exhibits a strong
dependence on the refractive index of the surrounding medium.
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Figure 1. (a,b) Profile of a surface plasmon polariton (SPP) on an air–Au interface: (a) The color scale 
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the white arrows indicate the orientation of the total E field, while the + and − markers indicate the 
distribution of free charges on the Au surface. (b) The color gradient indicates the total electric field 
intensity. The superposed white line depicts the distribution of the intensity of the electric field x-
component. (c–k) Plasmonic modes calculated for different waveguide geometries: (c–e) real part 
(red) of the electric field y-component when the propagation occurs along the x-direction (in-plane 
with respect to the figure plane). The label LR (SR) indicates the symmetric (asymmetric) coupling 
of two surface plasmons (SPPs) generating a “long-range” (“short-range”) mode. In (d) and (e) 
circled numbers 1 and 2 highlight the SPPs of the individual interfaces of the respective waveguides. 
(f–k) Electric field intensity of the wave in the case that propagation occurs along the z-direction 
(out-of-plane with respect to the figure plane). Structures inspired by [62]. 

 
Figure 2. Dispersion curves of propagative surface plasmons at the gold–air interface and gold–InP 
interface. The solid (dashed) lines represent the contribution solely from the real (imaginary) part 
of the complex permittivity. 

Several types of propagative plasmonic waveguides have been proposed, as 
schematized in Figure 1c–k. Some of these are designed for long-range propagation (LR) 
by minimizing the direct interaction between the wave energy and the metal. This is 
achieved through coupled SPPs on each side of a thin metallic film (Figure 1d,g) or in a 
metallic slot waveguide (Figure 1e,h–j). The LR-SPP is the supermode with a symmetrical 
phase profile and reduced losses that arises from the coupling of the two SPP modes 
propagating on the two side interfaces of the metallic waveguide. Associated with it is the 
dual supermode, the SR (short-range) SPP, which features an asymmetrical phase profile 
and increased losses [62]. 

Figure 1. (a,b) Profile of a surface plasmon polariton (SPP) on an air–Au interface: (a) The color scale
corresponds to the normalized real part of the x-component of the electric field. More specifically,
the white arrows indicate the orientation of the total E field, while the + and − markers indicate
the distribution of free charges on the Au surface. (b) The color gradient indicates the total electric
field intensity. The superposed white line depicts the distribution of the intensity of the electric
field x-component. (c–k) Plasmonic modes calculated for different waveguide geometries: (c–e)
real part (red) of the electric field y-component when the propagation occurs along the x-direction
(in-plane with respect to the figure plane). The label LR (SR) indicates the symmetric (asymmetric)
coupling of two surface plasmons (SPPs) generating a “long-range” (“short-range”) mode. In (d)
and (e) circled numbers 1 and 2 highlight the SPPs of the individual interfaces of the respective
waveguides. (f–k) Electric field intensity of the wave in the case that propagation occurs along the
z-direction (out-of-plane with respect to the figure plane). Structures inspired by [62].
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Several types of propagative plasmonic waveguides have been proposed, as schema-
tized in Figure 1c–k. Some of these are designed for long-range propagation (LR) by
minimizing the direct interaction between the wave energy and the metal. This is achieved
through coupled SPPs on each side of a thin metallic film (Figure 1d,g) or in a metallic slot
waveguide (Figure 1e,h–j). The LR-SPP is the supermode with a symmetrical phase profile
and reduced losses that arises from the coupling of the two SPP modes propagating on the
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two side interfaces of the metallic waveguide. Associated with it is the dual supermode,
the SR (short-range) SPP, which features an asymmetrical phase profile and increased
losses [62].

To benefit of their high confinement and compactness while limiting the induced losses,
such plasmonic waveguides can be selectively integrated into conventional single-mode
dielectric photonic waveguides. The typical interfacing schemes (Figure 3) exploit either
a progressive transition (such as evanescent coupling or grating coupling) or butt-joint
transition between the photonic and the plasmonic waveguides. Butt-joint transition, also
called end-fire transition, [63] offers poor performance because of the significant mode
shape mismatch between the plasmonic and the photonic modes (Figure 3a) and will not
be discussed here.
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Figure 3. (a–c) Diagram illustrating three different typical ways of coupling a dielectric waveguide
with a plasmonic waveguide: (a) end-fire coupling, (b) evanescent coupling, and (c) coupling via a
diffraction grating. (d) The wave vector kd of the guided mode in the dielectric waveguide is equal
to that required to excite the plasmonic mode, ksp. (e) The wave vector of the dielectric waveguide
mode is not sufficient and requires an additional contribution δk, arising from the diffraction grating,
to match that of the plasmonic waveguide mode.

The underlying physical mechanism harnessed through evanescent coupling (depicted
in Figure 3b) or grating coupling (shown in Figure 3c) can be described by examining the
dispersion curves of the involved modes (illustrated in Figure 3d,e): the dispersion curve
of the SPP at the metal–dielectric interface (represented by the red curve) is situated sig-
nificantly below the light line of the corresponding dielectric (characterized by an index
next). This is especially true for modes with strong plasmonic character, particularly when
the SPP dispersion curve becomes quasi-horizontal. The plasmon cannot be excited by
an electromagnetic wave with a propagation constant lower than ksp. In the integrated
configuration where the plasmonic waveguide is placed in proximity to a dielectric waveg-
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uide (i.e., via a multilayer configuration as depicted in Figure 3b), the effective index nd
of the dielectric waveguide mode is higher than the refractive index of the surrounding
dielectric material by construction (nd > next); this property can be used to directly excite
the SPP when kd ∼= ksp (phase matching), since both dispersion curves cross each other (see
the dispersion diagram in Figure 3d). In this case, when the polarization of the dielectric
guided mode supplies the necessary z- and x- electric field components for SPP excitation,
mode coupling occurs. This results in the generation of two supermodes with a hybrid
photonic–plasmonic nature, featuring field symmetric and antisymmetric distributions and
effective indices ne and no (as shown in Figure 3b), respectively. The half-beating length of
these supermodes determines the coupling length Lc of both waveguide modes, which is
related to their wavevectors difference:

Lc =
∣∣∣∣12 λ

ne − no

∣∣∣∣. (2)

After a propagation distance of Lc through the coupling region, the energy of the
dielectric guided mode is totally transferred into the SPP. Such a mode coupling is called
“evanescent coupling” because it involves the evanescent tails of the guided modes. The
required condition (nd > next) is more easily achieved when the targeted SPP is on the
opposite metallic film side with respect to the dielectric waveguide, as shown in Figure 3b.
Indeed, the outside material can have a low refractive index, independent of the guided
mode effective index. On the dispersion curves map, this interaction induces anticrossing
of both curves. In the case of high contrast between next and nd, the involved plasmonic
mode dispersion curve is almost flat (horizontal), and thus the generated supermodes have
very different effective indices: the higher the supermode index difference, the shorter the
coupling length. Thus, such a mechanism is particularly efficient when the contrast between
next and nd is high. Delacour et al. [20] have realized this for example in the case of an SOI
waveguide and a Cu plasmonic slot waveguide at 1.55 µm. The experimental coupling
length equaled 0.9 µm and the coupling efficiency was estimated at 70%. In another
example involving polymer waveguides, Magno et al. [64] numerically demonstrated the
coupling between a SU8 on a glass waveguide and a buried plasmonic waveguide at
633 nm, with Lc = 5.3 µm and a coupling efficiency of 88%. The use of SOI waveguides
is particularly interesting since, in that case, the dielectric waveguide mode has a high
effective index. However, when coupling the fundamental TM mode of a high-contrast
dielectric waveguide (with a high effective refractive index) to the LR-SPP mode of a
thin-film plasmonic waveguide embedded in a low refractive index medium (with a low
effective refractive index), it can be beneficial to employ layers of dielectric material with
higher refractive indices that encapsulate the plasmonic waveguide. This helps to satisfy
the phase-matching condition, as shown in [65].

If the condition kd
∼= ksp cannot be directly fulfilled, the guided dielectric mode must

interact with a complementary structure (Figure 3c) to increase its wavevector module
up to ksp (ksp = kd + δk, see Figure 3e); the interaction of the dielectric waveguide mode
with a periodic grating (period Λ) serves this purpose since it generates spatial harmonics
whose constant propagations equal k = kd + p 2π/Λ, where p is a relative integer. The first
harmonic (p = 1) is the most intense; by choosing Λ so that ksp − kd = 2π/Λ, the grating
provides the dielectric waveguide mode with the missing component δk to excite the SPP at
the dielectric/metal interface (each surface of the metal can be targeted, by proper choice of
δk). In the case of a strong mismatch of the dielectric and plasmonic waveguides (i.e., if the
targeted mode has a strong plasmonic character, with very high ksp), successive gratings
with decreasing periods can be used for a progressive adaptation, with the risk of long and
lossy transitions. Tetienne et al. [66] showed in an integrated coupler made of a metallic
grating for the transition between a semiconductor waveguide and a plasmonic gold film at
1.3 µm that the mode transfers along a 5.5 µm transition, with a global excitation efficiency
of 24%.
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2.2. Localized Surface Plasmons

Localized surface plasmons (LSPs) result from plasmonic excitation in low-dimensional
metallic structures with typical dimensions lower than the wavelength in the metal. LSP
modes are eigenmodes of such a subwavelength metallic structure, which behaves as a
dipole or a multipole. The LSP dipolar response of the nanostructure to the electromagnetic
excitation is characterized by its polarizability, which has an analytical expression in case
of “simple” shapes and a homogeneous surrounding medium [67].

The excited dipole in a plasmonic nanoparticle radiates itself an electromagnetic
wave of the same frequency, which can excite another plasmonic nanostructure with
similar resonance; in this way, plasmonic nanostructure assembly may support collective
resonances and/or propagate energy from nanostructure to the next [68]. An LSP chain
dispersion curve can be thus established by using an analytical model in a homogeneous
medium [69] or numerical methods in a general case. For instance, Figure 4 shows the
dispersion curve, calculated using the FDTD method, of a plasmonic chain composed of
gold nanocylinders with elliptical cross-sections placed on top of a semi-infinite Si substrate.
The LSP chain dispersion curve displays a similar overall behavior as that of the SPP: it is
positioned below the light line and exhibits a nearly horizontal slope at the highest k vectors.
In other words, the collective modes of the LSP chain propagate through the chain elements
as they do in a waveguide despite the intrinsic discontinuity of the metallic elements.
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Furthermore, chains of plasmonic nanoantennas have the ability to support topolog-
ically non-trivial modes (edge states resembling topological insulators) [70–74], bound
states in the continuum [75–77], and surface lattice resonances [78–81].

LSPs in a subwavelength structure enable very high light confinement, with enhanced
miniaturization and electromagnetic field concentration with respect to 2D plasmonic films.
Nevertheless, the excitation of a single LSP structure is very inefficient because of the
high mismatch between its resonant mode size and diffraction-limited electromagnetic
waves. The excitation efficiency of such a single nanostructure deposited on a silicon
nitride waveguide reaches less than 10% (9.7% in [82]). To transfer all the energy of
the dielectric guided mode into an LSP, a viable solution is to exploit the waveguides’
evanescent coupling as shown above, considering a plasmonic chain instead of a plasmonic
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metallic film [83]. The typical structure is made of a MNP metallic nanoparticle (MNP)
chain integrated on or near a dielectric waveguide (Figure 5). The chain can be designed to
propagate either TE or TM modes and can be in any position near the waveguide if their
relative distance allows the evanescent tail of the dielectric mode to overlap with the LSPs.
In addition to enabling the LSP excitation, such a strongly coupled structure has specific
properties, as described below.

2.2.1. Coupling Efficiency

Figure 5 shows the FDTD calculations of a TE mode in a dielectric waveguide evanes-
cently coupled to an LSP chain. The (infinite) LSP chain is directly deposited on a SOI
waveguide, and Figure 5b–d reveals the anticrossing of both dispersion curves which
generates the resulting odd and even supermodes. The strong coupling between both
waveguides, in addition to the low slope of the LSP chain curve, induces supermodes with
very different indices and thus a very short coupling length. Depending on the wavelength,
the fundamental TE mode of a SOI waveguide can be totally transferred in the 4th or 5th
MNP of the finite chain [83], which corresponds to a ~600 nm coupling length (Figure 5f).
The coupling efficiency is near 99% in the case of a 5 MNP chain (Figure 5e). Due to a lower
dielectric effective index, the optimal configuration in the case of a Si3N4 waveguide at
633 nm enables a total transfer of the mode energy in an 8 MNP chain with a coupling
length of ~800 nm.

In fact, the energy transfer efficiency is improved with respect to a single MNP case as
soon as a second MNP is involved (“dimer” chain). In return, however, the chain length
increase implies an increase in ohmic losses. In order to exploit the high electromagnetic
power density at the surface of a nanoparticle, the best compromise must be thus identified
between the efficient energy transfer induced by the collective resonance in the chain and
the ohmic losses.

2.2.2. Strong Coupling

In the configuration presented in Figure 5a, the strong coupling [84] between the
plasmonic and SOI waveguides induces additional distinctive characteristics specific to this
system. Firstly, over a wide range of frequencies, the supermodes propagate in a vortex-like
manner. These vortices are related to slow modes [85] and can be also characterized by
their phase profile along the chain [86]. Secondly, due to strong coupling, supermodes can
also be excited beyond the light lines of the different materials surrounding the plasmonic
chain. Thus, they can be excited as radiative modes above the light line of the confinement
layer (silica here) and/or below the highest index material light line (silicon here) in the
non-guided mode region (see the dispersion diagrams in Figure 5b,c). As a consequence,
the plasmonic mode hybridization can modify their radiative or guided nature, or even
extend their possible frequency range.

Moreover, nanoantenna arrays integrated on waveguides can take advantage of ta-
pering their dimensions within the integration plane to achieve enhanced control over
coupling characteristics. For instance, tapering the period of the plasmonic array enables
efficient mode conversion and excitation of higher-order modes in the waveguide [87].
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Figure 5. Localized plasmon waveguide integrated on SOI (TE mode). (a) Sketch of the structure.
(b,c) FDTD-calculated dispersion curves for d = 150 nm, rx = 42.5 nm, ry = 100 nm, t = 30 nm (the
permittivity of gold is obtained using a Drude model fitted to ellipsometric measurements). (d) A
typical spatial distribution of the two supermodes. (e,f) Electric field intensity in the case of a finite
chain of (e) 5 or (f) 20 nanoparticles. Inspired by [85].

3. Surface Plasmons in Photonic Integrated Circuits

Surface plasmons in PICs are expected to considerably improve some photonic func-
tions thanks to the subwavelength light concentration and the local field enhancement they
induce. Reciprocally, the use of guided photonics to excite plasmonic structures leads to
very efficient light coupling in these structures. The improvement is particularly marked in
the case of very compact localized plasmonic patterns. We will focus here on four examples
of different uses of integrated plasmonics.

3.1. LSPR for Molecules Biosensing

Plasmonic biosensing [88–92] was initially mainly based on functionalized gold films
and propagative plasmons (SPR technology) to exploit localized surface plasmons in
metallic nanostructures arrays on glass (LSPR technology) [19,93], as used in present com-
mercialized setups. Such functionalized substrates are used in complex 3D optic systems
made of prisms and lenses with the following principle: metallic (gold) nanostructures are
grafted with molecule receptors (often thiols), and molecules to be detected are brought to
these receptors by a microfluidic system. The trapping of the molecules is detected by the
plasmonic resonance shift induced by the complex index modification near the metallic
structure, where a diffraction-limited laser beam in the Kretchman configuration excites
the plasmon [94]. In LSPR systems, the sensor sensitivity is limited by the optical power
available for each functionalized nanostructure because of the poor mode matching, as
explained above. By using the same detection principle, the excitation of LSPs can be
realized in guided configurations, with two main advantages:

- The excitation electromagnetic energy can be fully transferred to the LSP, like in the
case of a 5 MNP chain [95], leading to an improved sensitivity,

- Parallel or series sensing areas can be implemented on the chip with the same optical
source, considerably enhancing the global analysis capacity.

Figure 6 shows such a guided LSPR sensor including a chain or 5 MNPs, and the
resonance spectral shift induced by grafted thiol molecules which form an equivalent layer
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with a thickness of t = 2nm and index of n = 1 + ∆n. This shift (∆λ) has been numerically
evaluated and experimentally checked as corresponding to the relation ∆λ(nm) ≈ 27 (t(nm)
× ∆n)0.75. The expected sensitivity to the environment of this sensor integrated on SOI can
reach a value up to 270 nm/RIU (Refractive Index Unit) [95].
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Figure 6. (a) Sketch of a sensor exploiting LSPRs: a chain of gold nanocylinders is integrated on top of
an SOI waveguide within a microfluidic circuit. (b) Transmittance calculated for different equivalent
thicknesses t of molecules grafted onto the metal pads [95]. Specifically, t represents the thickness of a
layer having an index equal to n covering each NP. This result has been validated experimentally for
t = 2 nm.

3.2. Plasmonic Nano-Tweezers and Nano-Manipulators

Tweezers and manipulators that function at the nanoscale are in very high demand
for biosensing and the analysis of nano-objects. High electromagnetic density variation
around plasmonic nanostructures enables optical tweezing based on the gradient force [96],
which results from mechanical and optical momentum exchange between the object and
the photons. The gradient force acts as an elastic trap for an object entering its influence
area, with a stiffness proportional to the local optical power derivative.

3.2.1. Basis on Optical Tweezers

Optical tweezers are made of a focused optical beam, which is diffraction limited in
the case of a free space beam, which generates two forces on an object (Figure 7, left): the
gradient force and the pressure (or diffusion or absorption) force. The former pulls the
object towards the highest optical density, usually transversally to the optical beam and
up to its center; the latter pushes the object along the beam propagation axis and direction.
These forces are expressed as follows:

Gradient force : Fg =
1
4

αRe∇|E|2

Pressure force : Fs = −
1
2

αImIm{E.∇(E∗)}

where α is the object polarizability: α = αRe + jαIm.
The gradient force is thus the trapping force. It is proportional to the optical power

density (or the electric field square modulus) gradient and to the real part of the object
polarizability. The trapping strength is represented by its stiffness and defined by the
derivative of the exerted forces. Negative (positive) stiffness corresponds to an attractive
(repulsive) force.
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The trap characteristics can be evaluated as follows:

- If the trapped object does not modify the local electromagnetic field, the optical density
map is calculated first, and then the trap characteristics are deduced from Fg and Fs
calculations for different object positions.

- If the presence of the object induces a non-negligible perturbation, the optical field
must be calculated, and the Maxwell stress tensor must be fully integrated for all the
possible positions of the object.

The optimal trap, in terms of temporal and spatial stability, is obtained for object
sizes slightly larger than that of the optical beam (or than the optical power density
high variations area) to benefit from the highest gradients. Stable trapping criteria (from
Ashkin [96]) state that the potential well must be ten times higher than the thermal energy
kBT0. The total optical power can thus be used to increase the stability as well as the
stiffness of a trap.

Optical beams enable the trapping of objects around 1 µm in size with a few mW
of power, compatible with biological objects whose index is around 1.3 (water). To trap
smaller or less dense objects (for air or water quality analysis), more abrupt optical density
gradients are required, such as those generated around plasmonic structures.

3.2.2. Plasmonic Tweezers

Plasmonic (nano-)tweezers have been extensively studied, mainly in non-integrated
configurations. Integrated localized plasmonics may enable extremely high gradient forces
thanks to the powerful combination of “high optical density” and “high excitation effi-
ciency” of integrated resonant structures. Numerical and experimental demonstrations
aimed at trapping polystyrene beads of different diameters in the three published examples
are shown in Figure 8. In the first case (Figure 8a), the dimensions of the metal nanostruc-
tures only enable the use of propagative plasmons. The 5 µm diameter disks are positioned
along a 15 µm grid on the top of a multimode waveguide; 1 µm diameter PS beads are
trapped with an injected power of 20 mW, leading to a trap stiffness of -17 fN/µm. The
second structure (Figure 8b) was designed to trap 20 nm diameter beads, concentrating the
light in the narrow gap of the butterfly structure; the theoretically achievable force reached
more than 650 pN/W in the case of a 5 nm gap. Comparable results were obtained by
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varying the dimer geometry within the integration plane, as illustrated in [97]. The third
example corresponds to an integrated MNP chain which maximizes the LSP excitation. In
the case of a 4 MNP chain with a 150 nm period, the exerted force on a 500 nm diameter PS
bead reached ~40 pN/W with a stiffness of −2408 fN/nm/W. The considered power refers
to the power injected into the waveguide.
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Figure 8. Plasmonic nanostructures integrated on top of a waveguide: (a) array of metallic pads sup-
porting propagative resonances (SPPs) (according to [98]); (b) single bowtie nanoantenna (according
to [96]); (c) chain of coupled nanocylinders (according to [99]).

In this kind of chain, the plasmonic modes generate a high spot at the ellipsoidal
nanocylinder edges, separated by a distance of around 200 nm (see Figure 9a). To trap
nano-objects, the trap must be compact. The gap between MNPs can be smaller to create a
resonant nano-gap, like in the longitudinal dimer represented in Figure 9b. As simulated
in Figure 9 (bottom, right), a gap smaller than 40 nm is required to trap a 50 nm radius PS
bead with an injected power of 10 mW [99]. Experimentally, 500 nm diameter PS beads
have been trapped by injecting 6 mW (at 1550 nm) into a waveguide functionalized by a
20 gold NP chain, with a measured stiffness of −5.1 × 10−1 fN·nm−1 in the propagation
direction (x). Considering the fibered optical injection losses in the waveguide, the stiffness
was estimated at −102 fN·nm−1W−1.

Chains of metallic nanostructures can be realized for any shape of resonant nanoparti-
cles (disks, ellipsoidal cylinders, butterflies, etc.), and thus can be adapted to trap different
objects, as shown in Figure 10 for a transverse dimer chain.

Moreover, the spectral and spatial dependence of the MNP chain excitation allows
all-optical trapped object manipulation. Figure 11 shows the stable trapping positions
(pale pink lines) versus the excitation wavelength in the case of a 4 MNP chain and 10 mW
injected power [100]. In this case, the integrated nanotweezers was designed to manipulate
a biological object modeled as a spherical bead with a radius of 250 nm and with a refractive
index as low as 1.38. By adjusting the source wavelength to regulate the phase mismatch of
the supermodes housed by the structure, it is possible to manipulate the trapped object
along the plasmonic chain. Other configurations of an integrated plasmonic “conveyor
belt” have been proposed, based on the MNP size diversity [101]. Such structures are also
able to trap and self-assemble groups of nano-objects [102].

3.3. Plasmonic Antennas

The integration of plasmonic antennas into photonic circuits presents opportunities
for mutual benefits. On the one hand, nanoantennas can take advantage of feeding schemes
embedded in PICs. These schemes can be interconnected and combined with circuit
elements that enable the control of the feed phase [103–106], facilitating functions such
as beam shaping and steering [107]. Integrated coupling methods can also lead to highly
effective excitations of the radiating elements. On the other hand, integrating plasmonic
nanoantennas into PICs holds potential for short-range on-chip and chip-to-chip wireless
communication [108,109]. The growing demand for high-speed data communications
within data centers and high-performance computing platforms, driven by advancements
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in electronic devices and multi-core architectures, has led to rapidly increasing speed
requirements. To address the limitations of copper-based interconnections [110,111], such as
high power consumption, heat dissipation, latency, signal losses, crosstalk, and bandwidth
constraints, the development of parallel optical short-range links has been proposed and
pursued [108,109,112]. Various types of antennas, such as Vivaldi-type antennas (leveraging
propagative plasmons, [113–115]), Yagi–Uda antennas (acting as resonator–collectors),
or LSP chain antennas, can be considered for this purpose. As previously discussed,
the energy transfer between the PIC waveguide and the antenna is the key issue for
functional efficiency.
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Figure 9. (a–f) Integrated longitudinal dimer chain for trapping nano-objects [99]. (a,b,e,f) FDTD
simulation obtained for an injected power of 10 mW. (a,b) Squared absolute value of the electric field
and (d,e) stiffness along the x-axis kx calculated on the plane of the dimer top facet when the dimer
gap g is equal to (a) 70 nm and (b) 2.5 nm, respectively. (f) Stiffness kx as a function of the gap g
calculated for different values of the radius of the bead interacting with the device. (c) Scanning
electron microscopy image of the fabricated sample.
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Figure 11. (a) Optical force (pN) and (b) stiffness (fN/nm) along the x-axis, as well as (c) optical force
(pN) along the z-axis, calculated as a function of the wavelength and position of a spherical biological
object. The latter is grazing along the x-axis on the top facet of a plasmonic chain composed of 4 NPs
integrated on top of an SOI waveguide. The chain element spacing (center to center) is 150 nm. This
device enables the trapping and displacement of the biological object along the plasmonic chain
axis [100].

In all these cases, it is imperative for the plasmonic structure to exhibit radiative
behavior, meaning its dispersion curve must fall within the light cone while also effectively
coupling with the waveguide modes. In the case of Vivaldi antennas, these properties are
obtained by progressively changing the antenna shape and the waveguide structure along
the propagation axis. A progressive energy transfer is realized by evanescent coupling,
and the excited plasmon radiates at the end of the suspended antenna. The integrated
directivity is similar to the free space Vivaldi antenna and enables us to target the receiver,
which is itself integrated, as shown in Figure 12.
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Figure 12. Vivaldi antenna integrated on an SOI waveguide as part of an on-chip optical interconnec-
tion system (inspired by [115]).

Integrated Yagi–Uda antennas are made of a resonant plasmonic “receiver”, positioned
between the “director” (made of several resonance-shifted resonators) and a “reflector”
(wider metallic element). The radiative part of the antenna is the “receiver”, whereas
the other elements play roles of confinement (of the incident signal) or directivity (of the
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radiated signal) in the axe of the “director” chain. When the Yagi–Uda plasmonic antenna
is integrated on a substrate or a waveguide, as shown in Figure 13, the emission is slightly
deviated from the axis of the antenna elements in the case of surrounding optical index
asymmetry. The typical radiation diagram thus shows emission towards the higher index
medium, usually the substrate. The angle depends mainly on the index difference.
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Figure 13. (a,b) Yagi–Uda antenna integrated into a waveguide. (a) 3D sketch of the structure. (b) Side
view of the structure, red arrows represent the direction of light flow. The radiation is preferentially
directed towards the highest optical index (substrate). Inspired by [116].

Recently, it has been demonstrated that specific engineered arrangements of elemen-
tary nanoantennas, strategically positioned on the surface of a silicon waveguide, can
couple the two orthogonal polarizations of incident light into different directions and
modes of the underlying waveguide, thus achieving a demultiplexing function [117].

A periodic chain made of identical MNPs can also realize controlled directivity of an
“LSP” antenna, which is evanescently coupled to a dielectric waveguide. In order to obtain
collective and radiative resonance, the chain is designed as a diffraction grating while
keeping a sufficiently short period to enable dipole coupling along the chain [118,119]. The
latter property enables efficient interfacing of the antenna with the dielectric waveguide
(Figure 14). The diffraction grating controls the emission direction (period) and directivity
(chain length). For symmetry reasons, as soon as the grating order is higher than 1, the light
is diffracted simultaneously in two directions: toward the substrate and the superstrate.
The emission angle is defined with respect to the guided propagation axis as follows: in
the case of homogeneous surrounding index ns, θ = arcsin

( ne f f
ns
− m.λ

d.ns

)
where d is the

grating period, m is the grating order, and neff is the effective index of the guided mode.
With respect to the usual dielectric or metallic gratings, this resonant chain grating offers
additional degrees of freedom:

- The chain resonance modifies the coupling efficiency independently of the emission
angle and directivity control; the MNP size is chosen to have a resonant or resonant-
shifted chain.

- The chain can be positioned freely around the waveguide, without diffraction effi-
ciency modification as long as the chain and waveguide mode overlap remains similar.

- The chain period determines the emission angle independently of the coupling effi-
ciency.

- Several chains can be simultaneously excited, for example, to shape the radiation
diagram: two chains on both sides of the waveguide generate radiation similar to
Young’s slit interferences.
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Figure 14. Array of integrated plasmonic nanoantennas dedicated to the independent control of
directivity, direction, and intensity of radiation, inspired by [120]. ax and ay represent the radii of the
ellipsoidal sections of the MNPs, t is the thickness of the MNPs, N is the number of MNPs per chain,
d is the center-to-center distance, and D is the smallest distance between the MNPs and the dielectric
guide. The red arrow indicates the direction of light injection.

In Figure 14, a double 8 ellipsoidal MNP chain with d = 300 nm is positioned at
D = 50 nm from a silicon nitride waveguide. The minima of optical transmission through
the waveguide indicate the chain resonances for three values of ellipses with a long axis ra-
dius of ay. The radiation diagrams are calculated for two different wavelengths: they show
the independence of the emission angle and the coupling efficiency (proportional to the
radiative power). This control of the coupling efficiency was verified experimentally [120].
It can vary from 10 to 50% by changing only the major axis of the nanocylinders ay, offering
control of the radiated power without changing the radiation diagram.

3.4. Integrated Magneto-Plasmonics

Plasmonics is particularly relevant for enhancing perturbative physical effects such
as magneto-optics (MOs) [121]. Magneto-optical effects are related to the action of the
magnetization of a material on the propagation of an optical wave through it. This action
is expressed by the non-diagonal elements of the permittivity tensor of the MO material,
which is as follows for an otherwise isotropic material:

ε =

 εiso +igz −igy
−igz εiso +igx
+igy −igx εiso

 (3)

where gu (u = x,y,z) are the gyrotropy constants, which are complex values in the most
general case. The interaction of an electromagnetic wave with an MO material impacts
its electric field through the complex coupling of its components (Ex, Ey, Ez), which can
modify the wave polarization, amplitude, and/or phase. Since the permittivity tensor is
antisymmetric, this interaction is non-reciprocal; it is reversed by inversion of the propa-
gation direction or the magnetization direction. In other words, this effect induces time-
symmetry breaking. Usual MO materials are either metallic (Fe, Co, Ni, and alloys) or
dielectric like ferrite or garnet oxides (BIG, YIG, Ce:YIG). Combined with a plasmonic
metal, these materials induce magneto-plasmonic effects, with enhanced effective complex
gyrotropies. Magneto-plasmonic multilayered structures have been mainly studied in non-
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guided configurations such as single nanostructures or hybrid membranes [122], arrays of
nanostructures [123,124], alternating silver and garnet layers metamaterials [125], or recon-
figurable metasurfaces or arrays of nanoantennas [126,127]. Magneto-optical interactions
with propagative plasmons have been also studied in grating structuration [128,129].

Nevertheless, only a few (theoretical) magneto-plasmonic structures were proposed
in waveguiding configurations [130,131]. The main interest in these MO or magneto-
plasmonic structures is to realize integrated non-reciprocal transmission of light, like
optical isolation or circulation. Such functions can considerably enrich the architecture of
photonic circuits.

The non-reciprocal transmission is obtained only if all the spatial symmetries are also
broken, in addition to the time-symmetry breaking. The non-reciprocity of an integrated
isolator is defined as the ratio between its forward and backward transmissions, denoted
as T+ et T−, often expressed in decibels as 10 Log(T+ /T−). A figure of merit (FoM) ∆ can
be defined to account for the trade-off between non-reciprocity and insertion losses:

∆ =

{
T+−T−

T+ i f T+ > T−
T+−T−

T− i f T+ < T−
(4)

Several MO effects have been identified, all related to the permittivity tensor and
gyrotropies, but considering the different configurations of light polarization, magneti-
zation orientations, and interaction nature (bulk or at interfaces) [132]. Among all these
configurations, the most relevant for integrated guided structures is the TMOKE (transverse
magneto-optical effect); indeed, TMOKE occurs at interfaces between MO and dielectric
or metallic materials, it preserves light polarization and only modifies the propagation
wavevector of the light. Such a configuration is easily obtained in multi-layered planar
structures, and spatial symmetry breaking is also just a matter of the appropriate geometry
(Figure 15).
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layer (n1) is a material with magneto-optical properties.

Many guided structures based on TMOKE have been demonstrated, which were
based on an MO metallic layer deposited on a dielectric or semiconductor waveguide,
interacting with the TE [133] or TM [134] mode; MO garnet transferred on a semiconductor
interferometer [135] or on a ring resonator [136]; garnet interferometer including a thin
silver film [131]; and gold grating on a garnet waveguide [137]. In the latter structure, the
non-reciprocal effect is enhanced by plasmonic light concentration; in addition, its sign is
controlled by the grating slit modes coupling with the propagative surface plasmon. In
this way, non-reciprocity can be inversed by the proper grating design while keeping the
magnetization direction unchanged.
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Such a structure is represented in Figure 16: the gold grating is placed on the top of
an MO garnet (BIG) waveguide, whose magnetization is in z direction. The guided TM
mode is injected into the structure and interacts with the plasmonic top-grating and with
the Fabry–Perot modes inside the grating slits. Their coupling induces anticrossing in
the dispersion curves (Figure 16b) and non-reciprocity enhancement on each side of this
anticrossing. Because of the resonant character of the structure, the isolation is limited to a
narrow bandwidth, and the FoM reaches 40%.
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Figure 16. (a) Sketch of a non-reciprocal waveguide with integrated plasmonic grating on garnet.
Here, the BIG layer is the magneto-optical material. (b) Non-reciprocal shift of the band structure
and (c) non-reciprocal transmittances obtained by means of FDTD simulations [137].

Following the same principle, by positioning the plasmonic grating on the side of
the waveguide, the TE mode undergoes an isolation ratio higher than 20 dB (8 dB), with
possible sign inversion and an FoM above 1 (0.2) [138], with a gyrotropy of 0.1 (0.01).

More generally, in this kind of structure, plasmonics may also modify the global
properties of the MO material; indeed, in the case of a purely real gyrotropy MO material,
TMOKE only induces a non-reciprocal phase shift on the propagating wave. Thanks to the
plasmonic interaction at the TMOKE interface, the global non-reciprocity also applies to
the amplitude of the propagating wave [139].

4. Conclusions

The integration of propagative or localized plasmonic structures on photonic waveg-
uides brings a breakthrough toward the PIC miniaturization, provided that their interfacing
is efficient. Achieving a high efficiency can be made possible through the engineering of
guided mode coupling mechanisms. Table 1 summarizes the main approaches proposed
to integrate plasmonic structures, with a particular interest for evanescent coupling con-
figurations. Evanescent coupling refers here to the case of two coupled waveguides, one
dielectric and one plasmonic, which enables energy transfer thanks to supermode beating.
In this way, the coupling efficiency can reach over 90% within a very short propagation
distance due to plasmonic properties. This engineering enables the utilization of plasmons
within photonic circuits with moderation, only where needed, offering an optimal balance
between compactness, enhanced physical effects, and minimized losses. As shown here, nu-
merous and diversified applications can be considered, especially thanks to the ease of the
technological processes. Indeed, the nanofabrication of metallic structures can be realized
with the standard processes of photonics, without any additional complexity. Moreover,
these structures are compatible with other planar systems like microfluidic systems for
labs-on-a-chip (biosensors, optical tweezers, plasmonic manipulators, etc.), electronic sys-
tems for electron beam or X-ray sources, and optoelectronic systems combining electrical
injection, electrical generation of plasmons, or active photonic functions.
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Table 1. Comparison of coupling efficiency and length obtained or evaluated for different plasmonic
waveguides or nanostructures excited by a dielectric waveguide.

Structure Mechanism Coupling
Efficiency λ [µm]

Coupling
Length Lc
(Footprint)

Ref. Year

SPP
waveguide

Cu slot
waveguide/SOI

waveguide
Evanescent coupling 70% (LRSPP) 1.55 0.9 µm [20] 2010

“Buried plasmonic
waveguide”/SU8
waveguide/glass

Evanescent coupling 88% (LRSPP) 0.633 5.3 µm [64] 2012

Si
waveguide/buried

plasmonic
waveguide/glass

Evanescent coupling 95.5%
(LRSPP) 1.55 2.85 µm [65] 2013

Gold
film/semiconductor

waveguide

Grating based
coupling 24% 1.3 5.5 µm [66] 2011

SOI waveg-
uide/plasmonic slot

waveguide

Butt-coupling/
end-fire coupling

61%
(numerical

model)/43%
(measured)

1.55 (>10 µm) [140] 2010

InP membrane
waveg-

uide/plasmonic slot
waveguide

Butt-coupling/
end-fire coupling

~55%
(numerical

model)/~13%
(measured)

1.55 (~5µm) [63] 2020

LSP, LSP
chain

waveguide

1 single NP/Si3N4
waveguide

Evanescent
excitation 9.7% 0.850 µm NP width

(<100 nm) [82] 2013

LSP subwavelength
chain/SOI
waveguide

Evanescent coupling 99% 1.55 0.6 µm [83] 2012

LSP subwavelength
chain/Si3N4

waveguide /SiO2

Evanescent coupling / 1.4 1.635 µm [85] 2017

Antenna on
waveguide

Vivaldi antenna
/SOI waveguide Evanescent coupling

91%
(numerical

model)
1.55 1.63 µm [115] 2017

Yagi–Uda
antenna/SOI
waveguide

Evanescent
excitation

20%
in-coupling 0.85 (~1 µm) [116] 2012

LSP nanoan-
tenna/silicon

Evanescent
excitation ~4% 1.55 (400 nm) [117] 2017

LSP gratings
(antenna) aside

Si3N4 waveguide
Evanescent coupling

Tunable,
from 10% to

50%
0.633 ~0.8 µm [120] 2018
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Nanoscale. Nat. Commun. 2020, 11, 366. [CrossRef]

51. Ge, D.; Issa, A.; Jradi, S.; Couteau, C.; Marguet, S.; Bachelot, R. Advanced Hybrid Plasmonic Nano-Emitters Using Smart
Photopolymer. Photonics Res. 2022, 10, 1552–1566. [CrossRef]

https://doi.org/10.1364/OE.20.020342
https://doi.org/10.1109/JLT.2020.3045742
https://doi.org/10.1038/nphoton.2013.232
https://doi.org/10.1021/acs.nanolett.5b03593
https://doi.org/10.1038/nphoton.2014.9
https://doi.org/10.1364/OE.25.001762
https://doi.org/10.1038/ncomms9846
https://doi.org/10.1109/JSTQE.2014.2382293
https://doi.org/10.1063/1.5086868
https://doi.org/10.1126/science.aan5953
https://doi.org/10.1038/s41586-018-0031-4
https://doi.org/10.1109/JLT.2022.3172246
https://doi.org/10.1364/OE.22.009912
https://doi.org/10.1016/j.optcom.2018.03.047
https://doi.org/10.1109/TMTT.2019.2952123
https://doi.org/10.1021/acs.nanolett.5b04537
https://doi.org/10.1038/srep01451
https://doi.org/10.1038/s41598-021-98418-6
https://doi.org/10.1038/s41566-019-0547-7
https://doi.org/10.1038/s41377-020-0319-7
https://doi.org/10.1021/acsnano.3c04721
https://doi.org/10.1021/acsnano.0c07011
https://doi.org/10.1002/advs.202301493
https://doi.org/10.1038/s41467-019-13820-z
https://doi.org/10.1364/PRJ.455712


Appl. Sci. 2023, 13, 12551 22 of 25

52. Ge, D.; Marguet, S.; Issa, A.; Jradi, S.; Nguyen, T.H.; Nahra, M.; Béal, J.; Deturche, R.; Chen, H.; Blaize, S.; et al. Hybrid Plasmonic
Nano-Emitters with Controlled Single Quantum Emitter Positioning on the Local Excitation Field. Nat. Commun. 2020, 11, 3414.
[CrossRef]

53. Siampour, H.; Kumar, S.; Bozhevolnyi, S.I. Nanofabrication of Plasmonic Circuits Containing Single Photon Sources. ACS
Photonics 2017, 4, 1879–1884. [CrossRef]
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