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Abstract: The development of IoT technology has made various IoT applications and services widely
used. Because IoT devices have weak information security protection capabilities, they are easy
targets for cyber attacks. Therefore, this study proposes MLP-based IoT attack classification with data
augmentation for GANs. In situations where the overall classification performance is satisfactory but
the performance of a specific class is poor, GANs are employed as a data augmentation mechanism for
that class to enhance its classification performance. The experimental results indicate that regardless of
whether the training dataset is BoT-IoT or TON-IOT, the proposed method significantly improves the
classification performance of classes with insufficient training data when using the data augmentation
mechanism with GANs. Furthermore, the classification accuracy, precision, recall, and F1-score
performance all exceed 90%.
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1. Introduction

The Internet of Things (IoT) [1] has become a vital part of our daily lives, and its
applications continue to expand rapidly. The IoT refers to the network of interconnected
physical devices, vehicles, appliances, and other objects embedded with sensors, software,
and network connectivity. These devices can collect and exchange data to perform different
daily tasks, making our lives more convenient, efficient, and connected. According to a
report by the IoT Business News [2], the number of devices deployed in 2022 saw an 18%
growth compared to 2021, reaching 14.4 billion. It is estimated that by 2025, this number
will rise to 27.1 billion to meet market demands.

Although IoT devices offer numerous benefits and conveniences, they also come with
several disadvantages and challenges. Security issues are among the most critical chal-
lenges in the realm of IoT. Due to their interconnected nature and often limited computing
resources, IoT devices are particularly vulnerable to various cybersecurity threats. These
devices serve as the backbone of the Internet of Things ecosystem, but their susceptibility
to attacks is a pressing concern. According to the latest report on Internet threats by the
American cybersecurity company SonicWall [3], 2022 witnessed an alarming 87% increase
in IoT attack incidents compared to 2021. This surge in attacks highlights the growing
vulnerability of IoT devices. The report identified two primary reasons behind this surge:
infrequent fundamental software and hardware updates and imperfect network config-
urations during data transmission. These factors leave IoT devices exposed to malicious
software intrusions, making them susceptible to becoming unwitting participants in botnets.
The consequences of these attacks can be severe and lead to system paralysis and service
interruptions. To address this growing threat landscape, it is imperative to prioritize robust
security measures for IoT devices and networks, including regular software and hardware
updates, implementing secure network configurations, and deploying intrusion detection
and prevention systems. As the IoT ecosystem continues to expand, mitigating these
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security risks becomes paramount to ensure the reliability and safety of interconnected
devices and systems.

Facing increasingly severe threats to the Internet of Things (IoT) security, the develop-
ment of intrusion detection systems (IDS) has become an essential tool to assist in detecting
cyberattacks. Traditional IDSs can effectively monitor network traffic and identify anoma-
lous behavior. They record every packet during detection, and if a packet violates basic
routing rules or exhibits malicious activity, they immediately alert the network administra-
tor and automatically generate related reports. However, IDSs require manual updates of
the attack patterns and the corresponding remedies. With ever-changing attack techniques,
relying solely on traditional manual updates and processing may no longer be an effec-
tive solution. Furthermore, most packets are now encrypted to ensure data transmission
security, which leads to higher maintenance costs if detection and maintenance need to
be improved.

Following the rapid development of artificial intelligence, deep learning applications
have addressed the issues faced by traditional IDSs. These applications eliminate the need
for manual packet monitoring or adding attack characteristics and solutions, significantly
improving detection efficiency and accuracy. However, most deep learning methods still
require large datasets and consume significant time. Additionally, if a category within the
dataset has an insufficient number of entries, the learning model might struggle to classify
it accurately.

Therefore, this study proposes using a generative adversarial network (GAN) to
classify IoT attacks. Through the continuous adversarial training of a generator and a
discriminator, the generator generates data that are close, but not identical, to real data. In
addition, a generator is used to augment unbalanced class data to increase the amount and
diversity of original data. Subsequently, the augmented data are merged with the original
data for training in order to enhance the classification accuracy of each class. Regardless
of whether the training dataset is BoT-IoT or ToN-IoT, this method achieves accuracy,
precision, recall, and F1 scores exceeding 90% in both overall classification and single-class
classification. The rest of this study is organized as follows. In Section 2, we analyze related
work proposed by other authors in detail, sort out the advantages and disadvantages of
their proposed methods, and further clarify our research goals. In Section 3, we clearly
explain our proposed IoT attack classification and data augmentation method using GAN.
In Section 4, we demonstrate the proposed IoT attack classification mechanism, which
provides a high overall classification accuracy, uses GANs for data augmentation, and
improves the classification performance of a single class. In the last section, we conclude the
study based on our proposed methods and summarize their performance breakthroughs
while also presenting a brief overview of our future research.

2. Related Works
2.1. Network-Based IDS [1,4]

A network-based intrusion detection system (NIDS) not only monitors network traffic
and analyzes its source for action but also detects both known and unknown attacks,
taking measures to block them. Additionally, it can log all activities routed through its
configured paths in real-time, generating immediate reports for network administrators
for further investigation. However, there is a risk of false positives as a result of the
emergence of new types of attacks. From a management perspective, it requires regular
updates and maintenance of internal routing specifications and related attack features,
consuming significant time and cost. For encrypted data, it becomes challenging to analyze
and determine the source of network traffic effectively. Furthermore, the system requires
substantial bandwidth to monitor traffic, which can cause network latency.

2.2. Host-Based IDS [5,6]

Host-based intrusion detection systems incorporate signature-based [6] and anomaly-
based [6] methods. The signature-based approach targets known malicious software attacks
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by monitoring the user’s behavior, tracking any applications opened or installed on that
host, and user authentication actions. The anomaly based method focuses on a user’s
current permissions or software behavior, establishing a normal user behavior pattern.
If the detected behavior diverges from the norm, an alert is triggered, and the detected
behavior is actively reported. In addition to checking permissions, the system can also
compare events recorded in the host’s system logs to detect if they have been tampered
with, effectively tracing system activities and ensuring the integrity of the system logs.
However, host-based detection systems often require installation on each host, tailored to
various operating systems, making them more expensive. If an attack occurs, remediation
can only address the compromised host without knowing if similar attacks have occurred
on other hosts. Managed hosts require the installation of an agent and frequently report
back system information for analysis, consuming significant system resources, which can
impact system performance.

2.3. Deep Learning Classification

Deep learning technologies commonly used in classification applications include MLP,
DNN, CNN, RNN, LSTM, AE, etc. The relevant research is explained as follows:

In [7], the author used DNN to analyze the statistical characteristics of packet traffic
from the CIC DDoS 2019 dataset as input data. The experimental results reached 99% in
binary classification, and the classification accuracy for detailed DDoS attacks reached
94.57%. In [8], a deep neural network model is proposed for real-time identification of
malicious packet categories. Four datasets, UNSW-NB15, BoT-IoT, ToN-IoT, and CIC-
IDS2018, were used to evaluate the dataset. The results indicate that the highest accuracy of
99.21% in binary classification was achieved in CIC-IDS2018. In multiclass classification, the
average accuracies were as follows: UNSW-NB15, 97.48%; BoT-IoT, 83.82%; CIC-IDS2018,
97.21%; and ToN-IoT, 69.53%.

In [9], the NSL-KDD dataset was used, specifically the KDD Test+ and KDD Test-21.
Training data were divided into four segments: basic packet information (e.g., IP address,
protocol type, TCP flags, etc.), packet connection information (e.g., login system privilege
levels), time-based network traffic statistics, and host-based network traffic statistics. A
convolutional neural network (CNN) model was chosen, and by varying input features and
adjusting network layer hyperparameters during training, the effect on detection accuracy
was analyzed. The results showed that when identifying multiple attack categories, KDD
Test+ achieved an accuracy of 81.33%, and KDD Test-21 achieved 64.81%. For binary
classification (whether an attack or not), the KDD Test+ had an accuracy of 86.95%, while
the KDD Test-21 was 76.37%. In [10], a combined approach using convolutional neural
networks (CNN) with recurring neural networks (RNN) was proposed to predict and
classify malicious network attacks. The CSE-CIC-IDS2018 dataset was used for this study.
CNN was responsible for identifying significant features within the dataset, which were
then fed into the RNN to determine the temporal relationships between packet attacks.
This approach yielded an accuracy rate of 97.75%. In [11], the transfer learning method
is used, and multiple CNN methods are used to analyze four datasets: BoT-IoT, IoT Net-
work Intrusion, MQTT-IoT-IDS2020, and IoT-23. Among them, the BoT-IoT, IoT Network
Intrusion, and MQTT-IoT-IDS2020 datasets are combined into a new IoT-DS-1 dataset to
increase the number of attacks in the dataset. The IoT-DS-1 dataset multiclass tags are 0 for
the normal class and 1 to 9 for the attack class. The new second set of datasets combines
BoT-IoT, IoT Network Intrusion, MQTT-IoT-IDS2020, and IoT-23 datasets, which contain
15 attack categories and one common category. The multicategory of the IoT-DS-2 dataset
is marked with 0, indicating the normal category, and 1–15, indicating the attack category.
To solve the data imbalance during training, the category weights during training are
adjusted so that the classifier has different sensitivities to each category. The results show
that the one-dimensional CNN accuracy rate is 99.74%, two-dimensional 99.42%, and three-
dimensional 99.03%. In [12], a one-dimensional CNN model was proposed based on the
DenseNet architecture, and an Inception Time approach was used to analyze and compare
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the two models by varying the window sizes. Three datasets, ToN-IoT, Edge-IIoT, and
UNSW-2015, were utilized for multiclass classification. The results showed that Inception
Time outperforms the DenseNet model when using six different window sizes, achieving
an average accuracy of 100% on the ToN-IoT dataset. In the Edge-IIoT dataset, Inception
Time achieved an accuracy of 94.94%. In the UNSW-NB15 dataset, the Inception Time
achieved an accuracy of 98.4%.

In [13], the use of a recurrent neural network is proposed, and adjustments are made
to different numbers of layers and learning rates to find the optimal results. The dataset
used is NSL-KDD. The results show that in binary classification, an accuracy of 83.28% was
achieved when setting 80 hidden layer neurons and a learning rate of 0.1. In multiclass
classification, when 80 hidden layer neurons were configured with a learning rate of 0.5, an
accuracy of 81.29% was obtained. In [14], the UNSW-NB15 and Bot-IoT datasets were used.
Considering that significant data class disparities can hamper training, the authors selected
normal traffic data for the DoS and DDoS of the TCP protocol from the UNSW-NB15 dataset.
From the BoT-IoT dataset, they chose attack data for the TCP protocol’s DoS and DDoS.
The selected data were merged to address the issue of unbalanced datasets. The model
used two layers of long- and short-term memory (LSTM) with three output classes: alert,
DDoS, and DoS. The accuracy achieved was 96.3%. In [15], the author believes that DDoS
attacks are a persistent problem in the network. There have been many related studies that
can detect attacks, so they mainly focus on improving the classification performance of the
LSTM model. The LSTM model is used with the latest CIC DDoS-2019 dataset to conduct
experiments to detect DDoS attacks. When the one-layer LSTM model performs binary
classification tasks, it reaches an accuracy of 99.46%. The two-layer LSTM model achieves
an accuracy of 99.16% when dealing with multiclass classification tasks.

In [16], the author proposed a method called DIDDOS to detect DDoS attacks. After
pre-processing through feature extraction, normalization, and deletion of data containing
missing values, the data were then balanced, and finally, the deep learning model GRU (gate
recurrent unit) was used to classify the CICDDoS-2019 dataset and identify individuals.
All types of DDoS attacks achieved the best accuracy in 50 iterations. When DDoS attacks
were identified using the proposed method, the highest accuracy reached 99.91%, and
the accuracy of other categories was about 99.7%. In [17], based on the bidirectional gate
recurrent unit (GRU) concept, the network architecture utilizes an autoencoder to analyze
zero-day attacks. It performs binary classification to determine whether the data source
is normal or an attack. If classified as an attack in binary classification, further analysis
is performed to identify the specific attack category. The datasets used include WSN-DS,
UNSW-NB15, and KDD CUP99, which achieved average accuracies of 97.91%, 98.92%, and
98.23% in binary classification, respectively.

In [18], to address the issue of class data imbalance in the CSE-CIC-IDS2018 dataset,
a two-stage approach was employed. In the first stage, the LightGBM algorithm was
introduced to classify normal and abnormal traffic data within the original network flow
and analyze various traffic categories’ importance. Subsequently, the IR-SMOTE algorithm
was used in the second stage to filter and remove the originally classified normal data from
the first stage, achieving data balance between normal and attack categories. Finally, a CNN
model was used for detailed category identification, resulting in the following outcomes
for multiclass classification: F1-score of 99.862%, average class accuracy of 99.896%, and
average precision of 99.903%.

2.4. Generative Adversarial Network

The generative adversarial network (GAN) [19] was proposed by Ian Goodfellow in
2014. The GAN is different from conventional deep learning techniques. As shown in
Figure 1, it comprises two neural networks, namely the generator and the discriminator.
z is the noise vector that, when combined with the generator, aims to produce forged
samples G(z) that are close to the original data (Real data, Rd) in the discriminator but not
exactly the same. This is performed to deceive the discriminator’s judgment. The input
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data for the discriminator are trained using both real data and the generated data from
the generator. The discriminator then determines the probability of the data being real
and provides feedback via the loss function Loss(D), as indicated in Equation (1). On the
other hand, when the discriminator judges the feature data generated by the generator,
if the discriminator effectively classifies the generator’s data as fake, its loss function is
Loss(G), as shown in Equation (2). Moreover, as the two constantly compete and adjust
their parameters, the objective is to make it impossible for the discriminator to determine
the authenticity of the generator’s output. At this point, optimization of the GAN training
is obtained, as shown in Equation (3).

Loss(D) = −1
2

E(Rd) log D(Rd)− 1
2

Ez log(1− D(G(z))) (1)

Loss(G) = −Loss(D) (2)

min
G

max
D

V(D, G) = E(Rd)[log D(Rd)] + Ez[log(1− D(G(z)))] (3)
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Figure 1. Model of GANs.

The generator network’s primary role is to create synthetic data that resemble real
data. It starts with random noise as input and gradually refines this noise into data that
should resemble samples from the real dataset. The generator network typically uses a
series of layers, such as MLP, CNN, RNN, or other learning models, to transform the noise
into more complex features that resemble real data. During training, the generator tries to
produce data that are indistinguishable from real data. It generates samples and passes
them to the discriminator. The discriminator network acts as a binary classifier. Its task
is to evaluate whether a given input is real (from the actual dataset) or fake (generated
by the generator). The discriminator is trained on both real data and fake data generated
by the generator. It learns to distinguish between them and assigns a probability score to
indicate how likely it is that the input is real. The discriminator’s objective is to maximize
its ability to correctly classify real and fake data, while the generator’s goal is to minimize
the ability of the discriminator to differentiate between real and fake data. In [20], a method
was proposed using the generative adversarial network (GAN) and the autoencoder (AE).
The BoT-IoT dataset was used for anomaly detection. There were two training modes
compared: the first was training solely with the AE, and the second utilized data generated
by the GAN’s generator for AE training. The experimental results indicated that the second
method achieved an accuracy of 97.11%, which was superior to that of the first method’s
92.97%. In [21], the author used seven different datasets to address the issue of traditional
data imbalance that causes poor classification during the training of the deep learning
model. KDD99, NSL-KDD, BoT-IoT, IoT network intrusion, MQTT-IOT-IDS2020, the MQTT
set, and IOT-23. A feed-forward neural network (FNN) model was chosen for the final
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classification. To address the imbalanced data, conditional generative adversarial networks
(CGANs) were used. The aim was to enhance the generated features with category-specific
conditions. The post-generation enhanced data were combined with the original data
for training and comparative analysis. The experimental results showed that the average
accuracy across all datasets was 97%. In [22], to address the issue of unbalanced data, the
Wasserstein distance GAN and autoencoders are proposed to generate unbalanced data,
comparing the diversity of data generation. For the classification results, DNN, CNN,
and LSTM are used for comparative classification. The datasets used are UNSW-NB15,
NSL-KDD, CTU-IOT, and real-world data. The results show that the average accuracy
reached 87% for USNW and 93.2% for NSL-KDD. In [23], GANs are used and compared
with multilayer perceptron (MLP) models in deep learning. The dataset employed is BoT-
IoT. In the original dataset consisting of 3 million records, only 50,000 records were selected
for training the GAN model. The GAN model trains using a generator to create data
features that are similar to the original data class and continuously oppose a discriminator.
Experimental results show that while the MLP model required 11 h to complete training, the
GAN was able to generate features similar to the original data in just 2 h. After retraining
alongside the MLP model, the GAN achieved a classification accuracy of 80%.

2.5. Summary

Summarizing the various applications of deep learning and GAN technologies in
investigating IoT attack classification, as shown in Table 1. Among them, “binary clas-
sification” refers to methods that classify attacks into only two categories: “attack” and
“non-attack”. On the other hand, “multivariate classification” signifies approaches that
classify attacks into various distinct attack categories. Most methods achieve an accuracy
of over 80% in binary classification, some even reaching 99%. However, there is more
variability in the classification accuracy of these methods in multivariate classification. A
method is considered superior and practical if it can achieve an accuracy of 95% or higher
in multivariate classification, as it demonstrates feasibility and real-world utility.

Table 1. Summary of the attack classification method using the deep learning model.

Reference Dataset Method Accuracy * Remark

[7] CIC DDoS 2019 DNN 94.57% (M) Analyze the statistical characteristics of
packet traffic

[8]

UNSW-NB15
BoT-IoT
ToN-IoT

CSE-CIC-IDS2018

DNN

UNSW-NB15: 97.48% (M)
BoT-IoT: 83.82% (M)
ToN-IoT: 69.53% (M)

CSE-CIC-IDS2018: 97.21% (M)

Multivariate classification of four datasets
based on the DNN model

[9] NSL-KDD CNN

KDD Test+: 81.33% (M)
KDD Test-21: 64.81% (M)
KDD Test+: 86.95.33% (B)
KDD Test-21: 76.37% (B)

The analysis is mainly based on four parts:
Basic packet information

Packet connection information
Time-based network traffic statistics
Host-based network traffic statistics

[10] CSE-CIC-IDS2018 CNN + RNN 97.75% (B)
Use CNN to capture local features and
RNN to capture temporal features of

packets.

[11]

BoT-IoT
IOT Network Intrusion

MQTT-IOT-IDS2020
IOT-23

CNN
1D CNN: 99.74% (M)
2D CNN: 99.42% (M)
3D CNN: 99.03% (M)

All datasets are integrated into two new
datasets, transfer learning concepts are

used to change the network architecture of
different CNNs, and detailed category
analysis is performed on each dataset.

[12]
ToN-IoT

Edge-IIoT
UNSW-NB15

DenseNet
ToN-IoT: 99.65 (M)

Edge-IIoT: 94.94% (M)
UNSW-NB15: 98.4% (M)

Based on the one-dimensional 1-D CNN in
the DenseNet architecture and setting

different window sizes for multivariate
classification.

[13] NSL-KDD RNN 83.28% (B)
81.29% (M)

Set different layers based on the RNN
model to evaluate the effectiveness of the

model in classification.
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Table 1. Cont.

Reference Dataset Method Accuracy * Remark

[14] UNSW-NB15
BoT-IoT LSTM*2 96.3% (B)

Based on the two datasets, the DDoS and
DoS attack categories of the TCP protocol
are captured and merged into new data,
and the output is alert, DDoS, and DoS.

[15] CIC DDoS-2019 LSTM
LSTM*2

LSTM: 99.46% (B)
LSTM: 99.16% (M)

Based on different LSTM layers, the impact
of binary classification and multivariate

classification is analyzed.

[16] CIC DDoS-2019 GRU 99.7% (M) Analyze different DDoS attack categories
based on GRU.

[17]
WSN-DS

UNSW-NB15
KDD CUP99

GRU
WSN-DS: 97.91% (B)

UNSW-NB15: 98.92% (B)
KDD CUP99: 98.23% (B)

Zero-day attack binary classification
analysis based on bidirectional GRU

analysis.

[18] CSE-CIC-IDS2018 LightGBM + CNN 99.896% (M)

LightGBM: binary classification of
categories.

CNN: First perform IR-SMOTE on the data
to balance the categories of the multivariate

classification.

[20] BoT-IoT GANs + AE AE: 92.97% (B)
AE + GAN: 97.11% (B)

Anomaly detection is based on the merger
of GANs and AE.

[21]

KDD99
NSL-KDD

BoT-IoT
IOT Network Intrusion

MQTT-IOT-IDS2020
MQTT set

IOT-23

CGANs + FNN

KDD99: 95.90% (M)
NSL-KDD: 95.46% (M)

BoT-IoT: 77.01% (M)
IOT Network Intrusion: 79.21% (M)

MQTT-IOT-IDS2020: 93.40 (M)
MQTT set: 97.30% (M)

IOT-23: 64.17% (M)

Based on the CGAN architecture, data
augmentation of imbalanced data is

performed, and then FNN is used for
multivariate classification.

[22]

USNW-NB15
NSL-KDD
CTU-IoT

Real-word data

WGAN + DNN
WGAN + CNN
WGAN + LSTM

DNN + AE
CNN + AE

USNW NB15: 87% (M)
NSL-KDD: 93.2% (M)

GSNs based on Wasserstein distance are
used to improve imbalanced data and are

used together with AE to analyze and
evaluate the performance of each model.

[23] BoT-IoT GAN + MLP 82.25% (M)

GAN-based methods can generate features
similar to real data and compare them with
MLP models in deep learning, reducing the
training time of large amounts of data in

the past.
* “(B)” is binary classification; “(M)” is multivariate classification.

3. IoT Attack Classification Mechanism

The process of the proposed classification mechanism can be divided into four main
steps, namely dataset collection, data pre-processing, classification model establishment,
and classification model evaluation. The details of these four steps will be presented in the
following subsections.

3.1. Dataset Collection

The BoT-IoT dataset [24] was created by designing a real network environment in
the Cyber Range Lab of UNSW Canberra. The network environment includes four attack
virtual servers and one normal virtual server to present normal traffic and botnet traffic.
IoT devices use Node-red [25], a visual programming language development tool based
on process programming, to connect to normal servers and transmit data traffic through
message queuing telemetry transport (MQTT). Data traffic is simulated using Ostinato [26].
The number of records in each class in the BoT-IoT dataset is shown in Table 2. There are
five classes in the dataset, namely denial of service attack, distributed denial of service
attack, reconnaissance attack, theft attack, and normal. The first four are attack categories,
and the last one is a normal category.



Appl. Sci. 2023, 13, 12592 8 of 22

Table 2. The number of records in each class in the BoT-IoT dataset.

Classes Number of Records (Before) Number of Records (After)

DoS 1,320,148 1,320,098
DDoS 1,541,315 1,541,278

Reconnaissance 72,919 65,653
Theft 370 316

Normal 65 62

• Denial of service (DoS) attack [1]: A DoS attack is a malicious attempt to disrupt
the normal functioning of a network, system, or online service by overwhelming it
with a flood of illegitimate traffic or requests. The primary objective of a DoS attack
is to make the targeted resource unavailable to its intended users, causing a denial
of service. The two key characteristics of DoS attacks are overloaded resources and
various attack vectors. An overload of resources refers to DoS attacks that typically
involve sending a large volume of traffic, data, or requests to the target system. This
overwhelms the system’s capacity to handle incoming requests, causing it to become
slow or unresponsive. A variety of attack vectors means that DoS attacks can take
various forms, including flooding a network with traffic, sending a high number
of connection requests, exploiting vulnerabilities in software, or depleting system
resources like CPU, memory, or bandwidth;

• Distributed denial of service (DDoS) attack [1]: A DDoS attack is a type of cyberattack
in which multiple compromised computers, often referred to as a botnet, are used to
flood a target system, network, or service with a massive volume of traffic or requests,
overwhelming its capacity, and causing a denial of service. DDoS attacks are a more
sophisticated and powerful form of the basic denial of service (DoS) attack. DDoS
attacks are more powerful and difficult to stop than DoS attacks and can cause long-
term and severe service disruptions. Identifying DDoS attacks becomes more complex
because attackers often use compromised systems from different locations;

• Reconnaissance attack [24]: A reconnaissance attack is the initial stage of a cyberattack
in which an attacker gathers information about a target system, network, or organi-
zation. The primary objective of reconnaissance is to collect data that can be used to
plan and launch a more focused and effective attack in the future. It is essentially the
process of “scouting” or “surveying” the target to identify vulnerabilities and weak-
nesses. Reconnaissance serves as the basis for subsequent stages of a cyberattack, such
as exploitation and intrusion. Armed with the knowledge gained during reconnais-
sance, attackers can tailor their attack strategies to maximize their chances of success.
For this reason, organizations place a strong emphasis on detecting and mitigating
reconnaissance activities as part of their cybersecurity measures. Common defense
mechanisms include network monitoring, intrusion detection systems (IDS) [4], and
security information and event management (SIEM) [27] solutions to spot and respond
to suspicious reconnaissance attempts;

• Theft attack [24]: A theft attack is used to describe attempts by attackers to gain
unauthorized access to confidential information belonging to others. This type of
attack often involves various methods and techniques, including phishing, advanced
persistent threats (APTs), malware, and other cyberattacks aimed at stealing sensitive
data. Phishing attacks involve sending deceptive emails or messages that appear to
come from trusted sources. These emails typically contain links or attachments de-
signed to trick recipients into revealing sensitive information, such as login credentials
or personal data. Advanced persistent threats (APTs) are long-term, sophisticated
cyberattacks in which attackers gain unauthorized access to a network or system,
often using advanced techniques to remain undetected. APTs are typically conducted
by well-funded and motivated attackers who aim to steal valuable information over
an extended period. Malicious software, including viruses, Trojans, spyware, and
ransomware, can be used to compromise systems and steal data. Malware can be de-



Appl. Sci. 2023, 13, 12592 9 of 22

livered by various means, including infected email attachments, malicious downloads,
or compromised websites;

Normal: It refers to normal (non-attack) traffic transmitted according to network
protocols.

This dataset originally contained 2,934,817 records. After data pre-processing, there
are still 2,927,407 records, which will be explained in Section 3.2. It is obvious that the
amount of data in the two classes of “Theft” and “Normal” is insufficient. Although the
designed classification model can achieve a certain overall performance level, obtaining
good classification results for classes with insufficient data will be difficult. Therefore, the
use of data augmentation techniques to improve the classification performance of specific
classes will be explained in Section 3.3. The features of the BoT-IoT dataset are shown in
Table 3. The ID, Feature, and Description fields in Table 3 represent the feature identification
number, feature name, and description of the feature meaning. Note that the dataset used
in this paper is in comma-separated values (CSV) file format. A CSV is a plain text format
with the advantage of being platform-independent, making it readable and easily processed
by various software applications. This dataset is employed to simulate potential scenarios
encountered during network attacks, facilitating in-depth packet analysis.

Table 3. Feature descriptions for the BoT-IoT dataset.

ID Feature Description ID Feature Description

1 pkSeqID Row Identifier 11 state_number Numerical representation of
feature state

2 Proto
Textual representation of

transaction protocols present
in network flow

12 Mean Average duration of
aggregated records

3 Saddr Source IP address 13 N_IN_Conn_P_DstIP Number of inbound
connections per destination IP.

4 Sport Source port number 14 Drate Destination-to-source packets
per second

5 Daddr Destination IP address 15 Srate Source-to-destination packets
per second

6 Dport Destination port number 16 Max Maximum duration of
aggregated records

7 Seq Argus sequence number 17 Attack Class label: 0 for Normal
traffic, 1 for Attack Traffic

8 Stddev Standard deviation of
aggregated records 18 Category Traffic category

9 N_IN_Conn_P_SrcIP Number of inbound
connections per source IP 19 Subcategory Traffic subcategory

10 Min Minimum duration of
aggregated records

3.2. Data Pre-Processing

In this section, the purpose of data pre-processing is to convert the original data
into the input format required by the model to ensure the data’s consistency, availability,
and applicability, thereby improving the accuracy and efficiency of the model. The data
pre-processing step includes three sub-steps: data cleaning, feature selection, and data
standardization.

• Data cleaning: This substep will delete low-relevance feature IDs 1, 4, 6, 7, 17, and 19.
For example, Feature ID 1 is the row identifier, and ID7 is the serial number of any
starting value. Feature IDs 17, 18, and 19 are label fields. According to the needs of
this paper, they are not used as input data. Only feature ID 18 is retained as a label
field to evaluate classification performance. Feature IDs 4 and 6 are port numbers,
which range from 1 to 65,535. However, attackers can set them arbitrarily without
following the protocol specifications, so the relevance of this feature is low. To simplify
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the complexity, consider an environment where IPv4 is used at the network layer, and
TCP or UDP is used at the transport layer. Therefore, the Address Resolution Protocol
and the Internet Control Message Protocol in Feature ID 2 and IPv6 in Feature IDs 3
and 5 will not be included in the scope of this article;

• Data standardization [28,29]: This substep is mainly to reduce the complexity of model
training and accelerate the convergence speed of the model to prevent problems such
as gradient explosion during model training. Feature ID 2 uses the label encoding
method to set Proto’s TCP and UDP to 0 and 1, respectively. Feature ID 18 also
uses label encoding to set each class to a value from 1 to 5. Feature ID 18 also uses
label encoding to set each class to a value from 1 to 5. After feature IDs 8 to 16 are
normalized using Equation (4), their values will be in the [0, 1] interval. Note that the
Xnorm is the normalization value of each feature; X is the original value of the current
feature; Xmin is the minimum value of the feature field; and Xmax is the maximum
value of the feature field;

Xnorm =
X− Xmin

Xmax − Xmin
∈ [0, 1] (4)

• Functions ID 3 and ID 5 are IP addresses. Since an IP address is a combination of four
sets of numbers, normalization directly will not effectively reflect this characteristic.
Therefore, each number of the IP address is independently decomposed into a sub-
feature, and each sub-feature is encoded in an 8-bit binary format. Therefore, there are
a total of 64 features.

3.3. Classification Model Establishment

The classification model used in this paper is an integration of two learning models
based on multilayer perceptron (MLP) and GANs, as shown in Figure 2. The MLP model
is the main classification model, and its input data are the result of data pre-processing
from the BoT-IoT dataset. When the overall classification performance after model training
reaches the threshold PT, the model training is terminated. This mechanism ensures the
overall efficiency of classification. However, when the data from the training set are in-
complete or extremely uneven, the classification model can only consider the classification
performance of classes with a large amount of data to create the illusion of good overall
performance. To solve this problem, the proposed classification method adds the classi-
fication performance threshold Pi of class i to ensure the classification performance of a
specific class.
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When the classification performance of class i is less than the threshold Pi, the class will
trigger a data augmentation model GAN_Ci. The original training data from class i are used
as the input of GAN_Ci to generate new data K belonging to this class. The newly generated
K new data will be added to the original training set, and the MLP classification model will
be trained again. Whether training is completed or not still depends on the aforementioned
overall classification performance threshold PT and the classification performance threshold
Pi of class i. If the requirements of these two thresholds are met, the training of the model
will be terminated. On the contrary, data augmentation will continue for the specific class
that does not meet the requirements.

Furthermore, our proposed method prioritizes robustness as a fundamental aspect of
model training. We have taken proactive measures to ensure the stability and effectiveness
of the training process and to prevent the common pitfall of overfitting. To achieve this,
we have incorporated early stopping mechanisms [30] into both the multilayer perceptron
(MLP) and generative adversarial networks (GANs). These mechanisms serve as an essen-
tial safeguard against training-related issues that can compromise the model’s reliability
and performance. The early stopping mechanism functions by continuously monitoring
the model’s performance on a separate validation dataset throughout the training process.
When the model’s performance reaches an optimal point and begins to plateau or even
decline, the training is halted. This intervention ensures that the model is stopped at
the precise moment when it is in its best state, right before any potential performance
degradation. The benefits of this approach are twofold. Not only does it prevent the model
from overfitting the training data, which can lead to poor generalization of new data, but it
also guarantees that the model achieves the highest possible level of performance. This
emphasis on robustness and performance optimization makes our proposed method a
reliable and resilient solution.

Note that image data augmentation involves techniques such as rotation, flipping,
scaling, cropping, brightness adjustment, and adding noise. These techniques help create
variations of the same image for training, making the model more resilient to different
image conditions. However, attack data are different from image data, so they cannot be
augmented using image data augmentation technology. Therefore, in this study, we use
a GAN generator and discriminator to compete with each other to amplify similar attack
data.

The hyperparameters of the MLP model and the GANs model are shown in Tables 4
and 5, respectively. The epoch represents the number of training iterations for the entire
classification model. In the MLP model, the epoch is set to 200, and each epoch will have
1024 data pieces input into the model for training. The optimizer is Adam, and the learning
rate is set to 0.001. In the GANs model, the epoch is set to 10,000, the learning rate is 0.002,
and the noise vector Z is 100. The overall classification performance threshold PT is defined
as the overall classification accuracy of 90%. The classification performance threshold Pi of
the i-th class is defined as the classification accuracy of the i-th class is 90% and is the same
for all classes. That is, P1 = P2= . . . = Pn = 90%.

Table 4. The hyperparameters of the MLP model.

Parameters Value Parameters Value

Input (Features) 74 Dense 64, 64, 64
Batch Size 1024 Dense Activation LeakReLU

Epochs 200 Activation Value 0.2
Optimizer Adam Output Activation Softmax

Learning Rate 0.001, 0.5 Output Activation Value 5

Loss Function Sparse categorical
cross-entropy
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Table 5. The hyperparameters of the GANs model.

Parameters Value Parameters Value

Z 100 Loss Function Binary cross-entropy
Input (Features) 74 Generator Dense 256, 128, 64

Batch Size 64 Generator Activation LeakReLU
Epochs 10,000 Generator Activation Value 0.2

Optimizer Adam Generator Batch Normalization 0.8
Learning Rate 0.002, 0.5 Discriminator Dense 64, 128, 256

3.4. Classification Model Evaluation

The confusion matrix [31,32] is a measure of performance for machine learning clas-
sification. It is based on the relationship between actual classes and the classes predicted
by the model, allowing us to assess how the model performs in different classification
results, as shown in Figure 3. The x-axis represents the predicted results, while the y-axis
represents the actual results. A true positive (TP) refers to cases where both the actual and
predicted classifications are correct; a true negative (TN) refers to cases where both the
actual and predicted classifications are incorrect. A false positive (FP) is when the predicted
classification is correct, but the actual classification is incorrect. A false negative (FN) occurs
when the predicted classification is incorrect, but the actual classification is correct.
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Based on the definition of the confusion matrix, the performance of the model can be
evaluated in order to understand the actual and predicted classification results, such as
accuracy, precision, recall, and F1-score, which are evaluated as follows.

• Accuracy (PAccuracy): To evaluate the proportion of correct predictions among all
classification results;

PAccuracy =
TP + TN

TP + FP + TN + FN
(5)

• Precision (PPrecision): To evaluate the proportion of actual classifications that correctly
predict a single classification result;

PPrecision =
TP

TP + FP
(6)

• Recall (PRecall): To evaluate the proportion of actual single classification results with
correctly predicted classifications;
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PRecall =
TP

TP + FN
(7)

• F1-score (PF1-score): To evaluate the performance of the overall model, the sum of
precision and recall is the average.

PF1−score =
2× TP

2× TP + FP + FN
(8)

4. Experimental Results

In this section, the Bot-IoT dataset will be used as the data source to establish the
classification model and analyze the classification results. The experimental results will be
discussed in three parts. The first part is to use only MLP to build an attack classification
model to show that the overall classification accuracy is very high, up to 99%, but the
classification accuracy of some single classes is not good. The second part uses GANs for
data augmentation to improve the efficiency of the IoT attack classification mechanism. In
addition to ensuring high overall classification accuracy, it can also improve the classifica-
tion accuracy of a single class. The third part compares the proposed method with other
existing methods to present the advantages of the proposed method.

The hardware used in the simulation experiment is a desktop computer with a Win-
dows 11 operating system and a 27-inch display with a resolution of 2560 × 1440 pixels.
It is powered by a Core i7-12700 processor and comes with 32 GB DDR4 RAM. The desk-
top computer has 2 TB of hard drive storage. The graphics card is powered by NVIDIA
RTX 3080.

4.1. MLP-Based IoT Attack Classification Mechanism

This experiment uses the MLP attack classification model. The total amount of pro-
cessed data in the BoT-IoT dataset is 2,927,407 records, and its classes include DoS, DDoS,
reconnaissance, theft, and normal. The entire dataset will be divided into three parts: train-
ing dataset, validation dataset, and test dataset. The data amounts of the training dataset,
validation dataset, and test dataset are 70%, 10%, and 20% of the total data amount, respec-
tively.

The training dataset is the primary part of the dataset used to teach a machine learning
model. It includes labeled examples pairing input data with the corresponding target labels.
The model learns by fine-tuning its internal parameters as it analyzes the training dataset
repeatedly, striving to make highly accurate predictions. This iterative process continues
until the model’s performance on the training data reaches an acceptable level through
adjustments based on prediction errors. The validation dataset is a separate part of the data
used to optimize the model’s hyperparameters and track its performance during training.
As training progresses, the model’s hyperparameters are fine-tuned based on performance
metrics measured on the validation data. This process ensures that the model generalizes
effectively to new data and avoids overfitting the training dataset. The test dataset is a
distinct subset of data that the model has not encountered during training or validation. Its
purpose is to assess the final performance of the trained model and its ability to generalize
to new, unseen data.

The experimental results of MLP-based IoT attack classification are shown in Figure 4.
When the 129th training epoch is completed, the early stopping mechanism is triggered to
prevent subsequent overtraining from affecting classification performance. Throughout
the training process, as shown in Figure 4a, the accuracy of training and validation is
maintained at 99%; as shown in Figure 4b, the loss values of training and validation
are below 1%. It can be clearly seen that the curves of overall accuracy and loss value
show a gradual convergence trend. The training time and testing time are 900 s and
40 s, respectively.
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The performance analysis of the MLP’s IoT attack classification is shown in Table 6. It
can be found that the accuracy, precision, and F1-score of the “Theft” class are all lower
than 76%. Although the “Normal” class has good accuracy, the recall rate is only 88.22%
and lower than the other three main classes. The reason for this result is that the amount
of training data for the two classes is too small, which affects the classification effect of
the model.

Table 6. The performance of the MLP-based IoT attack classification.

Classes Precision Recall F1-Score

DoS 100% 100% 100%
DDoS 100% 100% 100%

Reconnaissance 99.06% 98.37% 98.71%
Theft 75.23% 62.33% 68.18%

Normal 100% 88.22% 93.74%

4.2. MLP-Based IoT Attack Classification with Data Augmentation for Generative
Adversarial Networks

The dataset and processing used in this section are the same as the experiments in
the previous section. The classification model used in this section is MLP-based IoT attack
classification with data augmentation for GANs. After the overall performance of the
MLP classification model is improved, the single classification performance of each class is
examined separately. Use GANs to augment a single type of data. Both the augmented and
original data will be sent to MLP for retraining to improve the classification accuracy of
a single class. The experimental results of the loss of MLP-based IoT attack classification
with data augmentation for GANs in the class “Theft” and class “Normal” are shown in
Figure 5.

Experimental results show that in the early stages of training, it can be observed that
the generator’s ability to simulate real data is relatively weak. This allows the discriminator
to easily identify the fake data produced by the generator, causing the two loss curves to
become unstable. However, as the training period increases, the generator will continuously
strengthen the data it produces based on the feedback from the discriminator. This results
in generated data that are closer to, but not identical to, real data, making it difficult for
the discriminator to differentiate between real and generated data. At the same time, as
the discriminator has difficulty distinguishing true from false, its loss value gradually
increases, while the generator’s loss value decreases because the data it generates are closer
to the real data. Eventually, the generator and the discriminator gradually become stable
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in their confrontation with each other, causing the loss value curve to converge stably. In
Figure 5a, the GANs for the “Theft” class completed their training after 4932 epochs, with
the generator’s loss reaching 0.7632 and the discriminator’s loss at 0.6853. In Figure 5b, the
GANs handling the “Normal” class stopped training at the 3993rd epoch.
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Figure 5. (a) The loss of the MLP-based IoT attack classification with data augmentation for GANs in
the class “Theft” and (b) the loss of the MLP-based IoT attack classification with data augmentation
for GANs in the class “Normal”.

Based on the aforementioned results, once the GANs converge, it means that the
data generated by GANs is close to the real data of the same class. Therefore, the GANs
generator can be used to augment data for a specific class. The experimental results of
the accuracy and loss of MLP-based IoT attack classification with data augmentation for
GANs are shown in Figure 6. The accuracy of both training and validation remains at 99%,
while the loss value is only about 1%. In addition, after using GANs for data augmentation,
the performance of each class is shown in Table 7. The experimental results show that the
classification performance of the two classes, “Theft” and “Normal”, has been significantly
improved. That is, the accuracy, precision, recall, and F1-score are all higher than 90%. The
training time and testing time are 1500 s and 60 s, respectively.
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Table 7. The performance of MLP-based IoT attack classification with data augmentation for GANs.

Classes Precision Recall F1-Score

DoS 100% 99% 99.50%
DDoS 100% 100% 100%

Reconnaissance 96.06% 94.73% 95.39%
Theft 92.22% 90.69% 91.45%

Normal 99.81% 92.07% 95.78%

4.3. Validate Data Augmentation Mechanisms Using ToN-IoT Dataset

In the case of using the ToN-IoT dataset [33,34], the effectiveness and accuracy of the
proposed data augmentation-based classification method were validated. The number of
records in each class in the ToN-IoT dataset is shown in Table 8. As the fields in various
publicly available datasets vary slightly, the following features were selected for training in
this dataset: source IP, destination IP, transmission protocol, duration time, source bytes,
destination bytes, number of missing bytes, number of original packets, total length of
IP header field of source systems, number of destination packets, and total length of IP
header field of destination systems. Data pre-processing is described in Section 3.2. There
are 10 classes in the dataset, including 9 attack classes and 1 normal class.

Table 8. The number of records in each class in the ToN-IoT dataset.

Classes Number of Records

DoS 20,000
DDoS 20,000

Backdoor 20,000
Password 20,000
Scanning 20,000
Injection 20,000

Mitm 985
Normal 289,827

Ransomware 19,901
Xss 20,000

The first experiment was to select only five classes (DoS, DDoS, Backdoor, Password,
and Scanning) with sufficient data in the dataset to train the MLP classifier. The training
parameters are as set in the previous section. The experimental results for the accuracy
and loss of the proposed classification method are shown in Figure 7. In Figure 7a, the
accuracy is relatively low in the early stages of training and verification, but as the training
rounds increase, the accuracy can remain above 90%. In Figure 7b, the losses for training
and validation are close to 0.16. The performance of each class is shown in Table 9. The
experimental results show that the classification performance of the five classes has been
significantly improved. That is, the accuracy, precision, recall, and F1-score are all higher
than 90%. The training time and testing time are 38 s and 1.42 s, respectively.

Table 9. The performance of MLP classification using five classes in the ToN-IoT dataset.

Classes Precision Recall F1-Score

DoS 94.28% 93.23% 93.75%
DDoS 91.01% 99% 94.83%

Backdoor 98.21% 90.05% 93.95%
Password 100% 100% 100%
Scanning 100% 100% 100%
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Figure 7. (a) The accuracy of five classes in the ToN-IoT dataset based on the MLP classifier and
(b) the loss of five classes in the ToN-IoT dataset based on the MLP classifier.

The second experiment uses 10 data classes in the ToN-IoT dataset to train the MLP
classifier. The training parameters are as set in the previous section. The accuracy and loss
of the experimental results are shown in Figure 8. In Figure 8a, the accuracy is relatively
low in the early stages of training and verification, but as the training rounds increase, the
accuracy can remain above 97%. In Figure 8b, the losses for training and validation are
close to 0.05. The performance of each class is shown in Table 10. The experimental results
can find that the accuracy, recall rate, and F1-score of “DDoS”, “DoS”, and “Password”
among the original five classes have dropped significantly. The accuracy of the “Mitm”
classification is 96%, but the recall is only about 67%. The training time and testing time are
228 s and 5.7 s, respectively. Obviously, when the number of data in each class among the
10 classes is greatly different, the overall classification accuracy of the MLP classifier can
reach 97%. However, the classification performance of each class in precision, recall, and F1
scores needs to be improved.
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Table 10. The performance of MLP classification using 10 classes in the ToN-IoT dataset.

Classes Precision Recall F1-Score

DoS 84.19% 78.21% 81.09%
DDoS 80.02% 97.06% 87.72%

Backdoor 100% 100% 100%
Password 98.22% 88.26% 92.97%
Scanning 100% 99.53% 99.76%
Injection 100% 99.23% 99.61%

Mitm 96.31% 67.23% 79.18%
Normal 100% 100% 100%

Ransomware 100% 100% 100%
Xss 100% 100% 100%

The third experiment is based on the training results of the MLP classifier in the
second experiment and uses the proposed data augmentation method to improve the
classification performance of each class. For the four classes of DoS, DDoS, Password, and
Mitm, which have poor MLP classifier performance, GANs are used for data augmentation,
respectively, to improve classification performance. The loss values of these four classes of
generators and discriminators during training and verification are shown in Figure 9. In
Figure 9a, the GANs for the “DoS” class completed their training after 6352 epochs, with
the generator’s loss reaching 0.7456 and the discriminator’s loss at 0.6522. In Figure 9b, the
GANs handling the “DDoS” class stopped training at the 5886th epoch, with the generator’s
loss at 0.7312 and the discriminator’s loss at 0.6803. Moving to Figure 9c, GANs dedicated
to the “Password” class concluded their training at the 6196th epoch, with the generator’s
loss measuring 0.7466 and the discriminator’s loss at 0.6982. Finally, in Figure 9d, the GANs
responsible for the “Mitm” class finalized their training after 6151 epochs, resulting in a
generator’s loss of 0.7029 and a discriminator’s loss of 0.6834.

Add the augmented data to the original dataset to expand it into a new dataset. Use
this new dataset for the training of the MLP classifier classification. The training accuracy
and loss values are shown in Figure 10. The accuracy of both training and validation
remains at 98%, while the loss value is only about 3.7%. The performance of each class is
shown in Table 11. The classification performance of all 10 classes exceeds 90% in precision,
recall, and F1-score.

Table 11. The performance of MLP classification using 10 classes in the ToN-IoT dataset.

Classes Precision Recall F1-Score

DoS 92.68% 90.16% 91.40%
DDoS 93.27% 96.26% 94.74%

Backdoor 100% 100% 100%
Password 99.31% 92.19% 95.62%
Scanning 98.12% 97.26% 97.69%
Injection 100% 99.23% 99.61%

Mitm 97.56% 91.33% 94.34%
Normal 100% 100% 100%

Ransomware 99.06% 97.14% 98.09%
Xss 99.92% 98.29% 99.10%
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4.4. Comparison with Other Methods

This section will compare the classification performance with the cited literature [10,11,20],
as shown in Table 12. Based on the same BoT-IoT dataset, both models use GANs to solve
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classification problems. In [10], there is an attack classification model that integrates GANs
and AutoEncoder but only distinguishes data into two classes: attack and non-attack.
The literature [11] is a multiclass attack classification model that integrates conditional
GANs and the feed-forward neural network (FNN). The comparison results show that the
proposed method is better than the literature [11] in four performance indicators: accuracy,
precision, recall, and F1-score. Although the performance of the proposed method in
precision, recall, and F1-score is slightly lower than that of the literature [10] by 2%, the
method of the literature [10] can only perform binary classification (attack and non-attack).
The proposed method can achieve excellent classification performance for all five classes,
reaching more than 90% in the four indicators of accuracy, precision, recall, and F1-score.

Table 12. Comparison of the classification performance between the proposed method and other
methods.

Method Dataset Accuracy Precision Recall F1-Score Remark

GANs + AE [20] BoT-IoT 97.11% 99.33% 97.33% 98.31% Binary classification
CGANs + FNN [21] BoT-IoT 77.01% 77.74% 77.00% 76.56% Average of multivariate classification

Proposed BoT-IoT 98.83% 97.62% 95.30% 96.42% Average of multivariate classification
DNN [8] ToN-IoT 69.53% 56.84% 69.53% 61.96% Average of multivariate classification
Proposed ToN-IoT 98.53% 97.99% 97.99% 97.36% Average of multivariate classification

Additionally, the proposed classification method was trained using the ToN-IoT
dataset. The results demonstrate that the proposed method outperforms the approach
presented in the literature [20] that also used the same dataset. Moreover, regardless of
whether the BoT-IoT dataset or the ToN-IoT dataset is used, the overall classification perfor-
mance in terms of accuracy, precision, recall, and F1-score consistently exceeds 95%, while
individual class performance exceeds 90%.

5. Conclusions

The rapid development of IoT technology has brought convenient services and ap-
plications. However, the ensuing IoT attacks are increasing rapidly. Therefore, this article
proposes a classification model that combines MLP and GANs to provide an appropri-
ate data amplification mechanism to improve the classification performance of a single
class. The experimental results demonstrate that when using the BoT-IoT dataset, the
proposed method effectively augments data for the “Theft” and “Normal” classes, resulting
in classification accuracy, precision, recall, and F1-score, all exceeding 90%. The overall
classification performance in terms of accuracy, precision, recall, and F1-score consistently
surpasses 95%. Furthermore, to validate the robustness and practicality of the proposed
method, it was applied to different datasets, and the results were observed. When using
the ToN-IoT dataset, the proposed method indeed augments data for the “DoS”, “DDoS”,
“Mitm”, and “Password” classes, leading to classification accuracy, precision, recall, and
F1-scores all exceeding 90% for these classes. The overall classification performance, in this
case, consistently exceeds 97%.

In future work, we will explore various types of datasets and focus on the quantity
and timing of precise data augmentation to speed up the training time and testing time of
the classification model. As the dataset currently used is in CSV format, unlike real-world
IoT attack data, feature selection for the training set will be explored. Thus, the proposed
method can be directly applied to actual network equipment and achieve instant and
accurate attack classification.
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