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Abstract: The crucial need for perpetual monitoring of photovoltaic (PV) systems, particularly
in remote areas where routine inspections are challenging, is of major importance. This paper
introduces an advanced approach to optimizing the maximum power point while ensuring real-time
PV error handling. The overarching problem of securing continuous monitoring of photovoltaic
systems is highlighted, emphasizing the need for reliable performance, especially in remote and
inaccessible locations. The proposed methodology employs an innovative genetic algorithm (GA)
designed to optimize the maximum power point of photovoltaic systems. This approach takes into
account critical PV parameters and constraints. The single-diode PV modeling process, based on
environmental variables like outdoor temperature, illuminance, and irradiance, plays a pivotal role
in the optimization process. To specifically address the challenge of perpetual monitoring, the paper
introduces a technique for handling PV errors in real time using evolutionary-based optimization.
The genetic algorithm is utilized to estimate the maximum power point, with the PV voltage and
current calculated on the basis of simulated values. A meticulous comparison between the expected
electrical output and the actual photovoltaic data is conducted to identify potential errors in the
photovoltaic system. A user interface provides a dynamic display of the PV system’s real-time
status, generating alerts when abnormal PV values are detected. Rigorous testing under real-world
conditions, incorporating PV-monitored values and outdoor environmental parameters, demonstrates
the remarkable accuracy of the genetic algorithm, surpassing 98% in predicting PV current, voltage,
and power. This establishes the proposed algorithm as a potent solution for ensuring the perpetual
and secure monitoring of PV systems, particularly in remote and challenging environments.

Keywords: photovoltaic parameters; PV error handling; evolutionary algorithm; PV monitoring

1. Introduction

Photovoltaic (PV) systems are a remarkable breakthrough that dazzle with their un-
paralleled benefits. The energy harnessed by these systems is devoid of any pernicious
pollutants and does not impinge on natural resources or threaten the well-being of living
beings. In addition, the noiseless and highly reliable PVs are entirely self-sufficient, requir-
ing only nominal maintenance costs [1]. It is no wonder that solar PVs are considered a
preeminent source of clean energy, and their prevalence continues to rise because of their
groundbreaking advances in both technology and marketability. These strides include an
impressive array of cell types, PV efficiency, and electronic capabilities that elevate their
prominence and secure their position as a pinnacle of modern technology [2].
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Although photovoltaic systems offer a multitude of benefits, it should be noted that
their output is subject to fluctuations that are dependent on several factors, including
prevailing outdoor conditions such as solar irradiance and temperature, as well as the
characteristics of the PV modules, such as photovoltaic cell temperature and connected
load [3]. To ensure optimal performance, the connected load must operate at a specific
juncture, known as the maximum power point (MPP), where the PV produces the maximum
power output. This feat is accomplished by accurately correlating the PV’s characteristics
with the environmental variables to achieve maximum point power tracking (MPPT).

The exhaustive testing of all commercially available PV models under different envi-
ronmental conditions is an arduous and cost-intensive task. Consequently, researchers have
exploited mathematical and physical models to simulate, estimate, and forecast the PV’s
electrical characteristics based on diverse parameters [4]. The most commonly used models
are lumped parameter models with varying numbers of diodes. The single-diode model
of the PV cell reigns supreme as the most prevalent model employed today [5]. However,
determining the current–voltage correlation of the single-diode photovoltaic is an intricate
process that involves solving complex transcendental and nonlinear equations, rendering it
a laborious undertaking.

Establishing all pertinent parameters is imperative to accurately model a single-diode
photovoltaic model [6]. However, not all parameters and specifications are readily avail-
able in the manufacturer’s manual. While data regarding voltage at MPP (Vmpp), open
circuit voltage (Voc), current at MPP (Impp), and short circuit current (Isc) are commonly
provided, other critical PV parameters, such as diode ideality factor (a), parallel resis-
tance (Rp), reverse saturation current (Is), and photogenerated current (Iph), may not be
easily obtained [6]. Consequently, estimation or modeling using alternative means be-
comes necessary to determine these unknown parameters. Given the complexity of the
process, accurately modeling PV characteristics is essential to ensuring model robustness
and reliability.

Estimating photovoltaic parameters is a multifaceted endeavor that relies on diverse
numerical, statistical, analytical, and intelligent techniques. Although numerical mod-
els rely solely on manufacturer-provided data to estimate PV parameters, analytical and
statistical approaches utilize complex non-linear equations to estimate the I–V curve param-
eters [7]. Intelligent models leverage meta-heuristic algorithms to extract PV parameters,
making use of sophisticated techniques to tackle the challenge of PV modeling [8]. Indeed,
the extensive literature [9] on extracting PV parameters attests to the formidable nature of
this task.

From the perspective of PV estimation, the paramount and pivotal factors are PV
modeling and its parameters, as well as the MPPT. In addition, it is crucial to ensure the
uninterrupted and continuous functioning of photovoltaics. Integrating all PV parameters
and methods to estimate the I–V curve, while also providing techniques for error handling,
is a challenging task. The complexity further increases when using fusion and hybrid
methods to ensure that the PV modeling output closely approximates the actual PV output,
which is essential for optimizing the power process and, subsequently, error handling.

In light of the challenges and concerns mentioned above, this paper proposes a novel
approach to address the modeling and optimization of single-diode photovoltaic systems.
Specifically, an analytical method is employed to model the photovoltaic system, while
a state-of-the-art genetic algorithm is utilized to estimate the electric parameters of the
system. The resulting real-time values of Vact, Iact, and Pact are then compared to the
predicted values obtained from the genetic algorithm (Vgen, Igen, and Pgen), which provides
a means of identifying potential malfunctions or errors in the PV system or its sensing
devices. By notifying the end-user of any significant deviations between the predicted and
actual values, appropriate actions can be taken to prevent further issues and ensure the
smooth and continuous operation of the photovoltaic system [10]. Overall, this approach
holds great promise for addressing the challenges associated with accurate PV modeling
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and error handling in single-diode photovoltaic systems while eliminating the integration
of complex IoT systems [11].

Recent studies and advancements in PV modeling have indicated that, for the specific
task of estimating the I–V curve and optimizing the power process, the inclusion of certain
parameters (e.g., air humidity, wind direction, wind speed) may not yield a significant
improvement in accuracy [12]. The selected PV modeling method, while simplified in
its consideration of operating conditions, has been validated against real-world data,
demonstrating high accuracy and reliability [12]. Moreover, the decision to limit the number
of parameters considered in the model is also pragmatic. By focusing on essential factors,
the complexity of the model is reduced while minimizing associated costs. Additional
parameters would require more sophisticated sensing devices and potentially lead to
increased expenses in both installation and maintenance for real-time conditions.

Within this context, the proposed method holds profound significance in the field of
PV systems by introducing a novel approach to real-time monitoring and error detection.
The fundamental concept revolves around the premise that, under optimal conditions,
the PV modeling outputs, which estimate the electricity generation (represented by Vgen,
Igen, and Pgen), should closely align with the actual measurements of the PV system’s
performance (Vact, Iact, and Pact). Any substantial deviation between these two sets of
values indicates the potential occurrence of errors or malfunctions within the PV system or
its sensing devices. Exploiting a GA for parameter estimation, the method enables accurate
and low-cost real-time monitoring of PV operations. This not only ensures the flawless
functionality of the PV system but also provides a proactive mechanism for identifying and
addressing issues promptly, thereby maximizing the overall efficiency and reliability of the
photovoltaic installation.

The contributions and novelty of this paper can be summarized as follows:

• Development of a novel genetic algorithm for MPP optimization in single-diode
photovoltaic systems.

• Integration of the Lambert function into the optimization function of the genetic
algorithm to ensure PV constraints are met.

• Implementation of a real-time PV error detection system to detect and notify the end-
user of any potential malfunction or deviation between real and predicted PV values.

In the subsequent sections of this paper, a comprehensive analysis of photovoltaic
(PV) output power estimation and fault diagnosis is presented. Section 2 addresses the
extensive research conducted in this field, highlighting its significance in the renewable
energy domain. In Section 3, a detailed examination of the various methodologies utilized
for PV modeling, MPP optimization, and PV error handling is provided. The ensuing
section, Section 4, showcases the outcomes of the aforementioned methodologies. Finally,
the paper ends with a discussion and conclusive section encapsulating the key takeaways
and insights gleaned from the research conducted.

2. Related Work

A model that can estimate, simulate, or predict a single-diode PV’s energy production
must be accurate and efficient while monitoring the MPPT. PV models consist of non-linear
characteristics between current (I) and voltage (V). It is of ultimate importance to minimize
errors when estimating the I–V curve. The higher the estimation, the better the model.
Notwithstanding, even if the PV modeling is accurate, there are many other errors that
might occur with the PV systems. The PV system fails due to abnormal module power
operation, sensor problems, and other issues. Tracking those errors and reporting them to
stakeholders is crucial for a continuous PV operation.

As presented in the work of [13], to accurately predict the output of a PV, the estimation
must be associated with outdoor environmental parameters. Weather data were periodically
retrieved (i.e., every 5 min) for two years. The selected outdoor values monitored are
ambient temperature (Ta), relative humidity (RH), wind speed (WS), and global horizontal
irradiance (GHI). Moreover, the respective PV parameters were monitored for the same
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time interval and period of time and are the maximum PV power output (Pmax), the
temperature of the PV modules (Tm), and the plane of array irradiance (POA). Pmax was
correlated with all the weather variables to indicate their association. The lowest error
was produced when the model consisted of RH, WS, and Ta. Therefore, it is suggested to
forecast PV power using those variables.

According to [14], the MPPT may be estimated through the curve of the solar array by
comparing power (P) and static conductance (G). Their model generates fluctuating power
and is compared to the PV’s array of actual instantaneous power. The error produced is
used to modify the static conductance while reaching the MPP. Moreover, the generated
error is applied to change the power reference until it attains a limit cycle near the MPP.
Their model ensures that the MPPT operates accurately between 10% and 100% nominal
power. As stated in [15], to estimate the PV parameters for better PV accuracy, the proper
circuit model must be indicated. A flexible particle swarm optimization (FPSO) algorithm
is exploited. The FPSO’s ordinary movement is altered to boost its accuracy. The FPSO
is compared to many other widely used algorithms, like the bird mating optimizer and
particle swarm optimization. As stated above, the non-linear characteristics of the PV cells
result in a continuous fluctuation of their values. Consequently, the proper modeling of the
PV and its parameters is of key importance.

As addressed in the work of [16], it is crucial that the PV’s operations be continuous
without faults or disruptions. The MPPT enhances the efficiency of the modules through
DC–DC power optimizers. However, there are still many errors that might occur to the PV
systems, like single component failure and plants out of service. As a result, PV auditing
and monitoring are essential for diagnostic and maintenance purposes. PV monitoring is
deployed through a day-ahead PV output prediction while faults are diagnosed. Moreover,
a thorough examination is applied to the PV forecast through its performance indexes.
In [17], it is reported that the I–V and P–V parameters and characteristics of a single-diode
model affect the PV’s operation. The authors divide the voltage and PV current output
through an intermediate parameter. They simulate the PV’s operation and analyze how
each parameter affects the PV output and the error degree. The decomposition of voltage
and current in the I–V simplifies the estimation of PV parameters while demonstrating the
effect on MPP.

As far as monitoring PV techniques are concerned in [18], a novel method for smooth-
ing photovoltaic power fluctuations using a hybrid storage system and optimized charg-
ing/discharging cycles is presented. The approach incorporates machine learning-based
PV failure detection, reducing supercapacitor operation and computation time compared
to traditional methods, as validated in experiments. In [19], the application of remote
sensing (RS) technology in various stages of solar PV system development is explored,
including potential estimation, array detection, fault monitoring, and cross-cutting areas.
The comprehensive review highlights RS as a crucial tool for effective resource assessment,
data analysis, and health monitoring, offering valuable support for PV system planning,
management, and decision-making. Finally, in [20], a real-time fault detection and perfor-
mance monitoring system for PV systems is presented. Using various sensors, the system
identifies issues such as encapsulation failure and module corrosion. It employs a one-
diode model, Python software, and a database generated from field testing to detect faults,
providing users with easy-to-understand error messages and remote access for efficient PV
system management and maintenance.

Based on all the above, it may be observed that, while significant progress has been
made in modeling and monitoring single-diode PV systems, there remains a notable
research gap concerning the integration of accurate parameter estimation, real-time error
detection, and efficient MPPT mechanisms. The existing literature has predominantly
focused on individual aspects, such as parameter estimation techniques, environmental
parameter correlations, and fault detection systems. However, there is a need for a holistic
approach that combines these elements to enhance the robustness and reliability of PV
models. This paper aims to bridge this research gap by proposing a comprehensive
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methodology. The objectives include the development of a novel genetic algorithm for
accurate MPPT optimization, the integration of the Lambert function to ensure adherence to
PV constraints, and the implementation of a real-time error detection system. The proposed
approach seeks to address the challenges associated with accurate modeling and error
handling in single-diode PV systems, offering a more complete and effective solution for
continuous and fault-free PV operation.

3. Methodology
3.1. Single-Diode PV Modeling

A PV module consists of a number of PV cells connected in series to increase the
voltage output and a number of PV cells connected in parallel to increase the current
output. PV modules can generate electricity autonomously or combine with more PV
modules in series or in parallel to form a PV array that generates a greater amount of
electricity. The equivalent circuit of a PV module can be observed in Figure 1.

Figure 1. PV module equivalent circuit.

The output current of a PV module can be calculated by the following calculation
using Kirchhoff’s first law [21]:

I = Np Iph − Np Id − Ip, (1)

where I is the output current of the PV module, Np is the number of cells connected in
parallel, Iph is the photogenerated current, Ip is the current flowing in the parallel resistance
of the PV module Rp, and Id is the diode’s current, as described by Shockley [22]:

Id = Is

[
e(

Vd
nVt

) − 1

]
, (2)

where Is is the diode’s saturation current, Vd is the diode’s voltage, n is the diode’s ideality
factor, and Vt is the diode’s thermal voltage, which is calculated as follows:

Vt =
kTNs

qe
, (3)

where k is the Boltzmann constant [23], T (in Kelvin) is the diode’s temperature, Ns is the
number of PV cells connected in series, and qe is the elementary charge. Combining (1)
with (2) and (3), the output current of the photovoltaic module is:

I = Np Iph − Np Is

[
e(

qe(V+IRs)
nkTNs

) − 1

]
− V + IRs

Rp
, (4)

where V is the output voltage of the PV module and Rs is the series resistance of the
PV module.

Combining more than one PV module, a PV array can be formed, which constitutes
the electrical power generator unit of a PV power station. The way that PV modules are
connected defines the output voltage and the output current of the PV array. If there
are n PV modules connected in series and m PV modules connected in parallel, then the
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output voltage and the output current of the PV array are given, respectively, by the
following equations.

Varray = nV, (5)

Iarray = mI, (6)

where V and I are the output voltage and current, respectively, of a single PV module. The
number of parameters used in this model are summarized in Table 1.

Table 1. PV modeling parameters.

Parameters Description Unit Parameter Range

Np
No. of cells connected in
parallel in a PV module unitless >0

Ns
No. of cells connected in
series in a PV module unitless >0

Iph Photo-generated current A 0 to saturation current
Is Diode’s saturation current A 10−14–10−17 A/µm2

Id Diode’s current A −10−9 to 2
Vt Diode’s thermal voltage V 2 mV–30 mV
Rp Parallel resistance Ohm 0 to smallest resistance
Rs Series resistance Ohm 0.2 Ohm to 20 Ohm
k Boltzmann constant J/K 1.381 · 10−23 J/K
n Diode’s ideality factor unitless 1–2
I PV’s output current A 0 ≤ INp ≤ Isc Np
V PV’s output voltage V 0 ≤ VNs ≤ Voc Ns
P PV’s output power W 0 ≤ Pn Np Ns
qe Elementary charge C 1.602 · 10−19 C

µIsc , µVoc

Temperature coefficients for
current and voltage, respectively (I/◦C, V/◦C) 0.04 to 0.5, −0.3 to −0.5

G, GST
Solar irradiance and irradiance
at standard conditions (1000 W/m2) W/m2 <1000 W/m2, 1000 W/m2

T, TST
Temperature of PV module and standard
test values for temperature (25 ◦C)

◦C 25 ◦C to 50 ◦C , 25 ◦C

Voc, Voc,ST
Voltage of PV module and standard
test values for temperature (25 ◦C) V 0 ≤ Voc Ns ≤ Voc, stNs

Isc, Isc,ST
Current of PV module and standard
test values for temperature (25 ◦C) A 0 ≤ Isc Np ≤ Isc, stNp

3.2. Maximum Power Point Tracking

The output power of a PV module is given by Joule’s law [24] and the I–V and P–V
diagrams are presented in Figures 2 and 3:

P = VI, (7)

where P, V, and I are the output power, voltage, and current of the PV module, respectively.
According to (4), (6) can be rewritten as follows:

P = Np IphV − Np IsV

[
e(

qe(V+IRs)
nkTNs

) − 1

]
− V2 + IRsV

Rp
, (8)
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Figure 2. I–V curve.

Figure 3. P–V curve.

The PV module’s output voltage and current of the photovoltaic module have a
maximum value depending on irradiance and temperature. The voltage’s maximum value
results when no electric loads are connected to the module’s output (open-circuit situation),
and the current’s maximum value results when the module’s output is short-circuited (short-
circuit situation). The equations that connect the short circuit current (output current’s
maximum value) and the open circuit voltage (output voltage’s maximum value) with
irradiance and temperature are [25].

Isc = Isc(G, T) =
G

GST

[
Isc,ST + µIsc(T − TST)

]
(9)

Voc = Voc(G, T) = Voc(T) + nVt ln(
G

GST
), (10)

where
Voc(T) = Voc,ST + µVoc(T − TST), (11)

where the following apply:

• GST = 1000 W/m2, TST = 25 ◦C, Isc,ST , Voc,ST are the standard test values for irradi-
ance, temperature, short circuit current, and open circuit voltage, respectively.

• G, T, Isc, Voc are the actual values for the irradiance, temperature, short circuit current,
and open circuit voltage, respectively.

• µIsc , µVoc are the temperature coefficients for current and voltage, respectively.

The power output of the photovoltaic module is maximized, according to (4). The
solution has only one global maximum point, the maximum power point (MPP), and it
depends on irradiance and temperature. The electric qualities at MPP are named maximum
power voltage (Vmpp), maximum power current (Impp), and maximum power (Pmpp).

Output current, output power, and, therefore, MPP are proportional to the photo-
current Iph, which is heavily dependent on radiation and temperature, according to the
following equation:

Iph =
G

GST

[
Iph,ST + µIsc(T − TST)

]
, (12)
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where Iph,ST is the photocurrent under standard test conditions. The equations that combine
the saturation current Is, series resistance Rs, and the parallel resistance Rp with irradiance
and temperature can be illustrated as follows [25]:

Rp = Rp(G) =
GSTC

G
· Rp,STC, (13)

Rs = Rs(G, T) =
T

TSTC

(
1− 0.217 · ln G

GSTC

)
· Rs,STC, (14)

Is = Is(G, T) =

(
1 + Rs

Rp

)
·
(

GST
G

)
· Isc − Voc

Rp

exp
(

Voc
nVt

)
− exp

( (
GST

G ·Isc

)
/Rs

nVt

) , (15)

where Rs,STC and RP,STC are the series and parallel resistance at standard conditions,
respectively, pointing out why the MPP varies in radiation and temperature.

To ensure that the PV module always produces the practicable maximum power, a
converter is connected to its output. This converter controls the output voltage of the PV
module to maximize the output power, according to (4) and (7). The output current can be
given by (4).

If the converter is connected to the output of a combination of PV modules, then the
voltage, current, and power of the PV modules are given by the following equations:

Vmodmpp =
Vmpp

n
, (16)

Imodmpp =
Impp

m
, (17)

Pmodmpp =
Pmpp

nm
, (18)

where Vmodmpp, Imodmpp, and Pmodmpp are the output voltage, current, and power of the
PV module. Vmpp, Impp, and Pmpp are the voltage, current, and power of the combination
of the PV module. n and m are the number of PV modules connected in series and
parallel, respectively.

3.3. Power Optimization Process

As mentioned in the previous section, all the PV parameters (e.g., Iph, Voc, Isc, Rp, Rs)
are associated with temperature and irradiance and are calculated based on PV single-
diode modeling. A genetic algorithm is implemented and developed to estimate the
expected (MPP) PV values according to irradiance and temperature. In essence, the genetic
optimization algorithm, as detailed below, heuristically finds the MPP as well as the electric
qualities at this point with regard to monitored outdoor values.

3.3.1. Fitness Function

The optimization problem consists of maximizing the power of the photovoltaic, which
can be mathematically expressed as

max
I∈[0,Isc ], V∈[0,Voc ]

{P}, subject to (4)

Alternatively, the fitness function can be defined as

min{−P}, P = f (V, I) = V · I, f : A→ R, (19)
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where input values are chosen from within the allowed set, A, as illustrated below:

V ∈ [0, Voc]

I ∈ [0, Isc]

and concurrently meet the appropriate constraints and requirements, namely (4), which
can be also reformed to

I − Np Iph − Np Is

[
e(

qe(V+IRs)
nkTNs

) − 1

]
− V + IRs

Rp
= 0, (20)

Exploiting the Lambert function [26,27], (4) can be modified as follows [28]:

I = − B
Rs
·Wo

 A·Rs
c1·B · e

(
V+Rs(A+I′ph)

c1 ·B

)
+

I′ph+A− V
Rp

c1
, (21)

where B = n ·Vt, A = Np · Is, I′ph = Np · Iph, and c1 = 1 + Rs
Rp

. In that way, the PV module
voltage is expressed as a function of the PV current, and constraint (20) is integrated
into the fitness function. The argument of the Lambert function may take extremely large
numbers due to the exponential term, leading to overflow errors in a common programming
language. To overcome that problem, a technique proposed in [28] has been utilized that
exploits logarithmic and exponential properties. In [28], various methods to implement the
Lambert function have been compared, concluding that the “Hybrid” approach was the
most accurate, providing the entire I–V curve.

According to the above modifications, the fitness function depends only on V, and
(19) can be reformed as

min(−P) = f (V), (22)

f
(
Vgen

)
= −Vgen · Igen(Vgen), f : [0, Voc]→ R

The parameters required for the genetic algorithm to be implemented are provided
in Table 2.

Table 2. Parameters for the genetic algorithm.

Parameters Description

pm mutation probability
pc crossover probability
population number of chromosomes
generation number of generations

Decimals decimal precision of the
encoded value (Vgen)

f
(
Vgen

)
= −Vgen · Igen(Vgen), f : [0, Voc]→ R) fitness function

3.3.2. Genetic Algorithm Modeling

The genetic algorithm (GA) is a metaheuristic algorithm that was proposed by John
Holland and his contributors in the 1970s [29] and is inspired by the Darwinian theory of
natural selection processes [30].

Genetic algorithms are commonly used to produce high-quality solutions to search and
optimization problems relying on biological-inspired operators such as selection, crossover,
and mutation. The basic elements of GAs are chromosome representation, fitness selection,
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and the biologically inspired operators mentioned above [31]. Usually, chromosomes are
represented by a string of bits. Every chromosome contains a sequence of bits or genes,
where each gene has two variant forms, 0 and 1. All chromosomes form the size of the
population, and they represent different points in the solution space. The population is
repeatedly replaced by the processed chromosomes using genetic operators. When all the
genetic operators are applied, the population forms a new generation, and that happens
constantly until the algorithm reaches the iterations that were specified by the user at an
initial phase. The fitness function is a performance indicator used to evaluate how well the
chromosomes are [32].

To set up the GA, all the operators are individually examined and designed depending
on the solution of the problem, which is to calculate the MPPT of a PV system according
to some weather conditions as well as the current and voltage that lead to the maximum
power. The pseudocode for the total GA procedure is presented in Algorithm 1.

Algorithm 1 Genetic Algorithm for Minimizing f (V) = −V · Igen(V)

1: Initialize population P with random solutions
2: Evaluate the fitness of each solution in P using (22)
3: while termination condition not met do
4: Select parents from P based on their fitness
5: Apply crossover to create offspring
6: Apply mutation to the offspring
7: Evaluate the fitness of the new offspring
8: Replace old population with a combination of parents and offspring
9: end while

10: Output: Best solution found in P

3.3.3. Encoding of Voltage

The encoding of chromosomes is the initial step in solving a problem through ge-
netic algorithms. There are various encoding methods for GA algorithms, such as binary,
permutation, value, and tree encoding. However, the encoding process is often problem-
dependent, and in this work, binary encoding is used as the appropriate method. In essence,
during binary encoding, each chromosome is represented by a string of bits, 0 or 1, where
each chromosome bit represents a specific characteristic of the problem.

Intending to specify the length of the chromosome or the number of bits the string
consists of, the domain of the objective function (i.e., the set of possible values of the
independent variable) has to be defined as well as the desired decimal precision for the
problem. Then, the number of bits can be calculated from the following equation [33]:

2l − 1 ≥ (ub− lb) ∗ 10Decimals =⇒
2l ≥ (ub− lb) ∗ 10Decimals + 1 =⇒
l ≥ log2[(ub− lb) ∗ 10Decimals + 1],

where l is the number of bits required for the representation, Decimals are the decimals
of precision, and ub and lb represent the upper bound and lower bound of the possible
permitted values, respectively. Assuming the voltage (V) value lies in the range of [0, 20]
volts and one decimal of precision is required, the number of bits to represent a chromosome
can be computed according to the previous equation as follows:

l ≥ log2[(20− 0) ∗ 101 + 1] =⇒
l ≥ 7.65 =⇒
l = 8



Appl. Sci. 2023, 13, 12682 11 of 28

Taking into consideration the constraints in terms of voltage range and decimals of precision,
each chromosome can be represented by a string of bits, as depicted in Figure 4. This string
of bits is also called a genotype.

Figure 4. Chromosome encoding.

3.3.4. Decoding of Voltage

The decoding process is necessary in order to obtain a continuous value for the
dependent variable (V), which is also required for the calculation of the objective function.
The phenotype or the voltage’s (V) decoded value (Vdec) can be retrieved using a set of
equations [33].

precision =
(ub− lb)

2l − 1
(23)

The above (23) computes the precision of each bit that is used in (24) to eventually calculate
the phenotype or decoded value of (V).

Vdec =

[
l−1

∑
n=0

(
Bit |position=n ∗2n)] · precision + lb (24)

Substituting (ub, lb, l)) in (23), the precision is

precision =
(20− 0)
28 − 1

= 7.84 · 10−2

For the chromosome in Figure 4, the phenotype can be calculated according to (24),
as follows

Vgen = Vdec =
(

23 + 25
)
· precision + lb

=
(

40
)
· 7.84 · 10−2 + 0

= 3.136

3.3.5. Selection

During every generation, some chromosomes of the existing population are selected to
later breed a new population through the crossover procedure. Chromosomes compete with
each other through a fitness-based process, where the ones that better fit the fitness function
are more likely to be selected to proceed. It should be noted that every chromosome can
be selected more than once. Among the most popular methods that measure the fitness of
the solutions to select the chromosomes is tournament selection [34], which was used in
this paper.

During tournament selection, an individual from a population of chromosomes is
selected. Specifically, during this process, a number of chromosomes that are randomly
picked from the total population are evaluated according to their fitness, and the best
solution is selected to perform crossover. This process repeats as many times as the
population size. The tournament size or the participants’ pool size indicates the tolerance
to weak individuals since a smaller number of participants means that weak chromosomes
experience a higher chance of being selected as winners of the tournament.
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3.3.6. Crossover

In order to generate new offspring, the genetic information of two parents (chromo-
somes) is combined using the crossover genetic operator. This is the most common way to
stochastically generate new chromosomes from the existing population. There are various
methods for performing crossover, such as the two-point crossover that was used in this
paper [35].

During the two-point crossover method, two different random integers between [0, l]
are generated to specify the two crossover points for the parent chromosomes. The bits
that lie between these points are swapped between the parent chromosomes, resulting
in two child chromosomes, each of which carries a portion of genetic information from
both parents (Figure 5).

Figure 5. Two-point crossover example.

However, not all parents’ chromosomes undertake the crossover process. After se-
lection has occurred, two chromosomes (parents) are selected to perform the crossover.
A given crossover probability pc ∈ [0, 1] is defined at the very beginning and specifies
whether the crossover will be carried out. The crossover will be performed under the
condition that a random number generator providing numbers between [0, 1] will generate
a number smaller than pc. All chromosomes are selected successively in a set of two until
the entire population is selected.

3.3.7. Mutation

In genetic algorithms, mutation is a unary genetic operator, where, in contrast to the
crossover operator, it is applied only to one chromosome and is used in order to preserve
the genetic diversity of chromosomes in a population from one generation to the next.

Mutation modifies the chromosome by altering one or more genes in a chromosome.
These modifications can lead to a new generation with a population of chromosomes with
better solutions than the previous ones. The mutation is carried out as an evolution process
according to the probability of mutation pm ∈ [0, 1] defined during a trial phase.

There are various methods for performing the mutation operator, the most common
of which is called the flip bit [35] method, which involves a probability given by a random
number generator that a bit in a chromosome will be flipped from its original state. This
occurs for every bit in the sequence of the chromosome. If the probability is smaller than
pm, then the particular bit that is examined will be flipped. In Figure 6, an example of a flip
mutation is depicted where only the fifth bit of the chromosome is flipped.
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Figure 6. Flip mutation example.

3.4. PV Error Handling

The comparison between the voltage and current predicted by the genetic optimization
algorithm (Vgen, Igen) in Section 3.3 and the actual voltage and current (Vact, Iact) involves
a meticulous process, as depicted in the following flow chart (see Figure 7). This flow
chart illustrates the systematic evaluation of the PV module’s or PV array’s operation by
quantifying the error between predicted and actual values. The process begins with the
extraction of predicted values (Vgen, Igen) and actual values (Vact, Iact) from the genetic
optimization algorithm and experimental measurements, respectively.

Figure 7. Flow chart of PV error handling.

The next step involves the subtraction of actual values from predicted values, resulting
in the computation of the error for both voltage and current. This error is then compared
against a predefined constant c, typically set experimentally to 0.1 for enhanced precision.
The decision block assesses whether the error exceeds the established threshold. If the
error surpasses the threshold, the system flags the occurrence of an anomaly or deviation
from expected performance. In case the error is within the acceptable range, the system
proceeds to the output phase, indicating that the PV module or array is operating within
the desired parameters. This systematic comparison and error analysis serve as a critical
step in validating the effectiveness and accuracy of the genetic optimization algorithm in
predicting the electrical characteristics of the photovoltaic system.

The overall process encapsulated in this flow chart ensures a comprehensive assess-
ment of the algorithm’s performance, enabling researchers and engineers to identify and
address discrepancies between predicted and actual values, thereby refining the modeling
and optimization of the photovoltaic system (Figure 7).

This flow chart provides a visual representation of the systematic comparison and
error analysis between predicted and actual values in the context of photovoltaic system
modeling and optimization. The pseudocode for the PV error-handling algorithm is
presented below (Algorithm 2).
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Algorithm 2 PV Error Handling

1: function HANDLEPVERROR(Vgen, Igen, Vact, Iact, threshold)
2: . Calculate error for voltage and current
3: error_V ← Vgen −Vact
4: error_I ← Igen − Iact
5: . Check if error exceeds the predefined threshold
6: if |error_V| > threshold or |error_I| > threshold then
7: . Anomaly detected, flag the occurrence
8: system_status← “Anomaly Detected”
9: else

10: . System operates within desired parameters
11: system_status← “Normal Operation”
12: end if
13: . Output the results
14: return system_status, error_V, error_I
15: end function

3.5. Overall Architecture

The overall methodology, as depicted in Figure 8, details the process of comparing
and validating actual values with predicted values in the context of PV system modeling
and optimization. The essential parameters guiding this model are thoughtfully cataloged
in Table 3, offering a comprehensive overview of the variables involved in the comparison
process. All crucial parameters, including Igen, Vgen, Pgen, Iact, Vact, and Pact, play a distinct
role in the validation procedure. Igen and Vgen represent the output current and voltage,
respectively, calculated from the genetic algorithm, providing predicted values for the
installed PV system. Similarly, Pgen signifies the output power generated by the PV system,
as determined by the genetic algorithm. On the other side, Iact, Vact, and Pact denote the
measured values of output current, voltage, and power from the PV system meters, offering
a real-world reference for the system’s performance.

Figure 8. PV error-handling conceptual architecture.
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Table 3. Parameters to compare actual values from predicted.

Parameters Descritpion Unit

Igen
Output current of installed PVs
as calculated from genetic algorithm A

Vgen
Output voltage of installed PVs
as calculated from genetic algorithm V

Pgen
Output power of installed PVs
as calculated from genetic algorithm W

Iact
Output current of installed PVs
as measured from meters A

Vact
Output voltage of installed PVs
as measured from meters V

Pact
Output power of installed PVs
as measured from meters W

The comprehensive procedure unfolds as follows: leveraging data from sensors and
meters and exploiting the single-diode model, the GA produces the predicted values (Vgen,
Igen, Pgen). Simultaneously, the actual output voltage, current, and power (Vact, Iact, Pact)
are retrieved from the meters embedded within the PV system. These actual and predicted
values then undergo a comparison through the PV error-handling algorithm, as explicated
in the preceding section. This algorithm systematically assesses the deviation between
actual and predicted values, considering predefined thresholds for error, typically set
experimentally to enhance accuracy. The outcome of this analysis provides invaluable
insights into the efficacy of the genetic algorithm in modeling and optimizing the PV system,
allowing researchers and engineers to refine and improve the accuracy of their models.

The overall procedure is described in Algorithm 3.

Algorithm 3 Real-time PV Error Handling

Require: Igen, Vgen, Pgen, Iact, Vact, Pact
1: function REALTIMEERRORHANDLING(Igen, Vgen, Pgen, Iact, Vact, Pact)
2: for each parameter param in {I, V, P} do
3: error ← abs(paramgen − paramact) . Calculate absolute error
4: if error exceeds predefined threshold then
5: Alert: High deviation in param values
6: end if
7: end for
8: Return: Analysis results and insights
9: end function

4. Results

In this section, the results of the proposed method are presented. Initially, the per-
formance and accuracy of the proposed GA applied to model single-diode PV systems
under various illuminance conditions are addressed. The PV parameters used in the ex-
periments are outlined, and the sensors and meters used are presented while detailing the
overall procedure that involves measuring real PV values, expected MPP values through
the GA, and the subsequent comparison. The GA’s accuracy is investigated by altering
parameters affecting PV output, such as temperature and irradiance. Additionally, the GA’s
key hyperparameters, including population size, number of generations, crossover and
mutation probabilities, are thoroughly tested to optimize its performance. The accuracy and
efficiency of the GA are further compared with other optimization algorithms, showcasing
the GA’s efficacy in solving complex PV optimization problems. The results highlight the
GA’s ability to provide accurate predictions and its suitability for real-time PV monitoring
and optimization, making it a valuable tool for practical applications.
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4.1. Experimental Set Up

In this experimental set-up, diverse illuminance conditions were applied to assess the
performance of PV systems, with the parameters of the utilized PVs detailed in Table 4. The
table provides a comprehensive overview of critical PV parameters essential for accurate
modeling and optimization. The experiment’s focus is on understanding how the PVs
respond to varying illuminance levels, shedding light on their efficiency and robustness
under different environmental scenarios. By systematically varying illuminance conditions,
the study aims to capture the nuanced behavior of the PV systems and evaluate their
real-world adaptability. The parameters outlined in Table 4, such as the diode ideality
factor (n), series resistance (Rs), and photogenerated current (Iph,ST), play pivotal roles in
determining the system’s response to changing illuminance. The ensuing analysis and
results will provide valuable insights into the dynamic behavior of PV systems, contributing
to a broader understanding of their performance in varying environmental contexts.

Table 4. Parameters of the PVs used in the experiments.

PV Parameter Value Unit

n 0.988 unitless
Rp 249.678 Ohm
Rs 0.384 Ohm
Isc,ST 5.17 A
Iph,ST 5.178 A
Voc,ST 43.99 V
µIsc 0.00415 I/◦C
µVoc −0.03616 V/◦C
Ns 72 unitless
Is 1.784× 10−10 A

Sensors and Meters

The comprehensive modeling procedure involves acquiring crucial measurements
from an array of devices, meters, and sensors to accurately assess the performance of PV
systems. The key objective is to identify potential errors in PV operations by comparing
real PV values with the expected MPP values. Real PV values are determined through
the utilization of meters and MPPT, while the expected PV values are estimated using a
genetic algorithm.

For an accurate simulation of PV system operation, the GA relies on input values from
various outdoor sensors and PV modeling. These inputs include temperature measure-
ments obtained through type J thermocouples [36] attached to the PV collectors, providing
insights into temperature variations during operation. Additionally, an optical sensor [37]
is employed to simultaneously monitor the brightness of the surrounding area, contributing
to a comprehensive understanding of the environmental conditions affecting PV perfor-
mance. A pyrometer sensor is incorporated to measure solar radiation, offering reliable
data on solar energy incidence.

Simultaneously, the monitoring system utilizes a multimeter to track the voltage
and current values of the PV collectors, providing real-time data on electrical parameters.
Simultaneously, a wattmeter is employed to monitor the power produced by the solar
cells, offering insights into the overall energy generation of the PV system. To convert
analog signals into digital values for precise measurements, an analog-to-digital converter
(ADC) is employed, facilitating the retrieval of accurate and digitized data. The final digital
outputs include the actual electric qualities, namely Vact (voltage), Iact (current), and power
Pact, forming the basis for the subsequent analysis and comparison with the expected values
generated by the genetic algorithm. This meticulous data acquisition process ensures a
comprehensive and accurate assessment of the PV system’s real-time performance and aids
in the identification of any deviations or errors in its operation.



Appl. Sci. 2023, 13, 12682 17 of 28

4.2. Genetic Algorithm Tests

In this section, the focus is on the comprehensive exploration of GA tests and their
impact on the modeling accuracy of PV systems under various conditions. The population
size and number of generations, pivotal parameters in GAs, are investigated to optimize
convergence and computational efficiency. Results from performance tests will present
the influence of these parameters on the GA’s execution time and convergence ability.
Additionally, the critical selection of crossover and mutation probabilities is addressed
through experimental tests, revealing their relationship and impact on the algorithm’s
performance. This analysis will lead to the identification of an optimal combination of
hyperparameters for the GA crossover probability. Subsequently, the accuracy of the
GA is thoroughly examined through tests where irradiance and temperature variations
are introduced.

4.2.1. Population Size and Number of Generations

The selection of the population size is a crucial process for the GA because it directly
influences the convergence of the algorithm [38]. As a result, population size has an impact
on the GA’s ability to reach the optimal solution [39]. According to the findings in the
literature, a small population mars the quality of chromosomes, and a large population
size (i.e., more than 100) is only a computational waste [40]. Nonetheless, to determine
the appropriate population and the number of generations (iteration times), tests were
carried out, as shown in Table 5. The crossover probability was set to 0.75, and the mutation
probability was set to 0.01, as suggested in the literature [41]. It could be suggested that
the experiments indicate that a population size of 60 is efficient for the GA. Furthermore, a
small generation number will maintain the quality of the solutions and keep the execution
time rather low.

Table 5. GA performance tests on the population and the generation size.

Generation Population Execution Time (s) Convergence

10

10 0.052 8/10

20 0.110 10/10

40 0.229 10/10

20

10 0.112 9/10

20 0.229 10/10

40 0.477 10/10

40

10 0.237 10/10

20 0.484 10/10

40 0.971 10/10

80

10 0.479 10/10

20 0.951 10/10

40 1.928 10/10

Some experiments have been conducted to measure the computational difficulty of
the algorithm and to associate some of the genetic hyperparameters (population size and
generations) with the execution time while keeping crossover and mutation probabilities
intact. According to Table 5, and observing how the execution time varies as the population
and generations increase, it can be observed that the execution time is linearly proportional
to the size of the population. Moreover, the slope of the straight lines in Figure 9 indicates
that the execution time is also linearly proportional to the number of generations. Com-
bining the impact of those two hyperparameters on the execution time and considering
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that the genetic algorithm is heuristic and crossover/mutation operators occur at nearly
the same time, the algorithm has a complexity of O(n2).

Figure 9. Relationship between population size, generations, and execution time.

As depicted in Figure 9, there is an observable relationship between the population
size and the execution time of the GA. Furthermore, there is also a proportional relation-
ship between execution time, generation size, and population size. Regarding the tests
developed, the aforementioned relationships are estimated by the following:

y1 = 0.0484x− 0.0095

y2 = 0.0245x− 0.0065

y3 = 0.0122x− 0.012

y4 = 0.0059x− 0.0075,

where x is the population size and y is the execution time in seconds, where y1, y2, y3, y4
correspond to generation sizes 10, 20, 30, 40, respectively.

4.2.2. Crossover and Mutation Probability

The crossover probability and the mutation probability are also very important param-
eters for the GA [30]. They should be selected after a trial phase where various combinations
must be tested. The proposed GA was tested for many combinations. The results are pre-
sented in Figure 10, the two red lines indicate the lowest value of the objective function
and the value of the fitness function when the algorithm stops. When there is one line, the
GA converges to the minimal point.

Figure 10. Experimental tests for GA performance setting crossover probability and mutation equal
to 0.5 and 1.0.
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To start with, two rather rare combinations were selected where crossover probability
and mutation were equal and set to 0.5 and 1.0. In the first case, it is observed that the GA
does not converge until generation 100, and the algorithm often has high picks. This is due
to the high rate of both selected probabilities. In the second case, where the probabilities
are set to 1.0, it may be observed that the algorithm seems to be mixed up and going all
over the search space.

Subsequently, to test the effect of the crossover probability on the GA, the mutation
probability is kept fixed and equal to pm = 0.8. As it may be observed in Figure 11, the GA
never converges with a high mutation probability, regardless of the pc value. The GA had
sharp fluctuations during the 100-generation deployment. It is suggested that a high rate
of mutation disorganizes the GA.

Figure 11. Crossover and mutation tests with mutation fixed to pm = 0.8.



Appl. Sci. 2023, 13, 12682 20 of 28

Moreover, to test the effect of the mutation probability on the GA, the crossover is kept
fixed and equal to pc = 0.8. In contrast to the previous case where the pm was high, when
the pc is high, the GA generally performs better (Figure 12). Furthermore, the lower the pm,
the better. A pm greater than 0.05 starts to deteriorate the GA’s ability to converge to the
optimal solution.

Figure 12. Crossover and mutation tests with crossover fixed to pc = 0.8.

To sum up, the best performance of the suggested GA is observed when pc = 0.8 and
pm = 0.01. Therefore, this is the combination that is used for the GA because it ensures that
the GA will find the best solution while quickly converging.

4.3. GA Accuracy

After specifying the crossover and mutation probability and setting the decimal
precision to two, some experiments have been performed to measure the accuracy of the
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genetic algorithm. Specifically, by modifying the parameters that mostly contribute to
the PV output (temperature and irradiance), the genetic algorithm was executed and the
predicted values of the electric quantities were compared to the real ones, as measured
by the meters. Holding irradiance at a constant value and modifying temperature, three
tables of results were formed for three different values of irradiance, namely (214.72, 500,
1000). The results can be easily depicted in Tables 6–9. In most cases, the genetic algorithm
is more than 98% accurate.

Table 6. GA accuracy tests with irradiance 214.72 W/m2.

Irradiance 214.72 W/m2

Temperature 0 ◦C

Real Values Genetic Error Accuracy %

Impp A 0.990 1.01223 −0.02223 98

Vmpp V 33.540 34.5158 −0.97582 97

Pmpp W 33..2 34.93794 −1.73794 95

Temperature 25 ◦C

Impp A 1.000 1.02635 −0.02635 97

Vmpp V 29.93. 32.42978 −2.49978 92

Pmpp W 29.930 33.28430 −3.35435 89

Temperature 50 ◦C

Impp A 1.025 1.03863 −0.01363 99

Vmpp V 25.810 30.37843 −4.56843 82

Pmpp W 26.450 31.5519 −5.10194 81

Table 7. GA accuracy tests with irradiance 500 W/m2.

Irradiance 500 W/m2

Temperature 0 ◦C

Real Values Genetic Error Accuracy %

Impp A 2.44 2.36011 0.07989 97

Vmpp V 38.58 37.22944 1.35056 96

Pmpp W 94.13 87.86557 6.26442 93

Temperature 25 ◦C

Impp A 2.41 2.39144 0.01856 99

Vmpp V 35.96 34.8984 1.0616 97

Pmpp W 86.81 83.45743 3.35257 96

Temperature 50 ◦C

Impp A 2.46 2.41856 0.04144 98

Vmpp V 31.13 32.58600 −1.456 95

Pmpp W 76.57 78.81119 −2.24119 97
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Table 8. GA accuracy tests with irradiance 1000 W/m2.

Irradiance 1000 W/m2

Temperature 0 ◦C

Real Values Genetic Error Accuracy %

Impp A 4.800 4.74547 0.05453 99

Vmpp V 40.110 39.28088 0.82912 98

Pmpp W 192.550 186.40623 6.14376 97

Temperature 25 ◦C

Impp A 4.830 4.77966 0.05034 99

Vmpp V 36.220 36.63148 −0.41148 99

Pmpp W 174.984 175.08602 −0.10202 100

Temperature 50 ◦C

Impp A 4.790 4.82245 −0.03245 99

Vmpp V 32.530 33.81646 −1.28646 96

Pmpp W 155.820 163.07818 −7.25818 95

Table 9. Output results of SLSQP, COBYLA and Rao (1,2,3) algorithms.

Test Results

Irradiance 1000 W/m2

Temperature 0 °C

Real
Values GA SLSQP Cobyla Rao-1 Rao-2 Rao-3

Impp 4.80 4.75 4.72 3.82 4.74 4.73 4.73

Vmpp 40.11 39.28 39.49 43.65 39.45 39.48 39.48

Pmpp 192.55 186.41 186.48 166.79 187.20 186.50 186.50

Temperature 25 °C

Impp 4.83 4.78 4.78 3.30 4.80 4.79 4.79

Vmpp 36.22 36.63 36.63 42.12 36.59 36.62 36.62

Pmpp 174.98 175.09 175.10 138.78 175.02 175.08 175.08

Temperature 50 °C

Impp 4.79 4.82 4.82 2.87 4.81 4.82 4.82

Vmpp 32.53 33.82 33.82 40.68 33.78 33.81 33.81

Pmpp 155.82 163.08 163.10 116.88 162.95 163.09 163.09

It is worth mentioning that, in Table 6, for a low irradiance value (214.72), it can be
easily observed that, as temperature increases, the accuracy of the algorithms decreases.
In particular, when the temperature equates 50 ◦C, the real value diverges from the pre-
dicted one by 18%. That noticeable deviation between the real and predicted values is
not attributed to the genetic algorithm but to the PV modeling. PV parameters depend
on temperature and irradiance but are usually not taken into account in the equations
to simplify the modeling process, leading to less accurate solutions when irradiance or
temperature diverge a lot from the standard conditions. Various PV modeling methods are
proposed in [25].

On the contrary, in Table 7, when the irradiance value (500 W/m2) is closer to that of
the standard conditions, better results were obtained, while the precision in every quantity
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of electrics does not fall below 96%. Similar results can be illustrated in Table 7, where
accuracy remains above 95%. Due to the fact that electric quantities (voltage and current)
can be predicted with an error less than 10%, except for cases of extreme values of irradiance
and temperature, an error could be raised when real and predicted values diverge more than
10%. It should also be remembered that, with more analytical and detailed PV modeling,
the genetic algorithm could yield better results, even in extreme cases.

4.4. PV Error Generation

The end-user can be informed of the PV’s state from the real-time analytics platform
implemented to provide valuable information about the PVs. In particular, beyond other
crucial and informative visualizations, the end-user also has the ability to constantly view
the real-time ground truth and predicted values of the electric quantities and check if any
abnormal activity is observable. Two different cases of normal and abnormal PV activity
can be illustrated in Figures 13 and 14, respectively. It should also be mentioned that, in
cases of abnormal activity, pop-up notifications also appear on the user’s screen.

Figure 13. UI example when PV values are normal.

Figure 14. UI example when PV values are not normal.



Appl. Sci. 2023, 13, 12682 24 of 28

4.5. Comparing Proposed Fitness Function with MPC-Based Methods

It has been proposed that MPC-based MPPT algorithms are of high accuracy and
robustness [30]. With this technique, the MPPT is tracked by correcting V and I values until
dP
dV = 0. Exploiting the Lambert function and finding I(V), as in (21), the above equation
can be reformed and is illustrated as

dP
dV

=
d(V · I)

dV
= I(V) + V · dI(V)

dV
= 0 (25)

Using the above (25), a fitness function to find the MPP was formed and is expressed
as follows:

f
(
Vgen

)
= |I(V) + V · dI(V)

dV
|, f : [0, Voc]→ R

The genetic algorithm was also tested with the above fitness function, and there were
no substantial deviations between the results using the fitness function defined in (22).
However, dI(V)

dV should be calculated, making the above fitness function much more complex

than the proposed solution in this paper. Speaking of complexity, dI(V)
dV can be calculated

using the Lambert function and (21), as follows:

dI(V)

dV
= − Vt

Rs
·Wo

[
(Is ·Rs)

(1+ Rs
Rsh

)·Vt
· e

V+Rs(Is+Iph)

(1+ Rs
Rsh

)·Vt

]

+
(Iph+Is− V

Rsh
)

1+ Rs
Rsh

(26)

To summarize, the solution proposed in this paper is not only less complex than other
solutions to track the MPP, but the genetic algorithm also offers the flexibility to use another
technique (e.g., MPC, as above) by modifying the fitness function.

4.6. Genetic Algorithm Performance Test Compared with Other Optimization Algorithms

There are a multitude of numerical optimization algorithms in the literature that
perform in various ways [42]. Their performance varies depending on their formulation
(e.g., convergence velocity, optimum perception, constraint handling). There are three main
categories of optimization algorithms: evolutionary algorithms, gradient-based algorithms,
and non-gradient-based algorithms [43]. During the design process of a problem, the
appropriate algorithm must be selected to formulate a plausible solution. The meticulous
choice of the optimization algorithm is critical for the robustness of every problem-solving
process. As a result, the created genetic algorithm (i.e., evolutionary) is compared to two
other algorithms belonging to the other categories and one belonging to the same category.

The first one is a gradient-based algorithm, sequential least squares programming
(SLSQP) [44]. SLSQP exploits the Han–Powell quasi-Newton method with an update
of the B-matrix [44]. It is a commonly used algorithm that handles problem constraints
with efficacy. The other one is a non-gradient-based algorithm, COBYLA [45]. COBYLA
does not account for bounds and is a non-derivative optimizer [45]. Therefore, the cre-
ated GA will be examined both with a gradient and with a non-gradient algorithm using
the boundary constraints of the PV configuration. As far as the evolutionary algorithm
is concerned, in 2020, Ravipudi Venkata Rao proposed the Rao algorithms (i.e., Rao-1,
Rao-2, Rao-3), which are metaphor-free optimization methods using best/worst solutions
and random interactions for quick convergence [46]. They require only two parame-
ters—population size and maximum evaluations—streamlining the tuning process by omit-
ting complex parameters from previous metaphor-based approaches. All the algorithms
are tested for their performance compared to real PV values and the same input parameters
(i.e., irradiance, temperature). Moreover, two ways of handling constraints are com-
pared: the one used by GA exploiting the Lambert function, and the other used by SLSQP,
COBYLA, and Rao (1, 2, 3), which uses the domain of (4).



Appl. Sci. 2023, 13, 12682 25 of 28

The comparison results in Tables 9–11 reveal that the GA, SLSQP, and COBYLA algo-
rithms yield nearly identical results across different temperatures and output parameters.
This uniformity underscores the accuracy of the constraint handling, particularly the use
of the Lambert function in the GA. Despite the algorithms’ similar performance, the GA
stands out as a preferable choice due to its configurability. The GA offers more flexibility
in selecting various objective functions and constraints, providing adaptability to solve a
unique problem. This versatility in configuration is a significant advantage, allowing the
GA to address a wide range of optimization scenarios effectively. As for the time required
for each algorithm to achieve convergence, the results indicate that the GA consistently
demonstrates a slightly more efficient convergence across varying temperatures (0 °C, 25 °C,
and 50 °C) compared to the SLSQP, Cobyla, and Rao-1, Rao-2, and Rao-3 algorithms. The
advantage of the GA in convergence time suggests its robust performance in optimizing
the given parameters, highlighting its potential as an effective optimization method for the
specified conditions.

Table 10. Execution time comparison of optimization algorithms (in milliseconds).

Temperature (◦C ) GA SLSQP Cobyla Rao-1 Rao-2 Rao-3

0 100 105 108 120 106 107

25 90 95 95 115 96 97

50 98 105 105 105 104 105

Table 11. Comparison results of SLSQP, COBYLA, and Rao (1,2,3), based on the outputs.

GA % SLSQP % Cobyla % Rao-1 % Rao-2 % Rao-3 %

Temperature 0 °C

Impp 99 98 80 99 99 99

Vmpp 98 98 92 98 98 98

Pmpp 97 96 86 96 96 96

Temperature 25 °C

Impp 99 99 69 98 98 98

Vmpp 99 99 84 99 99 99

Pmpp 100 100 80 100 100 100

Temperature 50 °C

Impp 99 99 60 99 99 99

Vmpp 96 96 75 96 96 96

Pmpp 95 95 75 96 96 96

Furthermore, the GA’s ease of application becomes evident in comparison to model
predictive control techniques [47]. The GA’s straightforward implementation and ability
to handle diverse problem formulations make it a practical and accessible choice for
optimization tasks in this context. In contrast to the Rao algorithms, the GA consistently
demonstrates slightly better performance across all tested conditions. This superiority,
combined with the GA’s configurability and ease of use, positions it as the method of choice
for optimizing the given system.

4.7. Results and Discussion

The proposed methodology combines advanced computational techniques, experi-
mental measurements, and error-handling strategies to model and optimize photovoltaic
(PV) systems. The integration of a GA with a single-diode model forms the basis of the
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modeling approach. The ensuing discussion delineates the key aspects and implications of
this methodology.

The utilization of a GA involves a meticulous examination of its performance and
sensitivity to various parameters. The GA’s efficacy is contingent upon optimal hyperpa-
rameter tuning, particularly concerning population size, generation number, crossover
probability, and mutation probability. The comprehensive error handling and validation
procedure establishes a robust mechanism for comparing predicted and actual PV system
outputs. The integration of a predefined error constant facilitates a quantitative assess-
ment of the algorithm’s performance. The discussion on the error-handling algorithm
emphasizes its utility in identifying discrepancies and guiding further refinement of the
genetic algorithm.

The integrated procedure, harmonizing GA predictions with actual measurements,
offers a holistic perspective on PV system modeling. The step-by-step approach, encompass-
ing sensor data, GA predictions, and metered values, ensures a comprehensive evaluation.
The methodology’s practical implications lie in its ability to not only optimize PV system
performance but also provide a systematic framework for continuous improvement.

While the proposed methodology exhibits promising results, it is not without limita-
tions. The simplified single-diode model may introduce inaccuracies, especially in extreme
conditions. Future research could explore more intricate PV models to enhance accuracy.
Additionally, the sensitivity of the GA to initial conditions warrants further investigation
for robust real-world applicability.

5. Conclusions

In this paper, a novel evolutionary algorithm has been presented for real-time PV
power optimization, introducing a comprehensive system that monitors and maintains the
health of PV installations. The system provides a holistic overview of outdoor environ-
mental conditions, continuously monitors PV voltage, power, and current, and predicts
PV values in real time. Alerts and notifications are sent to stakeholders and end-users,
enhancing the practical utility of the system.

The power optimization process underwent a thorough analysis, leading to the de-
velopment of a finely tuned GA. Through a systematic trial-and-error phase, optimal GA
parameters were determined—pc = 0.8, pm = 0.01, and a population size of 60—result-
ing in a remarkable accuracy exceeding 98% when compared to actual PV values. This
underscores the effectiveness of the proposed GA in optimizing PV power output.

To ensure the operational integrity of PV modules or arrays, a robust comparison
between actual and predicted voltage and current was implemented. The proposed error-
handling procedure demonstrated efficiency during experimentation, promptly alerting
end-users to potential PV malfunctions. A comparative analysis with other algorithms
affirmed the accuracy of the genetic algorithm, boasting a 99% success rate and offering
flexibility in parameter configuration.

Looking ahead, future work will involve the comprehensive testing of additional PV
parameters and diverse outdoor conditions to further enhance system efficiency. The refine-
ment and analysis of the PV modeling approach will be prioritized to ensure the accuracy
of PV error handling. Exploring alternative PV modeling techniques and conducting user
satisfaction research will contribute to continual improvements, ensuring the system’s
effectiveness and enhancing the user experience.
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