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Abstract: In recent decades, machine-learning algorithms have been extensively utilized to tackle
various complex tasks. To achieve the high performance and efficiency of these algorithms, various
hardware accelerators are used. Typically, these devices are specialized for specific neural network
architectures and activation functions. However, state-of-the-art complex autonomous and mobile
systems may require different algorithms for different tasks. Reconfigurable accelerators can be used
to resolve this problem. They possess the capability to support diverse neural network architectures
and allow for significant alterations to the implemented model at runtime. Thus, a single device
can be used to address entirely different tasks. Our research focuses on dynamically reconfigurable
accelerators based on reconfigurable computing environments (RCE). To implement the required
neural networks on such devices, their algorithms need to be adapted to the homogeneous structure
of RCE. This article proposes the first implementation of the widely used SoftMax activation for
hardware accelerators based on RCE. The implementation leverages spatial distribution and incor-
porates several optimizations to enhance its performance. The timing simulation of the proposed
implementation on FPGA shows a high throughput of 1.12 Gbps at 23 MHz. The result is comparable
to counterparts lacking reconfiguration capability. However, this flexibility comes at the expense of
the increased consumption of logic elements.

Keywords: deep neural networks; hardware accelerators; low-power systems; homogeneous
structures; reconfigurable environments; parallel processing

1. Introduction

Machine-learning algorithms, particularly artificial neural networks (NN), are one
of the most promising technologies these days. NNs possess the capability to extract
relationships between properties of source data objects, making them highly applicable
for numerous tasks that cannot be efficiently addressed by traditional rigid algorithms:
object classification, image recognition, predictive analysis, natural language processing,
and many others. The training process, which involves extracting the relationships, enables
NNs to solve such tasks for unknown input data.

The complexity of solving tasks requires the use of large NN models with a substantial
number of parameters. These models have high computational complexity and, therefore,
require specialized computing systems known as neural network hardware accelerators.
Hardware accelerators are well optimized specifically for machine-learning algorithms,
performance, and power efficiency. The significance of hardware accelerators is particu-
larly pronounced in mobile and standalone systems, such as mobile robots, smartphones,
unmanned aerial vehicles (UAVs), self-driving cars, satellites, smart Internet of Things (IoT)
sensors, edge computing nodes, and various other devices [1–8]. These systems impose
stringent requirements on factors such as durability, weight, and battery life.

The issue of the computational complexity of neural networks is well-recognized,
and numerous implementations of hardware accelerators have been proposed. All of
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them are based on devices that support parallel computing: graphics processing units
(GPU), field-programmable gate arrays (FPGA), and application-specific integrated circuits
(ASIC) [2,8–12]. GPU consists of numerous small processing units working independently
of each other; consequently, it ensures high performance in machine-learning tasks [1,9].
Nevertheless, the high power consumption of GPUs limits their use primarily to cloud,
server, and desktop systems. FPGAs and ASICs are more widespread in low-power and
autonomous devices. They allow one to develop a computing unit with an architecture
customized for a particular task. The customizations and low-level implementation ensures
the high performance and power efficiency of such accelerators. To use the benefits of the
chosen platform, the required algorithms need to be adapted to its peculiarities.

In addition to the specialized hardware, numerous optimizations are employed. Due to
the redundancy of neural networks, some weights can be eliminated without any significant
loss [13]. The high sustainability of NNs to distorted input data allows one to reduce the
bit depth of both input data and parameters [14–18].

These approaches exhibit enhanced performance and efficiency for specific tasks.
However, complex intelligent systems encounter various challenges, each of which may
require an NN model with a specific architecture. Furthermore, in numerous cases, there is
a lack of prior knowledge regarding the algorithms that will be required in the future. This
issue is particularly relevant for remote systems with low availability, where limitations
in power consumption, weight, and reliability make it challenging to carry multiple task-
specific devices for any possible task.

A more promising solution involves hardware accelerators with the reconfiguration
ability [19–22]. Such accelerators can drastically change the implemented NN model by an
external signal at runtime. At the same time, reconfigurable accelerators offer comparable
performance, energy efficiency, and reliability to their rigid counterparts. These features are
of primary relevance to engineers, leading to numerous studies in this field. The concept
of reconfigurable computing environments (RCEs) can be utilized to build hardware
accelerators with such capabilities. The RCE concept proposes implementing computing
devices as a homogeneous grid of independently configurable processing elements (PE).

A significant challenge of applying RCE-based accelerators is the adaptation of the
required machine-learning algorithms to the multi-cell homogeneous structure of RCE.
Each element of the RCE only supports a small set of specific operations. At the same
time, all elements are interconnected and work in parallel. Thus, the desired algorithms
must be implemented as a spatially distributed composition of the given operations. In
the research, we propose the PE with 10 simple operations: signal source, signal transfer,
multiply-accumulate, parametric ReLU, maximum, minimum, gate, union, delay, and
block [21,23–25]. There is currently no implementation of SoftMax activation based on
spatial distribution and these operations. This paper considers the implementation of
SoftMax activation for the RCE. Activation has a lot in common with sigmoid activation,
the implementation of which is presented in [25]. However, due to its higher computational
complexity, SoftMax activation requires more optimizations, as will be discussed further.

2. Reconfigurable Computing Environment

A reconfigurable computing environment (RCE) is a mathematical model of a com-
puting system built as a regular grid of similar small processing elements (PEs). Each
element is connected with its neighbors. The shape of a PE corresponds to the number
of its neighbors. Each PE supports several operations; however, it only performs one of
them at any given time. The performing operation can be set by an external signal or by
some predefined internal rule. This setting is called the configuration of the PE. To ensure
the high flexibility and performance of an RCE, its PEs should be small and simple. This
can be achieved by implementing only a small set of straightforward reusable operations.
Although each element is very simple, a large group of such elements working together has
many advantages. The collaborative work of many independent processors allows for the
implementation of complex distributed and parallel algorithms [26,27]. Since all elements
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are similar, in the case of partial damage to the RCE, the current algorithm can be restored
to an intact area. The complexity of the algorithms supported by an RCE depends only on
the number of PEs in the RCE and their set of operations. In some references, RCE is also
referred to as a homogeneous structure [28].

In general, a computing environment can be one-, two- or three-dimensional, and its
elements can have a different number of neighbors. This paper discusses two-dimensional
environments in which elements have up to four neighbors (Figure 1).

Figure 1. Reconfigurable computing environment.

3. Implementation of Neural Networks in RCE

As previously noted, an RCE is a general design paradigm for computing systems
with high parallelism and reconfiguration ability. The capabilities and characteristics of
such systems essentially depend on the predefined set of PE operations, as well as the
interaction between their elements. Consequently, there are many ways to implement the
required algorithms.

This paper explores the implementation of neural networks in an RCE that supports
fine-grained reconfiguration and highly distributed computing. In accordance with our
architecture, an artificial neuron can be implemented in the form of a processing elements
chain (Figure 2). Separate elements perform different operations, such as storing the bias,
weighting and adding each input, and applying the activation. Therefore, neurons with
any number of inputs can be implemented by altering the length of this chain.

Obviously, the size and complexity of an RCE processing element is highly dependent
on the number and complexity of operations it supports. Thus, complex operations, such
as the sigmoid or SoftMax activations, should be decomposed into simple, reusable ones.
In other words, the complex operations should be implemented by a collaboration of
several processing elements. The literature review allowed us to identify the following set
of operations: “signal source” (SRC), “signal transfer” (TRS), “multiply and accumulate”
(MAC), “parametric ReLU” (PRL) “maximum” (MAX), “minimum” (MIN), “gate” (GAT),
“union” (U), “delay” (DEL), and “block” (BLK) (Figure 3). These operations are sufficient
for implementing the key layers of neural networks (dense, convolution, pooling) as
well as activations (sigmoid, tanh, ELU, and other) [21,23–25]. This paper focuses on the
implementation of SoftMax activation.

Certain operations require an additional argument, which can be set during the
configuration process and stored in the internal memory of the PE. For instance, the MAC
operation treats this argument as a weight value, while the PRL employs it for its coefficient.

Furthermore, each PE is configured with one of four possible signal flow directions. As
will be demonstrated later, the direction setting enables the implementation of the pipeline
processing in an RCE.



Appl. Sci. 2023, 13, 12784 4 of 15

Figure 2. Implementation of a neuron with RCE processing elements. Reprinted from [23], with
permission 2021 IEEE.

Figure 3. Processing element operation set.

By utilizing the proposed approach, the layers of a neural network can be imple-
mented by connecting several chains (Figure 4). The values b1, b2, b3 correspond to the
neuron biases. Neuron weights are stored in the elements that are configured for the MAC
operation (depicted as orange boxes). The symbol f denotes an activation function. Since all
processing elements work independently, all neurons of the layer are computed in parallel,
resulting in enhanced performance.

Figure 4. Dense layer in RCE.

As is evident from Figure 4, the proposed implementation of the neuron rotates the
signal by 90 degrees. This rotation serves two purposes: to stack the neuron chains together
and to compute multiple layers concurrently. The simultaneous processing of several neural
network layers can be accomplished through pipelining. To process n layers, the RCE needs
to be divided into n + 1 segments. At each moment of time, n segments implement different
layers while the last segment is reconfigured to compute the next layer (Figure 5). Each
segment processes signals that arrive at different points in time and passes the results to
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the following segment, which is configured for the next layer of the network. At each
step, the reconfiguration process is performed for the subsequent segment. Thus, the full
reconfiguration of the RCE requires n steps. Through the simultaneous computation and
dynamic reconfiguration, this implementation of RCE is capable of processing NNs with
an arbitrary number of layers. Furthermore, the implementation has decreased time and
power consumption since all intermediate results of signal processing are kept in the RCE,
and data exchange with an external memory is mostly eliminated.

Figure 5. Pipeline processing in RCE.

4. Implementation of the SoftMax Activation in RCE
4.1. Challenges of the Hardware Implementation of SoftMax Activation

The SoftMax is a neuron activation widely used in the output layers of neural networks
for classification tasks if the number of output classes exceeds one. It is also known as
the softargmax or normalized exponential function. The result of this activation is the
probability distribution of the input vector values among several classes. Consequently,
SoftMax is a multi-class alternative to the sigmoid activation. The SoftMax activation has
the following form:

S(x1, . . . xN)i = exp(xi)/
N

∑
1

exp(xn) (1)

where N is the number of inputs.
As can be seen, there are several challenges to hardware implementation of this

function:

• It is based on the non-linear fast-growing exponential function (Figure 6);
• In general, the input values of the activation can lie within a wide range, limiting

possible optimizations;
• It utilizes division to produce the final result.

Figure 6. The exponential function.
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The wide usage of the SoftMax activation has led to numerous studies addressing
these difficulties.

4.2. Current State of Hardware Implementation of the SoftMax Activation

According to Equation (1), the SoftMax activation incorporates the exponential func-
tion. This is the non-linear fast-growing function (Figure 6). Since the hardware implemen-
tation of this function is resource-intensive, researchers have proposed various approaches
to optimize it. In papers [29–32], the exponential function is implemented by storing its
points in an internal memory of FPGA (look-up table, LUT). This is a simple and effective
solution. However, to achieve sufficient accuracy, the number of stored points must be
large enough. As a result, this solution is convenient for sequential processing only when
the device computes its inputs one by one. To perform the calculations in parallel, each
branch needs its own table of points, leading to high memory consumption. To reduce
the memory footprint, in [29], the power of e is decomposed into digits. The exponential
function values for these points are stored in the device memory. These values are then
multiplied to produce the final result.

More promising solutions utilize bitwise shift operation [13,33]. They propose replac-
ing ex with 2y+z, where y and z are the integer and fractional parts, respectively. Since the
bitwise shift has a well-known efficient hardware implementation, the solution provides
good results. Nevertheless, performing the bitwise shift operation requires several clock
cycles, leading to difficulties for asynchronous devices. The papers [22,30] propose a similar
solution based on the Taylor expansion and bitwise shift.

Unfortunately, both presented solutions cannot be efficiently implemented in an RCE.
The LUT-based implementations are not applicable due to the homogeneity of RCE—all its
processing elements must be identical. Storing the entire look-up table of the exponential
function in each PE results in low efficiency and high memory consumption. Furthermore,
the stored points are applicable for the exponential function only and cannot be reused for
other tasks. This fact violates the key design principle of RCE processing elements that
imply high reusability of operations in an operation set. The implementations based on
bitwise shift cannot be employed in an RCE for several reasons. As mentioned before, the
bitwise shift operation implies synchronous data processing and takes several clock cycles.
Nevertheless, the RCE processing elements work asynchronously and do not rely on the
clock cycle. The second obstacle is the lack of bitwise shift operation in the proposed set
of PE operations. This operation can be introduced into the set; however, at the date, the
necessity for this operation in PEs is debatable.

The wide input range of the SoftMax activation increases the complexity of its hard-
ware implementation. To reduce the range, most of the mentioned papers suggest sub-
tracting the maximum input value from all inputs [29,31,32,34]. This is possible due to
Equation (2). If c is equal to −max(x1, . . . xn), the results of the exponential function are
always between 0 and 1. However, the subtraction leads to negative powers and small
values of the exponential function, resulting in low precision for fixed-point numbers. Since
the proposed implementation of RCE processes 16-bit fixed-point numbers, this solution
has a significant impact on the results obtained. In this paper, we have modified this
approach to provide greater accuracy.

S(x1, . . . xN)i =
exp(xi)

∑N
1 exp(xn)

=
exp(c) ∗ exp(xi)

exp(c) ∗ ∑N
1 exp(xn)

=
exp(xn + c)

∑N
1 exp(xn + c)

(2)

where c is any constant value.
The hardware implementation of division is a well-recognized problem that increases

the complexity of the design. A simplified implementation of this operation can be achieved
using subtraction and bitwise shift, as shown in [29,30,33]; or by addition and bitwise shift,
according to [34]. The problem of applying bitwise shift in RCE was discussed above. The
research [31] proposes avoiding division through rounding due to the primary impact of
the maximum input value. Obviously, this approach has limited use.
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In summary, although the modern implementations of SoftMax activation ensure high
performance and resource utilization, they cannot be effectively used for reconfigurable
computing environments. Consequently, to benefit from the reconfiguration capability, a
novel RCE-specific implementation of SoftMax activation is required.

4.3. Implementation of the Exponential Function

As discussed earlier, in RCE, complex functions need to be decomposed among a
group of processing elements; thus, each element performs a simple operation. One of the
most popular approaches to defining a function in a simple general way is piecewise linear
approximation (PLA). This approach can be used to implement the exponential function.

We briefly discuss the implementation of PLA in the RCE using the example of
sigmoid activation described in detail in the paper [25]. This implementation is based on
the approximation with equal subranges—the entire approximation range is divided into
several subranges of equal width. Then, in each subrange, the value of the original function
is replaced by the straight line defined by the Equation (3). The a and b values are chosen
to reduce the difference between the original and approximated functions in this subrange.
The piecewise linear approximation is a popular approach to implement complex functions
in hardware accelerators [25,35,36].

f (x) = ax + b (3)

where a and b are the multiplier and addend of the subrange in which the x is located.
Due to the shape of sigmoid activation (Figure 7), the approximation in the range

[−5, 5] with 10 subranges provides acceptable results [25,35]. The input values below −5
lead to zero output; the values above 5 result in one. Since all the subranges are calculated
independently of each other, they can be processed simultaneously by different processing
elements (Figure 8). Thus, each subrange is implemented in the form of a chain of PEs.
Each chain has the GAT element that passes the computed value if the input value lies
within the subrange of this chain. Otherwise, it outputs zero.

Figure 7. Sigmoid activation.

To ensure whether the input value belongs to a certain subrange, it is necessary to
compare this value with the reference value of the subrange, ignoring insignificant bits.
The insignificant bits are the least significant bits that cannot affect the subrange of the
signal. This can be achieved by applying a special mask to the input value. In this paper, it
is proposed to use a mask containing ones in insignificant bits and zeroes in the rest of the
bits. The application of this mask implies performing the bitwise OR operation on the mask
and the input signal. Since the proposed models work with 16-bit fixed-point numbers
with eight fractional bits, as well as approximation points are integer values (−5, −4, . . . 4,
5), the eight least significant bits (fractional part) of the mask are equal to one, the rest are
equal to zero. After applying this mask, the input value keeps its integer part unmodified,
and its fractional part is always “11111111”. Similarly, the subrange reference value is the
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result of masking any point of the subrange. Thus, the GAT elements compare the masked
input values with masked approximation points.

Figure 8. Sigmoid activation in the RCE.

Obviously, this approach can be applied to other functions as well. It is possible to
use any approximation step with a length equal to a power of two (2, 1, 1/2, 1/4, etc.) by
varying the applied mask. An approximation with any required number of subranges can
be accomplished by altering the number of the involved PE rows.

Nevertheless, as noted earlier, the exponential function is non-linear and fast-growing
(Figure 6). As a result, the piecewise linear approximation of this function with equal steps
introduces a significant error. One possible solution to this problem is an approximation
with a variable step. In this paper, an approximation of the exponential function in the range
[−2.5, 2.5] with 12 varying steps is proposed. The reasons for choosing such an interval will
be discussed in the next subsection. The lengths of these steps are distributed as follows:
from −2.5 to 1.5, the step is 0.5, and from 1.5 to 2.5, the step is 0.25. Both step lengths are a
power of two, so they can be implemented using the masking operation discussed above.
The corresponding approximation parameters are presented in Table 1. The evaluation of
the proposed approximation shows acceptable results: the average absolute error is 0.027,
the relative error is 1.9%, the maximum absolute error is 0.1, and the relative error is 5.8%.

The masks should be applied to the signal in a certain order: from the least restrictive
(for the smallest step size) to the most restrictive in ascending order. Among the mentioned
masks, the least restrictive is the mask for step 0.25, which has the value 0000 0000 0011
1111. The second mask corresponds to the step size 0.5, whose value is 0000 0000 0100 0000,
since the least significant bits are already set to one by the first mask. The resulting masked
values for the GAT elements are shown in Table 1.

The proposed approximation of the exponential function for the RCE is presented
in Figure 9. It utilizes 59 processing elements. The main idea is similar to the previously
discussed sigmoid activation, except that one additional mask is applied. All the approxi-
mation subranges are computed in parallel; however, at most, one GAT element is opened
for any input value. If all these gates are closed, the entire design outputs zero, meaning
that the input is below the chosen approximation range [−2.5, 2.5]. As will be shown in the
next subsection, the processing of input values greater than 2.5 is not required. Neverthe-
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less, it is possible to introduce it in a manner similar to the above sigmoid implementation,
where the input is constrained by a PE specifically configured for the MIN operation.

Table 1. The parameters of the exponential function approximation.

Step Range a b Masked Point

1 [−2.5, −2.0) 0.1015625 0.3359375 1111 1101 1111 1111
2 [−2.0, −1.5) 0.1796875 0.4921875 1111 1110 0111 1111
3 [−1.5, −1.0) 0.2890625 0.65625 1111 1110 1111 1111
4 [−1.0, −0.5) 0.4765625 0.84375 1111 1111 0111 1111
5 [−0.5, 0.0) 0.7890625 1 1111 1111 1111 1111
6 [0.0, 0.5) 1.296875 1 0000 0000 0111 1111
7 [0.5, 1.0) 2.1328125 0.58203125 0000 0000 1111 1111
8 [1.0, 1.5) 3.53125 −0.81640625 0000 0001 0111 1111
9 [1.5, 1.75) 5.09375 −3.16015625 0000 0001 1011 1111
10 [1.75, 2.0) 6.53125 −5.67578125 0000 0001 1111 1111
11 [2.0, 2.25) 8.390625 −9.39453125 0000 0010 0011 1111
12 [2.25, 2.5] 10.78125 −14.7734375 0000 0010 0111 1111

The values of the applied masks are underlined.

Figure 9. Implementation of the exponential function in the RCE.

4.4. Reduction of the Range Width of Input Values

As mentioned in the previous subsection, the proposed implementation of the SoftMax
activation supports inputs in the range from −2.5 to 2.5. This range was chosen for two
reasons—it is centered around zero, and its width is equal to five. According to Equation (3),
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the result of SoftMax activation is a ratio between the results of the exponential function.
The reduction of the input range leads to the exclusion of some values, introducing an error
in the results. To make this effect less considerable, the range should be wide enough to
exclude the least significant values only. Insofar as the result of SoftMax activation is proba-
bility distribution, the introduced error can be defined as the ratio between the exponential
function at the maximum point and the exponential function at the minimum point:

s = exp(xl)/ exp(xh) (4)

where xl and xr—the lowest and highest points of the chosen range, respectively.
In this paper, the error is assumed equal to 0.0075, so the difference between the

highest and the lowest possible inputs equals to:

xh − xl = −ln(0.0075) = 4.89 ≈ 5 (5)

To avoid the range of rapid growth of the exponential function, as well as processing
small numbers in the negative subrange, it is proposed to select the approximation range
endpoints equidistant from zero. Therefore, in this paper, the exponential function is
approximated in the range from −2.5 to 2.5.

Obviously, if some of the input values exceed the upper endpoint, omitting those
values will introduce a significant error to the result. As mentioned previously, a special
shift can be applied to all input values to address this issue (Equation (2)). The shift value
can be chosen as the difference between the upper endpoint of the approximation range
and the maximum input value:

c(x1, . . . xN) = xh − max(x1, . . . xN) = 2.5 − max(x1, . . . xN) (6)

After applying this shift, all the inputs will be limited to the upper endpoint of the
approximation range.

4.5. Division of Output Values

The last problem mentioned is the division of the exponential function results by
their total sum. As noted before, it can be accomplished using addition, subtraction, and
shift operations [29,33,34]. However, the division is not widely used in other algorithms.
Furthermore, even in the SoftMax algorithm, the division is performed at the end stage,
introducing the least impact on the overall performance. Since each processing element of
the RCE implements the whole set of operations, adding a new operation significantly influ-
ences the complexity of the entire RCE, even if this operation is rarely used. Consequently,
it is important to implement processing elements only in simple, reusable operations. As a
result, we suggest not supporting division in the RCE. This operation can be performed by
some external computing block. Thus, the output of the proposed RCE implementation is a
set of the exponential function results and their total sum.

It should be mentioned that in case of necessity, the division can be accomplished di-
rectly in the RCE. This can be achieved by approximating the hyperbolic function f(x) = 1/x
according to the example shown earlier or by introducing a bit shift operation in process-
ing elements. Obviously, these solutions significantly increase the number of required
processing elements or their complexity.

4.6. Complete Implementation

The complete implementation of the SoftMax activation in the RCE is presented in
Figure 10. It processes an input vector of three values. The bottom part of the proposed
design computes and applies a shift value to all the input signals to limit their range. The
middle part consists of three blocks, performing the same exponential function approxi-
mation discussed above. The top part accumulates the exponential function results and
computes the total sum. This implementation utilizes 215 processing elements, 177 of them
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for the exponential function units. Obviously, the proposed implementation can be easily
scaled for the required number of inputs.

Figure 10. SoftMax activation in the RCE.

5. Experimental Results and Discussion

The characteristics of the proposed SoftMax implementation were evaluated through
simulations on Field-Programmable Gate Arrays (FPGA). FPGAs are widely used in the
research and development of state-of-the-art computing systems, and numerous useful
software tools are available [6,7,23].

The models were implemented in the form of digital design modules using Ver-
ilog HDL and Quartus Prime 20.1.0 software. The modules operate on 16-bit fixed-
point numbers (8 fractional bits). All the simulations were performed on a Cyclone V
5CGXFC9E7F35C8 device with disabled Digital Signal Processing (DSP) blocks. To avoid
unintentional optimizations, the “synthesis keep” directive was applied.

We evaluated the resource utilization and performance of the proposed models. In
this paper, resource utilization refers to the number of FPGA logic elements (LEs) required
to implement the module. The Quartus software provides this value after a successful
compilation. The model performance was measured as the largest processing delay. To
evaluate this value, the Timing Analyzer tool (included in the Quartus software pack)
was used. This tool analyzes all available paths between the inputs and the outputs,
computes their signal propagation delay, and determines the longest one. Due to the
large number of interconnections between processing elements, Quartus treats them as
combinational loops. To tackle this problem, some unused connections were removed
during the timing simulation.

The simulation results are presented in Table 2. As can be seen, the proposed models
have high performance. The total processing delay of the SoftMax activation for three
inputs is 43 ns. Exponential blocks are processed in 14 ns. Since these blocks work in
parallel, their total delay is independent of the number of inputs. The processing delay
of the other stages (applying the shift and computing the sum) linearly depends on the
number of inputs.

At the same time, the models consume a large amount of FPGA resources. The en-
tire implementation of the SoftMax activation for three inputs utilizes about 55,000 LEs,
including 15,000 LEs per exponential block. An explanation of these results will be pro-
vided further.

The achieved results were compared with other implementations lacking the reconfig-
uration capability (Table 3).
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Table 2. Simulation results of the SoftMax activation with three inputs.

Property Value

Number of FPGA Logic Elements (LE) per exponential unit 15,069
Number of LEs for the entire implementation 54,718
Shift computing delay, ns 14.5
Shift applying delay, ns 3.5
Exponential block computing delay, ns 14
Outputs sum computing delay, ns 11
Total processing delay, ns 43

Table 3. Comparison of the obtained results with other studies.

Property RCE [29] [30] [33]

Total number of FPGA LEs 54,718 17,870 2229 646
Clock frequency, MHz 23.26 150 154 265
Throughput, Gbps 1.12 2.4 1.2 0.73

As is evident from Table 3, the proposed in this paper implementation provides
the comparable throughput (about 1.12 Gbps) despite the lower clock frequency (about
23.3 MHz). In other words, it processes the commensurate amount of input data per unit of
time, performing more calculations per clock cycle. However, the FPGA resource utilization
is noticeably high (about 55,000 LEs compared to 18,000 of the counterpart). Thus, the
proposed model consumes more space (in terms of a semiconductor area or the number of
transistors) but does not provide a significant increase in performance.

The results presented in Tables 2 and 3 can be explained by the following reasons:

• Specialized computing devices are capable of achieving the best results for specific
tasks due to particular optimization. Reconfigurable devices, by contrast, must sac-
rifice some properties to provide acceptable results for a wide variety of tasks. Our
implementation of a reconfigurable accelerator sacrifices resource utilization (number
of logic elements) to provide comparable performance.

• The proposed algorithms are spatially distributed. Different parts of the computing
structure calculate different branches or stages of these algorithms. Spatial distribution
leads to better performance (for some algorithms) at the expense of increased resource
consumption;

• To provide the reconfiguration ability, each processing element supports the entire set
of operations, although it performs only one of them at any given moment;

• The PEs must support simple reusable operations to be small and versatile. As a result,
algorithms need much more PEs;

• The presented results were obtained for FPGAs that already have their own internal
design. This design does not correspond to the proposed one. This incompatibility
results in a violation of some geometric properties of the RCE and extra consumption
of resources. We chose the FPGA to obtain the results that can be compared with other
studies. In real cases, the best option to accomplish such accelerators is ASIC.

Consequently, the high resource utilization mentioned before is the price to obtain
the desired reconfiguration capability. The listed analogs have a fixed implementation;
therefore, they are capable of solving only one particular problem. In contrast, the suggested
implementation works in a reconfigurable environment that can be customized to resolve
a wide variety of other tasks. The importance of the reconfiguration ability for hardware
accelerators is especially noticeable for hard-to-reach mobile and autonomous devices for
four reasons:

• Such systems may require several neural networks with different architectures and
activation functions. To implement them without the reconfiguration capability, it
is essential to either employ a single universal device or multiple specialized de-
vices (one per architecture) with activation computing units. Both approaches have
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disadvantages: the universal devices typically have lower performance; the set of spe-
cialized devices affects the weight, reliability, and power consumption of the system.
At the same time, reconfigurable accelerators are designed to support a wide variety
of architectures and activation functions.

• Changes in the environment of the device may require alterations to the implemented
algorithms. If the new algorithm relies on functions that are not introduced in the
specialized accelerator, this algorithm cannot be used in this device. In the case of
reconfigurable accelerators, the new functions can be built as a group of processing
elements if their operations allow it. Numerous complex functions can be implemented
by combining simple operations.

• An RCE-based accelerator only implements a particular algorithm when needed. The
rest of the time, the same processing elements can be employed to perform other tasks.
Such a reuse increases the efficiency of the reconfigurable devices.

• In the case of partial damage to the reconfigurable accelerator, there is a chance to
restore key functions by redistributing computations to an undamaged area of the RCE.
This requires a special control unit and an excessive number of processing elements.

In summary, the proposed implementation of the SoftMax activation, as well as the
entire paradigm of RCE-based accelerators, provides significant benefits for specific devices.

6. Future Work

As is evident from the simulation results, the presented solution has shown high
performance. At the same time, the proposed implementation requires many more FPGA
logic elements. This can be explained as the expected cost of the reconfiguration ability.
Nevertheless, it can cause problems in implementing complex neural networks. There are
several promising approaches to decrease the logic utilization, including reduction of the
bit depth of the processed signals, eliminating redundant operations from the processing
elements, and simplifying the approximation of the exponential function. Another direction
of further research is the implementation of the proposed models in an ASIC device. ASICs
enable more detailed implementation of the desired circuit design, while FPGAs have
limitations due to predefined structure.

7. Conclusions

Presently, machine-learning algorithms are becoming an important part of many
modern intelligent systems. However, the variety and computational complexity of these
algorithms is a challenge for low-power devices, such as smartphones, IoT sensors, satel-
lites, and many others. A possible solution to this problem is reconfigurable hardware
accelerators. Their key feature is the capability to support a wide variety of algorithms
and dynamically alter them by an external signal. This paper explores the reconfigurable
hardware accelerators based on reconfigurable computing environments. RCE is a class
of computing systems that consists of numerous similar processing elements connected
in a grid pattern. To use RCE efficiently, the required algorithms need to be adapted to its
particularities.

This paper discusses the implementation of the SoftMax activation in the RCE. The
implementation leverages several optimizations: using a piecewise linear approximation of
the exponential function, modifying input values to limit their range, spatial distribution,
and parallelization of computations. The proposed implementation of the piecewise linear
approximation with variable step in the RCE is of great importance. It is a generic approach
that can be easily reused to perform a wide variety of other functions in the RCE, greatly
expanding its capabilities. The spatial distribution and parallel computing ensures high
performance of the considered implementation of the SoftMax function.

The characteristics of the proposed model were evaluated by simulations on FPGA.
The simulation results were compared to other implementations, lacking the reconfiguration
capability. The proposed implementation of the SoftMax demonstrates high performance
(about 43 ns for three inputs or 1.12 Gbps throughput) and high accuracy (the maximum
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and average absolute errors are 0.002 and 0.00078, respectively). Only one of the three
counterparts presented has a throughput of 2.4 Gbps, which noticeably outperforms the
proposed implementation. The resource usage is also high—the model utilizes 54,718 FPGA
logic elements, compared to 17,870 logic elements in the previously mentioned research.

The high performance of the developed models proves the efficiency of using the
RCE-based accelerators as a replacement for rigid ones in tasks that require variability and
high flexibility of the implemented algorithms. The noticeably high resource consumption
of the proposed model is the cost of its spatial distribution and the flexibility of the RCE.
This is the price for all the previously mentioned benefits of the reconfiguration ability. The
proposed implementation of the SoftMax function allows RCE-based accelerators to tackle
a wide variety of classification tasks. The RCE-based reconfigurable accelerators seem to be
a promising direction for the development of AI hardware.
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