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Abstract: In next-generation mobile communication scenarios, more and more user terminals (UEs)
and edge computing servers (ECSs) are connected to the network. To ensure the experience of
edge computing services, we designed an unmanned aerial vehicle (UAV)-assisted edge computing
network application scenario. In the considered scenario, the UAV acts as a relay node to forward
edge computing tasks when the performance of the wireless channel between UEs and ECSs degrades.
In order to minimize the average delay of edge computing tasks, we design the optimization problem
of joint UE–ECS matching and UAV three-dimensional hovering position deployment. Further, we
transform this mixed integer nonlinear programming into a continuous-variable decision process and
design the corresponding Proximal Policy Optimization (PPO)-based joint optimization algorithm.
Sufficient data pertaining to latency demonstrate that the suggested algorithm can obtain a seamless
reward value when the number of training steps hits three million. This verifies the algorithm’s
desirable convergence property. Furthermore, the algorithm’s efficacy has been confirmed through
simulation in various environments. The experimental findings ascertain that the PPO-based co-
optimization algorithm consistently attains a lower average latency rate and a minimum of 8%
reduction in comparison to the baseline scenarios.

Keywords: edge computing; unmanned aerial vehicle; proximal policy optimization; joint optimization

1. Introduction

With the rapid development of mobile communication, the number of devices and
the amount of application data at the network edge have significantly increased [1–3].
However, traditional cloud computing architectures require centralized processing of all
data, which cannot meet the requirements of low latency, high traffic volume, and high
reliability in current wireless communications. To overcome these issues, edge computing
has been proposed as one of the key technologies in 5G application scenarios. Unlike
centralized processing, edge computing enables user devices to offload computation tasks
directly to edge computing servers (ECSs), reducing the data traffic on the network band-
width and improving system responsiveness, thus better meeting the low-latency and
high-reliability service requirements of 5G data networks [4–7]. By deploying ECSs, which
act as micro-clouds, in ground infrastructure, edge computing brings computing resources
closer to service users, reducing latency and energy consumption in long-distance data
transmission processes. User devices offload computation-intensive and latency-sensitive
tasks generated by local applications to ECSs that are closer in proximity, thereby improv-
ing computational efficiency and ensuring a better user service experience. It is crucial
to acknowledge that dependable and unwavering edge computing services necessitate
exceedingly strict demands on the offloading scheme of computing tasks. Inappropriate
pairing of users with edge computing servers will result in elevated energy consumption
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and prolonged waiting latency, consequently reducing edge computing network through-
put. Within the confines of limited edge servers and deployment locations, enhancing the
flexibility of the edge computing network while effectively offloading computing tasks
poses a significant challenge for the current state of edge computing.

It should be noted that, in edge computing, deployable ECSs play a crucial role.
However, due to the high cost of hardware, it can be challenging to meet the business
experience needs of all users with a limited number of ECSs deployed in fixed locations.
This is especially true when wireless links are obstructed by buildings, mountains, and
other obstacles, severely affecting the wireless link between user terminals (UEs) and
ECSs. In recent years, unmanned aerial vehicles (UAVs) have been deployed in wireless
communication networks due to their advantages in mobility and cost. UAVs can be used
as mobile relay nodes to facilitate information exchange between distant users and as
mobile base stations to enhance the coverage range of wireless networks. By leveraging
the wide coverage, low cost, and flexibility of UAVs, they can be used as relay nodes
in edge computing applications to effectively address the issue of degraded link quality,
thereby ensuring a satisfactory user experience at the UE. However, the performance of
UAV-assisted edge computing is directly related to the deployment location. To ensure
a good user experience in edge computing, the deployment location of UAVs needs to
be precisely designed. Furthermore, the incorporation of UAVs will impact the selection
of deployment tactics, which is a convoluted process. As opposed to conventional ter-
restrial mobile edge computing networks, the integration of unmanned aerial vehicles
enhances network flexibility, yet simultaneously introduces fresh obstacles to network
deployment and decision-making. Joint optimization of computation offloading and drone
deployment in drone-assisted edge computing networks, considering heterogeneous user
demands and resource constraints, will be critical for enhancing the performance of edge
computing networks.

Currently, many resource allocation problems in mobile communication networks are
primarily solved using convex optimization, game theory, and other methods. Typically, these
methods require the objective function or problem model to conform to specific forms. More-
over, the spatial scale of traditional solution methods exponentially increases with the vari-
ables of the problem, requiring more time to converge or even making the solution infeasible.
Recently, reinforcement learning methods based on Markov decision processes have been
proposed to solve dynamic decision problems under unknown models. In the absence of
statistical information about the environment, an agent can learn effective strategies by con-
tinuously interacting with the environment, exhibiting a certain level of decision-making
ability. Furthermore, deep learning neural networks possess perception capabilities, meaning
they can effectively approximate functions. By combining the decision-making ability of rein-
forcement learning with the perception capabilities of neural networks in deep learning, i.e.,
deep reinforcement learning (DRL), an agent can make decisions based on local observations
without prior information, interact with the environment, and adjust its strategy based on
environmental feedback. Through long-term dynamic exploration and training, the agent can
effectively learn a strategy to achieve the best long-term goal. DRL combines the perception
capabilities of deep learning with the decision-making ability of reinforcement learning, en-
abling the resolution of complex high-dimensional state space decision problems. Therefore,
deep reinforcement learning holds promise for addressing complex decision-making problems
in UAV-assisted edge computing applications.

2. Related Work
2.1. State of Art

Edge Computing: Currently, research into the application of mobile edge computing
has received significant attention [8–11]. The work in [9] investigates computation offload-
ing and resource allocation issues in single ECS scenarios. The work in [12] proposes
an online joint radio and computation resource management algorithm for the scenario
of multiple mobile devices and a single ECS. By optimizing power and bandwidth al-
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location, it minimizes the long-term average weighted sum of mobile device and ECS
power consumption. The work in [8] studies distributed computation offloading in a
wireless-powered, multi-user, single-edge computing system. A game-theoretic computa-
tion offloading scheme is constructed to optimize the weighted sum of energy harvesting
and offloading delay. Moreover, a two-stage joint optimization scheme was proposed for
mobile edge computing using federated learning in [13]. Similar to federated learning,
the work in [14] presents an edge computing collaboration and offloading optimization
problem for underwater sensor networks. The study designed an artificial neural network
model to solve this issue. When exploring the use of mobile edge computing in vehicular
networking, several sources have investigated the associated challenges. For example, the
work in [15,16] has focused on mobility issues specifically related to vehicular networking
edge computing, proposing solutions aimed at addressing the demands of latency-sensitive
and computation-intensive in-vehicle applications. Additionally, the work in [11,17–20]
examines concerns surrounding load computation and resource allocation in multi-ECS
scenarios. However, it is important to note that geographical limitations may impede the
establishment of wireless connections between UEs and ECSs. The aforementioned works
offer a comprehensive exploration of conventional terrestrial edge computing networks.
Further research on mobile edge computing networks is required, with a primary focus on
the wireless channel quality and various practical constraints.

UAV-Assisted Edge Computing: To address the issue of wireless connectivity arising
from fixed deployment setups, UAVs have been incorporated into mobile edge computing
due to their adaptable deployment attributes. There have been studies conducted on the
viability of this approach. In the research into ECSs with UAV-assisted offloading for
ground networks, the existing works primarily focus on addressing the energy consump-
tion issues of UAVs. Seongah et al. [21] propose an ECS model based on UAVs, where a
computing-capable UAV provides computation offloading services to ground systems with
limited local data processing capabilities. They employ a successive convex approximation
approach to minimize the energy consumption of ground applications. Zhou et al. [22]
develop an edge computing system that enables wireless power transfer to UAVs and
address the causality between computing and energy transfer under power minimiza-
tion constraints. Hu et al. [23] utilize UAVs as computing servers to provide services to
ground terminal devices and act as relays to offload tasks from terminal devices to access
node computing. By employing an alternating optimization algorithm, they achieve the
minimization of the total energy consumption of devices and UAVs. Zhang et al. [24]
consider a three-tiered architecture for a UAV-assisted offloading edge computing system
and obtain the optimal solution for the optimization objective using Lagrange duality. In
addition, Refs. [25–27] investigate the deployment of UAVs while keeping in mind the
energy consumption of edge computing networks. The current research places greater
emphasis on the energy consumption of the network, whereas the investigation into latency,
a crucial factor for meeting user requirements, requires further development. Furthermore,
the integration of drones creates a connection between the offloading decision-making
process of mobile edge computing and the drone deployment problem, which is frequently
disregarded. The optimization of drone-assisted edge computing networks is vital for
network performance and necessitates thorough research.

DRL in Edge Computing: Currently, the research into applying deep reinforcement
learning to address the computation offloading and resource allocation issues in edge
computing systems primarily focuses on the decision-making of computation offload-
ing [27]. Ref. [28] proposes a deep Q-learning-based offloading scheme for IoT devices
with energy harvesting to optimize the server selection and discrete action of the offloading
rate. Ref. [29] introduces a method based on Deep Q Network (DQN) to estimate the
number of tasks processed locally, at ECSs, and at cloud servers. This method improves the
privacy level of user devices while reducing offloading costs such as latency and energy
consumption. A solution based on the deep deterministic policy gradient is proposed
to optimize the power allocation for continuous local execution and offloading. Ref. [30]
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considers multiple users in edge computing systems, where multiple user devices can
offload computations to ECSs through wireless channels. By discretizing the continuous
offloading decision and allocating computing resources, this method minimizes the total de-
lay cost and energy consumption of all terminals in the edge computing system. Note that
existing work typically considers discrete variable planning or integer planning for edge
computing optimization models. However, this differs significantly from the challenges
presented in UAV-assisted edge computing networks, where the problem includes both
discrete and integer variables. Unfortunately, current deep reinforcement learning methods
are inadequate for scenarios where these variables intersect. Therefore, the design of a
novel optimization framework that can cope with UAV-assisted edge computing networks
necessitates in-depth discussion.

2.2. Motivation and Contribution

In the context of next-generation mobile communication scenarios, an increasing num-
ber of UEs and ECSs are being connected to the network. At the same time, users have
higher demands for their service experience. However, current research on edge computing
lacks consideration of the decision-making of multiple UEs and ECSs that cannot meet
the increasing demands of wireless network traffic. Additionally, existing works on UAVs
in edge computing lack comprehensiveness, and further research is needed on the joint
deployment of UAVs and edge computing decision-making. Furthermore, the emergence
of deep reinforcement learning provides a new research direction for UAV-assisted edge
computing. Motivated by the above observations, to improve the flexibility and timeliness
of UAV-aided edge computing, this work designs a UAV-assisted edge computing network
and further proposes an optimization problem for joint UAV deployment and edge com-
puting decision-making. Additionally, in order to address the mixed variable optimization
that exists in current UAV-assisted mobile edge computing networks, a deep reinforcement
learning algorithm based on Proximal Policy Optimization (PPO) is proposed to solve the
optimization problem. Specifically, our contributions are as follows:

• This work designs a UAV-assisted edge computing network in which UAVs act as
relay nodes to forward edge computing tasks when the wireless channel between
UEs and ECSs is degraded. The devised network can proficiently tackle the issues
of restricted wireless links and poor flexibility present in stationary ECS deployment
settings, consequently encouraging the employment and evolution of mobile edge
computing via UAVs.

• To meet the requirements of service experience, this work aims to minimize the
average delay and designs an optimization problem for joint three-dimensional UAV
deployment and scheduling decision-making of UEs and ECSs in edge computing.
The model addresses the connection between decisions regarding the deployment
and unloading of UAVs, effectively mitigating potential network performance issues
arising from the interaction of multiple variables.

• This work proposes a joint optimization algorithm based on PPO within the framework
of Deep Reinforcement Learning (DRL) to solve the complex optimization problem in
the UAV-assisted edge computing network. The method proposed has the ability to
handle situations in which discrete and continuous variables are present and is in line
with UAV-aided edge computing networks. This is unlike traditional algorithms or
existing DRL algorithms.

• Experimental results validate the effectiveness of the proposed PPO-based joint opti-
mization algorithm. Compared to baseline algorithms, the PPO-based joint optimiza-
tion algorithm achieves a lower average delay and better meets the requirements of
user service experience.

The rest of the paper is organized as follows. In Section 3, the considered system
model and joint optimization problem are established. In Sections 4 and 5, the PPO-based
joint optimization algorithm is designed, and the performance is verified by numerical
results, respectively. Finally, Section 6 concludes the paper.
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3. System Model and Problem Formulation

In this section, we design a UAV-assisted multi-node edge computing network as
shown in Figure 1. The considered system has K UEs, M ECSs, and a UAV, where each
UE has a certain computational demand, each ECS has a certain processing capability, and
the UAV has only a communication function without computational capability. In this
network, the UE cannot establish a good direct wireless link with the edge calculator due
to the obstruction of terrain and buildings. In order to satisfy the computational needs of
the UE, a UAV is deployed as a relay node in the network. The computation task of the
UE is first sent to the UAV and, after a reasonable selection, is forwarded to one of the
ECSs. In particular, the matching of UEs and ECSs is crucial for the service experience
of UEs. Through reasonable design, the transmission delay and waiting delay of the
computation tasks can be ensured in an acceptable range. At the same time, UAVs are
highly maneuverable, and by adjusting the hovering position of UAVs, the latency of the
computation task can also be effectively reduced. Compared to the existing work [13–15],
this scenario focuses on possible problems with the wireless link and compensates for
the degradation of the channel quality by means of UAVs. The proposed scheme can be
adapted to application scenarios such as large cities with heavy building occlusion and
mountains with geographic occlusion.

Figure 1. System model.

In this work, we adopt the probabilistic line-of-sight channel model. The wireless
transmission channel between the UE and the UAV can be categorized by line-of-sight (LoS)
and non-line-of-sight (NLoS). The probability of having a LoS wireless channel between
UE and UAV is

PLos
k =

1

1 + a exp
(
−b
(

180
π tan−1

(
z
dk

)
− a
)) , (1)

where a and b are constants determined by the environment, and z is the hovering height
of the UAV. Denote the horizontal coordinates of the UAV by (xu, yu), and that of UE k by
(xk, yk). The distance from UE k to the UAV in the horizontal plane is expressed as

dk =

√
(xu − xk)

2 + (yu − yk)
2. (2)

Then, the probability of having an NLoS wireless channel between the UE and the
UAV is PNLos

k = 1− PLos
k .

Let fc denote the carrier frequency, and use c to denote the electromagnetic velocity
in free space. Let ρLos and ρNLos denote the average additional path loss for LoS and
NLoS channels, respectively. Then, the path loss of LoS channel and NLoS channel can be
expressed respectively as
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ζLos = 20 log

4π fc

√
z2 + d2

k

c

+ ρLos, (3)

ζNLos = 20 log

4π fc

√
z2 + d2

k

c

+ ρNLos. (4)

Then, the probabilistic average path loss from UE k to UAV is

ζ(k) = ζLos × PLos + ζNLos × PNLos (5)

=
A

1 + a exp
(
−b
(

180
π tan−1

(
z
dk

)
− a
)) + 20 log

(√
z2 + d2

k

)
+ Ã, (6)

where A = ρLos − ρNLos, Ã = 20 log
(

4π fc
c

)
+ ρLos. Define the transmit power as p, the

bandwidth as B, and the variance of add white Gaussian noise (AWGN) as σ2; then, the
maximum transmit rate at UE k can be expressed as

Rk = B log

 p× 10−
ζ(k)
10

σ2

. (7)

From Figure 1, it can be seen that the computational task from generation to completion
contains a total of sending delay, propagation delay, waiting delay, and processing delay,
which can be expressed by the following equation:

Delaytotal = Delaytran + Delayporp + Delaywait + Delaycomp. (8)

Considering that the range of this edge computing network is usually small and
the signal propagation speed is fast, the propagation delay Delayporp in it is negligible.
The sending delay, on the other hand, is determined by the size of the computing task and
the sending rate. Suppose that end user k generates a computation task with task size Lk.
In the case that the sending rate of the UE k is RUE

k , and the sending rate is RUAV
k when the

UAV relays, the sending delay of this computational task can be expressed as

Delayk
tran =

Lk

RUE
k

+
Lk

RUAV
k

, (9)

where the sending delay in the link from the ECS to the UE is ignored, considering that
the computation results returned from the ECS are usually small. Define the ECS matched
by UE k as m, and define its corresponding computing power as Cm; then, the processing
delay of the computing task of UE k can be obtained as

Delayk
comp =

Lk
Cm

. (10)

The waiting delay indicates the time that this computation task waits in the ECS to be
processed. Consider a business cycle in which all UEs simultaneously send computation
tasks to the UAV. The UAV is equipped with multiple antennas to forward all the computa-
tion tasks simultaneously. In the considered system, the first computational task to arrive
at the ECS is the one with the smallest task size among the computational tasks matched by
the ECS, and its waiting delay is 0. Subsequent computational tasks arriving at the ECS are
categorized into two scenarios based on whether the previous computational task has been
processed or not. When the previous task has been processed, the waiting delay of the task
is also 0. Otherwise, the waiting delay of the task is accumulated from the time it arrives
at the ECS until the previous task has been processed. Based on the above derivation, the
waiting delay of a computation task of UE k at ECS m can be expressed as

Delayk
wait =

{
0, Lk = minLm or T j

done ≤ Tk
arri

T j
done − Tk

arri, T j
done > Tk

arri

, (11)
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where Lm represents the set of computational tasks at ECS m, j represents the computational
task that is second only to k in terms of task volume, and if j does not exist, then T j

done ≤ Tk
arri

holds forever. T j
done and Tk

arri denote the moment when the processing of computational
task j is completed and the arrival moment of computational task k, respectively.

Based on the above derivation, we can obtain the total delay of the computation task
for user k as

Delayk
total =

Lk

RUE
k

+
Lk

RUAV
k

+ Delayk
comp + Delayk

wait. (12)

Considering the entire edge computing network, we use the average delay of the
network as a criterion for evaluating the experience of edge computing services, which can
be expressed as

Delaysum
total =

1
K

K

∑
k=1

Delayk
total . (13)

Our goal is to minimize the average delay of edge computing networks. In the
considered UAV-assisted edge computing network, the matching of UEs and ECSs has a
crucial impact on the waiting delay and processing delay. Also, the choice of UAV hovering
position determines the maximum sending rate and affects the sending delay. Therefore, we
consider establishing the optimization problem for joint UE–ECS matching and deployment
of three hovering positions of UAVs. Specifically, the problem is modeled as follows:

P1 : min
q,u

1
K

K

∑
k=1

Delayk
total (14a)

s.t. q ∈ qc, (14b)

uk ∈ {1, 2, · · · , M}, k = 1, 2, · · · , K (14c)

|uk| = 1, k = 1, 2, · · · , K (14d)

where the optimization variables are the three UAV deployment locations, q, and the
matching of the UEs, u. The first constraint is that the UAV needs to hover within a
reasonable range, qc; the second constraint is that the user needs to select the ECSs present
in the network for matching, in which uk represents the matching of the UEs, k; and the last
constraint is that each edge user can select only one ECS for matching.

4. PPO-Based Joint Optimization Algorithm

We provided the optimization problem for joint UE–ECS matching and deployment of
UAVs with three hovering positions in the previous section. However, it can be observed
by looking at the problem model that the problem is a complex mixed integer nonlinear
programming problem, which is usually difficult to solve by traditional optimization
methods. Fortunately, the advancement of artificial intelligence has introduced novel
research techniques for mobile edge computing. PPO has gained widespread acceptance
as a reinforcement learning algorithm due to its stability and reliability. In contrast to
traditional policy gradient algorithms and other RL algorithms based on the actor-critic
framework, PPO incorporates an older actor network to constrain the variance of the new
policy. This approach effectively mitigates instability issues that could potentially arise in
other algorithms. Secondly, the PPO algorithm can consistently perform well in various
environments and can effectively suit the UAV-assisted edge computing environment that
is being studied. Hence, in this work, we consider designing solution algorithms for joint
optimization based on the PPO framework. Specific algorithmic details are given next.

Note that deep reinforcement learning frameworks, including PPO, can usually only
handle discrete or continuous decision problems. However, the joint optimization problem
in this work is mixed integer programming with both discrete and continuous variables,
which is difficult to handle for PPO. Therefore, we first introduce matching factors to
convert the original mixed integer programming into a continuous variable problem.
We design M matching factors for each UE, which represent the matching priority of each
of the M ECSs at that UE. The value range of the matching factors is [0, 1]. Following this
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design principle, the matching factors of UE k are ok
1, ok

2, · · · , ok
M; then, the ECS matched by

UE k is the one with the largest matching factor, denoted by

arg max
(

ok
1, ok

2, · · · , ok
M

)
. (15)

So far, the original integer variable u is transformed into a continuous variable, i.e.,
the matching factor, and the original problem is transformed into a continuous-variable
decision process that can be solved by the PPO implementation. We first model the problem
as a Markov decision process, where the state space, action space, state transfer function,
and reward function are described as follows.

• State space: the environment is described to the agent body by the state space, which
needs to provide enough information to make the agent body take appropriate actions.
For the considered UAV-assisted edge computing network, the hovering position of
the UAV determines the sending delay, while the matching of the UE and the ECS
determines the processing delay and the waiting delay. Therefore, the state space
designed in this work contains the following points: the three-dimensional hovering
position of the UAV and the matching factor at all UEs. The state space is defined as
S , and the state at time step t is defined as st.

• Action space: based on the decision variables and state space in the problem model,
we design the action space for the problem. The action space also contains two parts:
one is the displacement of the UAV in three-dimensional space, and the other is the
amount of change of the matching factor. The action space is defined as A, and the
state at time step t is defined as at.

• State transfer probability function: according to the state and action of the agent body
designed above, the next state of the agent body can be obtained from its current state
plus the action, i.e., the current three-dimensional position of the UAV base station
plus the displacement to the next three-dimensional position. Therefore, the state
transfer probability function is defined as

P(st+1|st, at) =

{
1, st+1 = st + at, st ∈ S , at ∈ A

0, others
. (16)

• Reward function: the designed PPO-based joint optimization algorithm aims to mini-
mize the average delay of the UAV-assisted edge computing network. Therefore, the
average delay is designed as the body of the reward function. Meanwhile, in order to
make the agent body transfer minimize the average delay, the average delay exists
in the form of the opposite number in the reward function. Specifically, the reward
function is expressed as

rt = p

(
q−

(
1
K

K

∑
k=1

Delayk
total |t

))
, (17)

where p and q are constant terms to adjust the reward value to within a suitable range.

Based on the modeling of the Markov decision process, the agent body can perform
actions to obtain the reward value and complete the state transfer. The agent body in the
PPO algorithm collects the state transfer trajectories for every T time steps, then performs
a round of updating. Each round of updating uses the group of trajectory data to update
D times, and the object of the updating is the parameter θ of the Actor network and the
parameter φ of the Critic network.

The role of the Actor network is to fit the agent’s policy πθ(a|s ), representing the
policy in the form of a Gaussian distribution, which can be fully described by its mean µ
and standard deviation σ. Then, the Actor network completes the state to (µ, σ) mapping.
When the intelligence needs to take an action, it first recovers that Gaussian distribution
through (µ, σ) and then randomly samples to pick an action. The PPO, in order to keep the
old policy unchanged in each round of update, initializes a network with the same structure
and parameters as the Actor network, called Actor-old. The Actor-old network does not
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participate in training and only copies parameters from the Actor network before each
round of updates to keep the old strategy πθk for the current round; then, the Actor network
can continue searching for the new strategy πθk+1

. The Actor network is trained to maximize
the agent objective function, whose parameters are given by the following equation update

θk+1 = arg max
θ

1
T

T

∑
t=0

min
(

πθ(at|st )

πθk (at|st )
A

πθk
t , clip

(
πθ(at|st )

πθk (at|st )
, 1− ε, 1 + ε

)
A

πθk
t

)
, (18)

where k denotes the first round of update and A
πθk
t is the dominance function calculated based

on the state value estimated by the Critic network and the temporal difference method, where
Rt and V(st) are the reward value of the time step and the state value of st, respectively.

The Critic network completes the estimation of the state value V(s), and its training
objective is to minimize the loss function based on the mean square error. Then, its
parameter φ is updated by the following equation:

φk+1 = arg min
φ

1
T

T

∑
t=0

(
Vφ(st)− R̂t

)2
, (19)

where R̂t is the accumulated reward computed from the state transfer trajectory data.
Based on the above neural network design, the basic framework of PPO is built.

According to the above description, both the main framework and Markov decision
process of the PPO algorithm have been designed. Next, we reduce the average delay of
the network by jointly optimizing the UE–ECS matching and the UAV three-dimensional
hovering position. The designed optimization algorithm is called the PPO-based joint
optimization algorithm, and the detailed algorithm flow is shown in Algorithm 1.

Algorithm 1 PPO-based joint optimization algorithm

1: Initialize the parameters θ and φ of the Actor network and Critic estimation network;
initialize the Actor-old network.

2: for each training round do
3: Initialize the three-dimensional position of the UAV and the matching factor.
4: for each time step t do
5: UAV base station observes its own three-dimensional position and reads matching

factor as state st.
6: Actor inputs st and outputs a Gaussian distribution for the strategy; the agent

body recovers the strategy and randomly selects an action at.
7: Calculate the average delay of the system and obtain the reward value.
8: Agent body implements action at and updates to the next state st+1.
9: Collect the state transfer trajectory (st, at, rt) into the cache.

10: Based on the output of the Critic network and the reward value of each time step
in the cache, backtrack to calculate the state value of the corresponding time step.

11: Copy the parameters of the Actor network to the Actor-old network to maintain
the old policy.

12: for 1 : D do
13: Update the parameters of Actor network and Critic network.
14: end for
15: end for
16: end for
17: Return: UAV hover position, match factor, and average delay.

5. Simulation Results

In this work, we simulate and validate the designed UAV-assisted edge computing
network. We consider the presence of K = 9 UEs and M = 3 ECSs in a square cell of
length 400 m. The UAV hovers over the cell and is at an altitude between 40 m and 200 m.
The carrier frequency is set to fc = 1000 MHz, the bandwidth is 1 MHz, and the noise
power spectral density is −174 dBm/Hz. The air-to-ground channel is set with reference to
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the commonly used environment, i.e., a = 9.61, b = 0.16, ρLos = 1, and ρNLos = 2. The UEs
and ECSs are generated using a hybrid process of uniform randomization plus Gaussian
randomization. This is because, if the users were completely uniformly distributed in the
region, it would make the planar location deployment of the UAVs not optimized. The
PPO-related parameter settings are shown in Table 1.

Table 1. Parameter settings.

Simulation Parameter Value

Steps per epoch 200
Gamma 0.99

Batch size 64
Clip range 0.2

Learning rate 0.0003
Number of environments 8

Steps per update 2048

We plot the change in reward values during training of the PPO-based joint optimiza-
tion algorithm in Figure 2. The vertical coordinate is the cumulative reward value per
200 time steps, and the horizontal coordinate is the time step. It can be seen that all three
curves increase gradually with the increase in time steps and stabilize at three million
time steps. The above changes can effectively illustrate that the proposed PPO-based joint
optimization algorithm has good convergence properties. Meanwhile, the trend of the re-
ward increasing with time steps also verifies the effectiveness of the proposed algorithm in
UAV-assisted edge computing networks. The 3 curves in the figure correspond to varying
transmission power levels, where training processes 1, 2, and 3 correspond to transmit
power levels of 1.5 W, 1 W, and 0.5 W. As the figure illustrates, the reward value initially
increases with the increase in power, implying that increasing power can achieve better
system performance to some extent.

Figure 2. Training curve.

Figure 3 plots the average delay versus transmit power for the UAV-assisted edge
computing network, where PBJO stands for the proposed PPO-based joint optimization
algorithm. Baseline 1 is the greedy scheme, in which the UEs always choose the ECS closest
to the UAV, and the UAV hovers in the center of the cell. Baseline 2 is the stochastic scheme,
in which the UEs are randomly matched with the ECSs, and the UAV randomly chooses
the hovering location. The figure shows that, as transmit power increases, the average
delay typically decreases. This is because higher transmit power facilitates increased
communication rates, which ultimately reduces transmission delays. Notably, the effect
of transmit power on the average delay in Baseline 1 is minimal. In this scheme, all UEs
select the ECS closest to the UAV for matching. This results in an average delay that is
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dominated by waiting time. However, it has been observed that the proposed scheme
consistently achieves a lower average delay, which implies a superior edge computing
service experience. For instance, at a transmission power of 1 Watt, the PBJO scheme
achieves an average delay of approximately 0.88 s, which is 0.12 and 0.3 s lower than
Baseline 1 and Baseline 2, respectively. Although the waiting delay in Baseline 1 is on the
high side, its average delay is still lower than that of Baseline 2, which shows the necessity
of optimizing the three hovering positions of the UAV.
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Figure 3. Average delay vs. transmit power.

Figure 4 plots the variation in the average delay of the UAV-assisted edge computing
network versus the computational ability of the ECS. The average latency consistently
decreases with increased computational power, aligning with our expectations. This is due
to the ECS’s ability to process tasks more quickly with greater computational power, effec-
tively reducing the waiting latency of the edge computing network. Similarly, the proposed
PPO-based joint optimization algorithm achieves a lower average delay compared to Base-
line 1 and Baseline 2, which verifies the superiority of the proposed algorithm. At 1 Mbps,
PBJO decreases latency by 0.3 s compared to the baseline scenarios, and the performance
gap widens with increasing computing power. In addition, as the computational ability
increases, we can observe that the trend of the average delay gradually flattens out. This is
because the computational ability affects the waiting delay. Therefore, the significance of
the delay change due to increasing computing ability gradually decreases relative to the
total delay.
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Figure 4. Average delay vs. computing ability.

To further examine how deployment of ECSs affects the UAV-aided edge computing
network under consideration, we plotted the changes in the average latency in Figure 5
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with the number of ECSs. As anticipated, the average latency consistently decreases with
an increase in the number of ECSs. An increase in ECSs will significantly enhance network
computation, resulting in a reduction in the average latency. However, it is worth noting
that there is a limit to the benefits of increasing ECSs. Specifically, deploying 6 ECSs only
results in a reduction of around 0.2 s. When there are five or more ECSs, increasing the
number of ECSs does not significantly reduce the average latency. This is because queuing
is eliminated in the network when there are sufficient ECSs, and the latency of the network
is mainly determined by the sending latency. The above event highlights the significance
of logically strategizing the number of ECSs deployed, which is also a notable aspect of
edge computing research. Furthermore, it is observed that the PBJO algorithm achieves a
lower average delay than the two extreme algorithms, reaffirming its superiority. We have
observed a fascinating phenomenon in which the disparity between PBJO and the other
baseline algorithms initially rises and then falls in correlation with the number of ECSs.
Specifically, with only one ECS, PBJO lags behind the other algorithms by a mere 0.1 s.
However, PBJO boasts the most significant improvement when the number of ECSs is 2,
achieving a decrease of 0.5 s. As the number of ECSs hits 6, the gap between the algorithms
goes back to 0.1 s. When there are only a few ECSs, matching UEs and ECSs has minimal
impact on system performance, and joint optimization brings only marginal improvement.
However, as the number of ECSs increases, the computational offloading strategy plays a
bigger role, and the benefits of employing PBJO become fully apparent. Further, when a
large number of ECSs are present, the effect of computation offloading becomes minimal,
and the gap between algorithms decreases accordingly.
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Figure 5. Average delay vs. number of ECSs.

Additionally, we plotted the trend of average delay based on the number of UEs
in Figure 6. Clearly, the average delay constantly rises with an increase in UEs. It is
undeniable that a greater quantity of UEs equals a heavier load on the network, causing
a higher average delay. Furthermore, we observe an interesting phenomenon where the
average delay produced by the PBJO algorithm experiences a significant increase whenever
the number of UEs surpasses a multiple of three. For instance, the average delay increases
from 1.15 s to 1.55 s when the number of UEs rises from 9 to 10, which is 5 times greater
than when the number of UEs increases from 10 to 11. This is because there are three ECSs
in the simulation environment. As a result, an additional UE means that one ECS will have
to manage four UEs, thus leading to a rise in the average network delay. Furthermore,
the figure illustrates that PBJO exhibits a decrease of at least 0.15 s in comparison to the
two baseline algorithms, thereby confirming the algorithm’s efficacy.
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Figure 6. Average delay vs. number of UEs.

6. Conclusions

In this work, we designed a UAV-assisted edge computing network application sce-
nario for minimizing the average delay. By analyzing this scenario, we established the
optimization problem for joint UE–ECS matching and deployment of three UAV hovering
positions. However, the joint optimization problem involves mixed integer nonlinear pro-
gramming, which poses a great challenge to the solution. To address the joint optimization,
we established a PPO-based joint optimization algorithm based on the PPO framework and
implemented it for problem solving. Simulation analysis verified the convergence and out-
standing performance of the proposed scheme. This study concentrated on edge computing
networks deployed by a single UAV. Expanded deployment of multiple UAVs will enhance
network flexibility, making it a valuable research element. Furthermore, future research
will investigate UAV-assisted edge computing networks that consider multidimensional
characteristics, such as energy consumption and delay, in a comprehensive manner.
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Communications. IEEE Commun. Surv. Tutor. 2021, 23, 1972–2026. [CrossRef]

6. Fu, S.; Feng, X.; Sultana, A.; Zhao, L. Joint Power Allocation and 3D Deployment for UAV-BSs: A Game Theory Based Deep
Reinforcement Learning Approach. IEEE Trans. Wirel. Commun. 2023, 1. [CrossRef]

7. Fu, S.; Guo, X.; Fang, F.; Ding, Z.; Zhang, N.; Wang, N. Towards Energy-Efficient Data Collection by Unmanned Aerial Vehicle
Base Station With NOMA for Emergency Communications in IoT. IEEE Trans. Veh. Technol. 2023, 72, 1211–1223. [CrossRef]

8. Zhang, Y.; Dong, X.; Zhao, Y. Decentralized Computation Offloading over Wireless-Powered Mobile-Edge Computing Net-
works. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Information Systems (ICAIIS),
Dalian, China, 20–22 March 2020; pp. 137–140. [CrossRef]

9. Zhu, M.; Hou, Y.; Tao, X.; Sui, T.; Gao, L. Joint Optimal Allocation of Wireless Resource and MEC Computation Capability
in Vehicular Network. In Proceedings of the 2020 IEEE Wireless Communications and Networking Conference Workshops
(WCNCW), Seoul, Republic of Korea, 6–9 April 2020; pp. 1–6. [CrossRef]

10. Zhou, P.; Yang, B.; Chen, C. Joint Computation Offloading and Resource Allocation for NOMA-Enabled Industrial Internet of
Things. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, 27–29 July 2020; pp. 5241–5246.
[CrossRef]

11. Zhou, F.; Hu, R.Q. Computation Efficiency Maximization in Wireless-Powered Mobile Edge Computing Networks. IEEE Trans.
Wirel. Commun. 2020, 19, 3170–3184. [CrossRef]

12. Mao, Y.; Zhang, J.; Song, S.H.; Letaief, K.B. Stochastic Joint Radio and Computational Resource Management for Multi-User
Mobile-Edge Computing Systems. IEEE Trans. Wirel. Commun. 2017, 16, 5994–6009. [CrossRef]

13. Nugroho, A.K.; Shioda, S.; Kim, T. Optimal Resource Provisioning and Task Offloading for Network-Aware and Federated Edge
Computing. Sensors 2023, 23, 9200. [CrossRef]

14. Liu, X.; Du, X.; Zhang, S.; Han, D. Cooperative Computing Offloading Scheme via Artificial Neural Networks for Underwater
Sensor Networks. Appl. Sci. 2023, 13, 1886. [CrossRef]

15. Liu, Z.; Jia, Z.; Pang, X. DRL-Based Hybrid Task Offloading and Resource Allocation in Vehicular Networks. Electronics 2023,
12, 4392. [CrossRef]

16. Shi, W.; Chen, L.; Zhu, X. Task Offloading Decision-Making Algorithm for Vehicular Edge Computing: A Deep-Reinforcement-
Learning-Based Approach. Sensors 2023, 23, 7595. [CrossRef]

17. Dinh, T.Q.; Tang, J.; La, Q.D.; Quek, T.Q.S. Offloading in Mobile Edge Computing: Task Allocation and Computational Frequency
Scaling. IEEE Trans. Commun. 2017, 65, 3571–3584. [CrossRef]

18. Lim, D.; Joe, I. A DRL-Based Task Offloading Scheme for Server Decision-Making in Multi-Access Edge Computing. Electronics
2023, 12, 3882. [CrossRef]

19. Song, Z.; Liu, Y.; Sun, X. Joint Task Offloading and Resource Allocation for NOMA-Enabled Multi-Access Mobile Edge Computing.
IEEE Trans. Commun. 2021, 69, 1548–1564. [CrossRef]

20. Wu, Y.; Ni, K.; Zhang, C.; Qian, L.P.; Tsang, D.H.K. NOMA-Assisted Multi-Access Mobile Edge Computing: A Joint Optimization
of Computation Offloading and Time Allocation. IEEE Trans. Veh. Technol. 2018, 67, 12244–12258. [CrossRef]

21. Jeong, S.; Simeone, O.; Kang, J. Mobile Edge Computing via a UAV-Mounted Cloudlet: Optimization of Bit Allocation and Path
Planning. IEEE Trans. Veh. Technol. 2018, 67, 2049–2063. [CrossRef]

22. Zhou, F.; Wu, Y.; Sun, H.; Chu, Z. UAV-Enabled Mobile Edge Computing: Offloading Optimization and Trajectory Design.
In Proceedings of the 2018 IEEE International Conference on Communications (ICC), Kansas City, MO, USA, 20–24 May 2018; pp. 1–6.
[CrossRef]

23. Hu, X.; Wong, K.K.; Yang, K.; Zheng, Z. Task and Bandwidth Allocation for UAV-Assisted Mobile Edge Computing with
Trajectory Design. In Proceedings of the 2019 IEEE Global Communications Conference (GLOBECOM), Waikoloa, HI, USA,
9–13 December 2019; pp. 1–6. [CrossRef]

24. Zhang, T.; Xu, Y.; Loo, J.; Yang, D.; Xiao, L. Joint Computation and Communication Design for UAV-Assisted Mobile Edge
Computing in IoT. IEEE Trans. Ind. Inform. 2020, 16, 5505–5516. [CrossRef]

25. Ma, T.; Yang, Y.; Xu, H.; Song, T. Optimizing Task Completion Time in Disaster-Affected Regions with the WMDDPG-GSA
Algorithm for UAV-Assisted MEC Systems. Processes 2023, 11, 3000. [CrossRef]

26. Liang, W.; Ma, S.; Yang, S.; Zhang, B.; Gao, A. Hierarchical Matching Algorithm for Relay Selection in MEC-Aided Ultra-Dense
UAV Networks. Drones 2023, 7, 579. [CrossRef]

27. Han, Z.; Zhou, T.; Xu, T.; Hu, H. Joint User Association and Deployment Optimization for Energy-Efficient Heterogeneous
UAV-Enabled MEC Networks. Entropy 2023, 25, 1304. [CrossRef]

28. Min, M.; Xiao, L.; Chen, Y.; Cheng, P.; Wu, D.; Zhuang, W. Learning-Based Computation Offloading for IoT Devices With Energy
Harvesting. IEEE Trans. Veh. Technol. 2019, 68, 1930–1941. [CrossRef]

https://doi.org/10.1109/JIOT.2016.2579198
https://doi.org/10.1109/COMST.2021.3057017
https://doi.org/10.1109/TWC.2023.3281812
https://doi.org/10.1109/TVT.2022.3206213
https://doi.org/10.1109/ICAIIS49377.2020.9194840
https://doi.org/10.1109/WCNCW48565.2020.9124737
https://doi.org/10.23919/CCC50068.2020.9188893
https://doi.org/10.1109/TWC.2020.2970920
https://doi.org/10.1109/TWC.2017.2717986
https://doi.org/10.3390/s23229200
https://doi.org/10.3390/app132111886
https://doi.org/10.3390/electronics12214392
https://doi.org/10.3390/s23177595
https://doi.org/10.1109/TCOMM.2017.2699660
https://doi.org/10.3390/electronics12183882
https://doi.org/10.1109/TCOMM.2020.3044085
https://doi.org/10.1109/TVT.2018.2875337
https://doi.org/10.1109/TVT.2017.2706308
https://doi.org/10.1109/ICC.2018.8422277
https://doi.org/10.1109/GLOBECOM38437.2019.9014282
https://doi.org/10.1109/TII.2019.2948406
https://doi.org/10.3390/pr11103000
https://doi.org/10.3390/drones7090579
https://doi.org/10.3390/e25091304
https://doi.org/10.1109/TVT.2018.2890685


Appl. Sci. 2023, 13, 12828 15 of 15

29. Zhang, G.; Ni, S.; Zhao, P. Learning-Based Joint Optimization of Energy Delay and Privacy in Multiple-User Edge-Cloud
Collaboration MEC Systems. IEEE Internet Things J. 2022, 9, 1491–1502. [CrossRef]

30. Li, J.; Gao, H.; Lv, T.; Lu, Y. Deep reinforcement learning based computation offloading and resource allocation for MEC.
In Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), Barcelona, Spain, 15–18 April 2018;
pp. 1–6. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1109/JIOT.2021.3088607
https://doi.org/10.1109/WCNC.2018.8377343

	Introduction
	Related Work
	State of Art
	Motivation and Contribution

	System Model and Problem Formulation
	PPO-Based Joint Optimization Algorithm
	Simulation Results
	Conclusions
	References

