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Abstract: Online dynamic network visualization is imperative for real-time network monitoring and
analysis applications. It presents a significant research challenge for maintaining both layout stability
and quality amid unpredictable temporal changes. While node-link diagrams are extensively utilized
in online dynamic network visualization, previous node-link-diagram-based research primarily
focused on stabilizing the layout by defining constraints on local node movement. However, these
constraints often neglect the structural influence and its corresponding global impact, which may
lead to that the representations of the network structure change significantly over time and a decrease
in layout quality. To address this problem, we introduce the Structure-based Influence Propagation
and Aging (SIPA) algorithm, a novel approach to preserve the stability of relative node positions and
shapes of interconnected nodes (referred to as structures) between adjacent time steps. These stable
structures serve as visual cues for users tracking the evolution of the network, thereby enhancing
the overall layout stability. Additionally, we enhance dynamic network analysis by a highly interac-
tive visualization system, enriching the layout result with multiple coordinated views of temporal
trends, network features, animated graph diaries and snapshots. Our approach empowers users to
interactively track and compare network evolution within a long-term temporal context and across
multiple aspects. We demonstrate the effectiveness and performance of our approach through in-lab
user studies and comparative experiments with three baseline dynamic network layout methods.

Keywords: dynamic network; graph layout; online; mental map; visualization

1. Introduction

A network is the combination of a set of entities and the relationships between them [1].
Network visualization provides a visual means for analyzing the relation data and finds
wide-ranging applications across multiple domains [2], spanning from transportation
systems [3], social networks [4], biological networks [5,6], contact tracings [7], to academic
writing analysis [8]. By nature, a significant portion of these networks is dynamic, where
nodes and edges evolve over time. The challenge in visualizing dynamic networks is to
compute a new layout that are both aesthetically pleasing and fits well into the sequence
of drawings of the evolving graph [9]. The former criterion is about layout quality [10],
and the latter criterion is about maintaining the layout stability, also termed as the mental
map [11].

Many dynamic layout methods have been developed to address these challenges.
The offline methods, where the entire sequence of the graphs to be drawn is known,
can pre-adjust node positions to accommodate forthcoming graph changes [12,13] and
produce relatively stable layouts across the entire time spans. In contrast, for real-time
network monitoring and analysis applications, online layout methods are required. Since
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the upcoming changes are unknown, online layout methods are more challenging in terms
of stability maintenance [9,14]. Node-link diagrams are extremely common and is a widely
employed network layout technique [15]. Existing node-link-diagram-based online layout
algorithms [9,16,17] primarily address this challenge by restricting the movements of local
nodes while overlook broader influences, potentially resulting in failures to adequately
represent the stable structures or the overall shape of the network. In this context, the
network structures refer to the shape and relative positions for interconnected nodes.
Stable structures persisting across consecutive time steps serve as anchors, facilitating users
in tracing the network evolution, and therefore are important for ensuring the overall
layout stability. Consequently, the development of new techniques becomes imperative
to augment the handling of this issue. On the one hand, enhancing layout techniques is
essential. On the other hand, it is challenging for human users to fully comprehend the
network evolution by solely viewing the layout result. Visualization systems with multiple
auxiliary views and rich interactions can effectively enhance user perception.

To address these challenges, we introduce a novel Structure-based Influence Propaga-
tion and Aging (SIPA) dynamic node-link diagram layout algorithm, and augmente the
layout result with the design of an interactive visualization system. This not only enhances
users’ understanding of evolving network structures, but also facilitates the exploration
and comparison of network dynamics. Our main contributions in this research can be
summarized as follows:

1. We extend previous online dynamic layout methods by a novel SIPA layout algorithm.
This algorithm is proposed based on the influence of structural changes to different
nodes, and with a combination of node ages. While ensuring layout quality, our
algorithm better preserves the relative positions and shapes of structures that persist
across adjacent time steps. These stable structures provide anchors for tracing the
network evolution and thus contributes to enhancing the overall layout stability.

2. We design and implement an interactive visualization system that enriches dynamic
network analysis with multiple coordinated views. The system provides crucial
temporal aspects and features of dynamic networks, enhancing exploration, tracking,
and comparison of network dynamics.

3. We verify the performance of our algorithm by comparative experiments based on
three dynamic network datasets; and we demonstrate the usability and effectiveness
of our system through use cases and a user study.

The following sections of this paper is organized as follows: we first review the related
work in Section 2. We then present our dynamic network layout algorithm in Section 3 and
the visualization system in Section 4. Section 5 describes the evaluation process through
comparative experiments on real-world datasets, use cases and user study. We conclude our
work in Section 7. Through this research, we aim to contribute to the advancement of online
dynamic network visualization for researchers and practitioners across various domains.

2. Related Work

In this section, we review two research areas that are closely related to our work: the
dynamic network layout methods and the dynamic network visualization techniques.

2.1. Dynamic Graph Layout Methods

Many algorithms have been proposed on dynamic network layout. These algorithms
aim to preserve user’s mental maps [11,18,19] as network structures change over time,
ensuring a coherent layout sequence that aids users in understanding the network evolution,
yet the layout quality must adhere to aesthetic criteria [10,20]. Based on data requirement,
dynamic network layout methods can be classifieds into two categories: offline methods
and online methods.

Offline method: Offline methods, where all network states of the entire time spans are
known, can pre-adjust node positions to accommodate forthcoming nodes, and minimize
layout changes to better maintain the user’s mental map, often employing the concept of
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“hypergraphs [12]” for layout. However, such offline methods have higher demand on data,
all network states to be visualized need to be known in advance, and does not suit to the
real-time dynamic network layout scenarios.

Online method: Many real-world networks are also likely to be streaming over time.
A streaming graph is a continuous, unbounded, rapid, time-varying stream of edges that
is clearly too large to fit in memory except for probably short windows of time [21]. For
monitoring the streaming networks in real time, online dynamic layout methods are re-
quired. Online layout methods face greater challenges considering the upcoming changes
are unpredictable. Their goal is to minimize visual changes between the original and
modified layouts when new network update comes, enabling users to swiftly comprehend
graphical changes. Lin [19] was among the pioneers in online layout algorithms, develop-
ing techniques that conserve mental maps while generating aesthetically pleasing layouts.
Common practice in online network drawing involves adding constraints to nodes, limiting
their mobility and ensuring a consistent mental map across the sequence of graphs [22].
Pinning algorithms [22] employ simulated annealing to reduce node displacement between
adjacent layouts. The Aging algorithm [16] introduces node and edge age, calculated
based on node appearance time and lifetime exposure to motion, yielding relatively stable
positions for long-term stable nodes. Crnovrsanin et al. [17] extended FM3 to accommodate
dynamic network data, proposing a refinement scheme grounded in node energy to allow
highly influential nodes to adjust their positions within the layout. Dwyer et al. [23]
introduced the DIG-COLA algorithm, building on the KK algorithm and incorporating
directional constraints for drawing directed networks. Yuan et al. [24] and Wang [25] intro-
duced multiple constraints, encompassing circular, distance, and directional constraints,
even enabling users to define structures to generate network layouts. LCDE [26] employs
a distance-constrained stress model in online dynamic network drawing. These methods
primarily handle the local changes, while neglect the influence to the global structure
and shapes.

In this paper, we contribute to the online dynamic node-link diagram layout field by
introducing the Structure-based Influence Propagation and Aging (SIPA) layout algorithm.
The SIPA is tailored to address the challenges of balancing the network stability and overall
network layout quality.

2.2. Dynamic Network Visualization Approaches

Dynamic network visualization have been a hot research topic for years that tackles the
challenge of representing the evolution of relationships between entities in comprehensible,
scalable, and effective diagrams [12].

First, based on the representation of the temporal dimension, the visualization tech-
niques can be categorized as animation-based, timeline-based, and hybrid. Animation-
based techniques [27–29] use animations to depict changes between adjacent network
layout sequences, facilitating users in observing and understanding the trends in network
changes. However, due to the challenge of users remembering previous network states,
animation-based methods may not support effective comparisons between network struc-
tures at different time steps. Timeline-based techniques [6,30] replace animation with
static views, allowing users to analyze network structure details. Nevertheless, when deal-
ing with large scale network sequences, fully representing them within limited screen space
can be challenging [12]. Hybrid techniques combine the animation and timeline meth-
ods for time representation, leveraging each one’s advantages, such as the Flip-Book [31]
presented the long network sequence with a moving time line; MultiPiles [32] designed
small multiple views of piling adjacency matrices that can be animated, offering the ability
to scale to networks with hundreds of temporal snapshots. The comparative study on
animation-based and timeline-based shows that sequences of timeline-based static methods
perform better on precision tracking [16], and animations are suitable for present broad
high-level changes [33]. Therefore, we adopt a hybrid method, using the animated layout
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to show the overview, and providing small multiple network snapshot views for further
accurate analysis and comparisons.

Second, network representation technique is another important aspect for dynamic
network visualization. This topic have be extensively studied in static and dynamic net-
work visualizations. Comprehensive reviews can be found in [15,34,35]. Typical network
visualization forms are node-link diagrams, matrix diagrams and space-filling diagrams.
The space filling techniques, such as treemap or sunburst diagrams, have advantages on
screen space utilization. This technique is suitable to hierarchical networks for the space ex-
plicitly encode hierarchical relations [15]. Comparative study on node-link diagrams versus
matrices diagrams shows that the matrices perform better on larger network (100 vertices),
while the node-link diagrams are more familiar to users and more readable in small size
network (20 vertices) [36]. Besides the node-link diagram are widely employed and can
better present the topological structures [15]. For dynamic network visualization, the time
can also be an encoding dimension, the Massive Sequence View [37–39] is a timeline-based
technique for dynamic network visualization. The node positions are consistent over time,
and no node clutter problems, so it has demonstrated to be a more scalable solution [38].
Considering our layout algorithm is built on node-link diagram. We select the node-link
diagram for our visualization system design.

Furthermore, the dynamic network exploration is generally enhanced by multiple
interactively coordinated views [40], combinations of small multiples [13], or the Level Of
Details (LOD) techniques [41].

These studies are formative for our approach. Our visualization system further
supports users’ exploration of dynamic network by a hybrid technique, rich interactions,
and multiple linked temporal and featural views.

3. Dynamic Network Layout Algorithm

Given a dynamic network N = {N0, N1, . . . , Nn}, our SIPA algorithm aims to contin-
uously online compute the corresponding layout sequence L = {L0, L1, ..., Ln}, ensuring
the overall layout quality while maintaining layout stability between adjacent networks.
When the network transitions from Ni−1 to Ni, the network updates Ui may involve the
addition or removal of nodes and edges. For the unchanged portions of Ni−1, the node
positions are directly copied from the layout Li−1. Figure 1 depicts the workflow of our
algorithm. The input of our algorithm is a streaming graphs. The objective of the SIPA
algorithm is continuously compute node-link-diagram-based layouts when changes of
the upcoming graph is unknown, and try to preserver the layout stability while ensuing
the layout quality. The main steps of SIPA dynamic network layout algorithm consist
of: (1) initial placement of newly added nodes; (2) determining structural influences on
nodes and propagating influences within the network; (3) combining the node influence
with node aging strategy to further preserving the stability; and (4) updating layout with
combination of the former factors.

Figure 1. The flow diagram of the SIPA algorithm.

3.1. Initial Positioning for Newly Added Nodes

The position of a node is generally determined by the collective decisions of all
its neighboring nodes. When the positions of a node’s neighboring nodes are already
established, ideally, the node should be placed at the centroid or weighted centroid of all
its neighboring nodes, as shown in Figure 2. However, this approach has some drawbacks.
First, when adding not just an isolated node but a set of nodes which forms an connected
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structure, simultaneously adding these nodes result in unreasonable initial positions for
the newly structure. Moreover, when the added nodes share the same neighboring nodes,
these nodes will have the same initial positions, causing node overlap.

Figure 2. Centroid-based initial positioning for new nodes. A new node may: (a) be a isolated node,
(b) have one edge with a existing node, (c) have edges with multiple existing nodes, and (d) have one
edge with a newly added node.

To address these issues, we employ the Sorted Sequential Barycenter Merging (SSBM)
method [42] to assign positions to the newly added nodes. The positions of the nodes to be
added are determined sequentially based on the number of connections with existing nodes,
thereby reducing the probability of random placement of nodes, as shown in Figure 3.

Figure 3. SSBM-based initial positioning for new nodes. The new node may: (a) have edges with
multiple existing nodes, (b) have one edge with a existing node, and (c) have one edge with a newly
added node.

The calculation of positions for the newly added nodes is as Formula (1).

xi =


1
|Ci | ∑

j∈Ci

xj + e1, |Ci| ≥ 2

xj + e2, |Ci| = 1 and j ∈ Ci

e3 |Ci| = 0

(1)

where Ci represents the set of nodes that are already assigned positions and are connected
to the new node ni. xi represents the position coordinates of node ni, and xj represents
the position coordinates of node nj. e1, e2 and e3 are small random vectors that are used to
ensure initial positions are not the same for nodes sharing identical neighboring nodes.

3.2. Structure-Based Influence Computation and Propagation

We introduce a novel node movement constraint strategy based on the factor that
nodes are influenced by structural changes. When the network transitions from state Ni−1
to Ni, the network changes directly affect one or more nodes within the network, requiring
adjustments to their positions due to alterations in their connectivity. We quantify the
network structural influence factor on different nodes and propagate this influence factor
through the network using a depth-first-search (DFS) graph traversal approach. This allows
more nodes to have the opportunity to readjust their positions, ultimately leading to the
attainment of an ideal layout.

(1) Node Influence Calculation
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In previous methods, affected nodes were typically labeled as movable nodes without
considering the varying degrees of impact different changes have on different nodes. As
illustrated in Figure 4, when removing an edge from the network (indicated by dashed
lines in the figure), it affects two vertices connected by this edge, denoted as nodes u and
v, rendering their existing positions no longer suitable, thus necessitating a recalculation
of their positions. Following the removal of this edge, the degree of node v becomes 1,
meaning it has only one neighboring node left, whereas the degree of node u remains
8. The re-positioned nodes should appear as depicted in Figure 4. Comparatively, the
position change of node v is much greater than the change of node u. This discrepancy
arises because a node’s position is determined collectively by its neighboring nodes. The
node with the higher degree should experience a smaller impact than the node with the
lower degree.

Figure 4. The influence of structural changes on different nodes: (a) before the change, (b) after
the change.

Hence, in this study, when calculating the influence of network structural changes on
different nodes, the structural information of nodes is taken into account. The influence
value Ii on node i (ni) are computed based on the degree information before and after the
changes as Formula (2).

Ii(t) =

min( dadd
i (t)+ddel

i (t)
di(t−1) , 1) ni ∈ N(t− 1)

1 ni /∈ N(t− 1)
(2)

where dadd
i (t) and ddel

i (t) represent the deletion and addition degrees of ni:

ddel
i (t) = |j ∈ Ni(t− 1)\Ni(t)| (3)

dadd
i (t) = |j ∈ Ni(t)\Ni(t− 1)| (4)

(2) Influence propagation
Nodes within the network are not isolated. The movement of one node will result in

changes to all nodes connected to it. Similarly, localized changes within the network not
only lead to alterations in their neighborhood structure but also impact the overall network
structure. The influence degree that a node’s movement has on its neighboring node is
determined by the neighbor’s degree. As illustrated in Figure 5, for node c, its movement
affects node d with a degree of 1 because node d is only connected to node c. Conversely,
the movement of d has an impact of only 1

3 on node c because c has three connections.
Therefore, when node u moves, the calculation of the influence degree Iuv on node v is as
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Formula (5), where dv represents the degree of node v. In the case of an weighted network,
the degree can be replaced with edge weights.

Iuv =

{
1
dv

uv ∈ E
0 uv /∈ E

(5)

Based on Equation (5), the propagation matrix of influence between nodes in an
unweighted network can be calculated, as illustrated in Figure 5.

Furthermore, the propagation of influence values can be calculated based on the
propagation matrix and the DFS. The influence propagates from directly affected nodes
to the rest of the network, or to nodes of its connected component in the case of that the
network is not a connected graph. As depicted in Figure 6, let’s denote node 17 as the node
that has been moved. Using the propagation matrix, one can calculate its influence values
on neighboring nodes. Subsequently, this method is applied recursively based on the DFS
to calculate the influence values of the remaining nodes within the network.

Figure 5. The propagation matrix (b) for the network topology (a).
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Figure 6. The influence propagation due to the movement of Node-17. (Left): influence generated on
direct neighbours; (Right): influence has been propagated to indirect neighbours. Numbers in the
circle represent node ID and colors of the circle encode the influence value.
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3.3. Node Aging Strategy

We introduce the concept of “age” [16] to further stabilize the network layout and
maintain user’s mental map, by ensuring that nodes in the network that have remained
unchanged for a long time are more stable. With this concept, the update process of
dynamic network is considered as an aging process, where the age of nodes in the network
is defined as the number of network updates that a node has experienced. Nodes with
older ages are less mobile.

However, age constraints prevent old nodes that have experienced direct changes from
reaching a reasonable location. Therefore, we define the age calculation strategy through
categorization. Nodes that have never directly encountered changes are kept stable, while
nodes that have directly encountered changes are encouraged to move in order to reach
more reasonable positions. Let ai(t) represents the age of node i at time t, and its update
rules are as shown in Equation (6).

ai(t) =

{
1 N(i) > 0
ai(t− 1) + 1 otherwise

(6)

Here, Ni is the set of adjacent nodes to node i that are updated at time t. If a node in the
network has directly encountered changes, its age is reset to 1; otherwise its age is simply
incremented by 1.

3.4. Node Mobility Factor and Layout

Finally, we define mobility factors for nodes by combining the influence and age
factors. These mobility factors are used to adjust the forces acting on the nodes, ultimately
yielding the final layout result.

The node’s mobility in the subsequent layout is together determined by the node
influence factor and node age. The larger node influence factor encourages nodes to
move to achieve a better layout, while the larger node age stabilizes nodes in the network
that haven’t experienced updates for a long time. Consequently, a node’s mobility in the
network can be defined as Formula (7).

Mi(t) = α× Ii(t) + (1− α)× e−βai(t) (7)

where, the left portion represents the influence factor, the right portion corresponds to
the age factor, and α ∈ [0, 1] is the parameter for tuning the trade-off between network
stability and the layout quality. The aging formula reuse the exponential decay approach
in reference [16] and its β ∈ IR is the aging rate which allows for tuning the evolutionary
process. After combining the results of these two factors, the mobility factor is scaled within
the range of [0, 1]. The lower a node’s mobility factor, the less likely it is to move during the
layout process.

The mobility factor is then applied to the layout method to yield the final layout result,
as a mean to alter the force on nodes to improve the layout stability. In our experiments,
the value of α is set to 0.5. Users can adjust these tuning parameters from the user interface
of the visualization system as needed, considering their preferences for layout quality,
stability, and specific data characteristics.

4. Interactive Visualization System

The dynamic nature of network structures makes it challenging for users to fully
comprehend the evolving trends in network structure solely based on the network layout
view. To address this issue, we design a visualization system. The system pipeline is
shown in Figure 7. The data include node data, edge data and temporal data. We first
process the original data into network data, and compute network layout using SIPA; then
the feature statistics such as degrees, communities, and temporal edge and node size are
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calculated; Lastly the layout and the feature statistics are visualized in multiple views, and
the animation and linking animation are adopted to further users progressive analysis.

Figure 7. The pipeline of our dynamic network visualization system.

For the user interface design, to facilitate users to progressively understand the dy-
namic network evolvement, we adopted a “overview + details” design style. The animation-
based technique provide a clean view on the broad high-level changes, while sequences of
static network layouts are more capable of precision changes tracking [16]. So we arrange
the animated layout in the main view to show the overall network status, and place the
small-multiple-based static network snapshots besides the main view to support detailed
analysis and comparisons. The user interface of our visualization system is depicted in
Figure 8, comprising the control panel module (A), the main view module (B), and the
network snapshot view module (C), and the temporal and featural views (D and E).

Figure 8. The user interface of dynamic network visualization system, which consists of (A) the
control panel, (B) the main view, (C) the snapshots view, (D) the temporal views, and (E) the feature
statistics view.

4.1. Visualization Design

Control Panel: This panel provides functions related to network dataset selection,
visual appearance adjustments, network layout algorithm selection, and layout perference
setting. The network dataset selection function enables switching or uploading network
datasets, as the input for the entire system. Visual appearance control allows users to adjust
visual properties of nodes and edges within the main view, including node radius size, node
colors, edge width, and edge colors. Network layout algorithm selection enables switching
among different layout algorithms, providing the system with the flexibility to support
various algorithms. This offers users more choices and enhances system compatibility
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with a wider range of data types. The SIPA algorithm is selected by default. If the layout
result is not satisfactory, users can switch to FR, Incremental or Aging algorithms. The
Layout preference panel allow users to set their preference on layout stability and quality.
The slider is in the middle by default, user can move it based on their preference and the
network layout results.

Main View: This view present the layout results of the network, which convey the
topological structural information of the network. When there are significant structural
changes in the network, such as the simultaneous addition or removal of multiple nodes
and edges, the positions of network nodes undergo substantial alterations, making it
difficult for users to comprehend how the network transitions from one structure to another.
To address this, we employ a segmented animation approach inspired by the design of
GraphDiaries [29]. The animation is implemented with the transition module of D3 [43]
visualization library, The duration of a transition is set to 750 milliseconds for now, and
future study needs to be performed for choosing a optimal duration value. The network’s
structural changes are divided into three stages: node deletion, node addition, and node
movement, and highlighting is applied before structure deletion and after structure addition
to emphasize the changes in network structure (see Figure 9). Additionally, during the
node movement stage, to facilitate user observation and tracking of node position changes,
we employ node movement interpolation and retain movement traces to better present the
process of node position changes.

Figure 9. Highlighting network changes through 3-step (delete/add/move) animations.

Network snapshot views: Utilizing animation to represent dynamic networks aids
users in observing and comprehending changes in network structure. However, due to
the inherent volatility of dynamic network structures and limitations in users’ memory
capacity, it becomes challenging for users to simultaneously understand the current net-
work structural changes while retaining information about the network’s former structures.
This impedes users’ ability to compare structural differences between different time steps
effectively and hinders their ability to gain an overview of the network’s structural char-
acteristics at various moments, as well as to identify patterns in network evolution. To
address this issue, a Network Structural Snapshot module has been designed to store
structural information from previous network states.

Network feature Statistics views: The networks itself possesses many characteristic
features, such as the number of network nodes, edge count, degree information of nodes in
the network, and the structural composition of network communities. While these informa-
tion are valuable for understanding networks, expressing them through the layout diagram
of the network is challenging. To facilitate users in rapidly comprehending the statistical
feature information of the network, our system introduces a network feature statistics mod-
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ule. This module presents node degree distribution, community quantity distribution, node
betweenness centrality distribution, node closeness centrality distribution, and eccentricity
distribution. Degree distribution reflects information about the degrees of nodes within
the network and serves as an indicator of network type or structural features. Communi-
ties in a network are the dense groups of the vertices, which are tightly coupled to each
other inside the group and loosely coupled to the rest of the vertices in the network [44].
The distribution of community quantities reflects both the number of communities in the
network and the distribution of node quantities within each community. In our study, we
employ the Louvain [45] community detection algorithm to identify communities within
the network. Statistics of community distribution aids users in understanding the network.
Additionally, users can use this information to estimate whether the layout in the main view
reflects the clustering patterns within the network. Betweenness centrality, viewed from
the perspective of nodes as “intermediaries”, measures their importance and is defined as
the count of the shortest paths passing through a particular node. From the community
structure viewpoint, nodes with high betweenness centrality often play a critical role in
bridging two communities. The distribution of node betweenness centrality reflects the
distribution of betweenness centrality among nodes within the network and is a significant
representation of network structural features. Closeness centrality of nodes reflects their
distance from the network center. If all nodes in a network have low closeness centrality, it
indicates a small network diameter.

Temporal views: The temporal views depict the long-term trend of dynamic networks.
Given the stochastic nature of network structural changes, the temporal views employ
grouped bar charts to visualize the quantity of added and deleted edges at each time
step. Additionally, area chart is embedded beneath the bar chart to represent the scale of
nodes within the network. Through the temporal views, users can intuitively perceive the
network’s size and the change degrees at various time points. As shown in Figure 8, the
timeline exhibits evident periodicity, with one week constituting a cycle. The number of
nodes in the network varies between weekdays and weekends, reflecting different scales of
network activity. Furthermore, the temporal views support time setting, users click the bar
chart to let the main view show the layout result of the corresponding time.

4.2. Interaction Design

A wide range of interactions have been implemented, including zooming, selection,
and filtering. Users can click the “play” button in the bottom of the main view (Figure 8B) to
stop or continue the layout animation, move the slider over the temporal views (Figure 8D)
to select their preferred time span, or they can take snapshot with the toolbar on the top of
the main view. With these interaction techniques, users can explore dynamic network from
overview to details, and the linkage between the main view and auxiliary views allows
for collaborative analysis across multiple perspectives. This facilitates the discovery of the
inherent characteristics and meaningful insights within the dynamic network, enabling
in-depth exploration and understanding of dynamic networks.

4.3. Implementations

Our visualization system is implemented as a web-based application with a client-server
architecture. The server side is performed using Java. For the client side, JavaScript and Vue
framework is used for building the user interface and D3 is used for drawing diagrams.

5. Evaluations

In this section, we compare our approach with the classic and state-of-the-art ap-
proaches to evaluate the layout stability and quality. We also illustrate the effectiveness of
our visualization system with use case study and in-lab user study.
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5.1. Experiments on Layout Approach
5.1.1. Experiment Settings

Datasets: In terms of dataset selection, this study used the Newcomb Fraternity [46],
McFarland [47], and email-Eu [48] datasets for comparative experiments, as shown in
Table 1.

Table 1. Dynamic network datasets.

Network Node Count Avg Edge Count Steps

Newcomb 17 40 15
McFarland 20 28 82
email-Eu 414 592 30

The Newcomb dataset captures sociometric preference rankings among 17 students
in a fraternity at the University of Michigan over a 15-week period. At the end of each
week, these students ranked the other 16 students in order of preference from 1 to 16, with
no duplicate rankings allowed. For this study, only the relationships representing the top
three rankings each week were retained as edges in the network, providing insights into
the changing relationships among the students. Consequently, a set of 15 networks was
generated, each averaging 17 nodes and 40 edges.

The McFarland dataset, sourced from McFarland’s research on classroom interactions,
documents student interactions in a classroom setting to understand the learning process.
It unveils the social processes involved in constructing, maintaining, and altering classroom
order. The dataset records interactions among 20 students across 82 evolutionary steps.

The email-Eu dataset comprises email data from a European company, with the
senders and recipients being core members of the organization. The edges in this dataset
are directed, signifying the sender (from) and receiver (to) of each email, along with the
timestamp of email transmission. The number of events in this network does not vary a lot
in each day, and it do not contain interval across days without any event. Considering this
network is relatively stable and our layout method is not timeslicing sensitive, we choose to
use a simple timeslicing technique, namely the uniformed timeslicing technique, to process
the data. It is worthy to note that this processing technique may hide or lose patterns
on other time scales. Further timeslicing sensitive research may refer to more effective
techniques, such as the non-uniformed timeslicing [38,49]. For this study, a continuous
30-day subset of data was selected, merging and processing the daily email records into an
undirected network, resulting in a set of networks spanning 30 consecutive states.

Compared Methods: we conducted comparative experiments using the following
methods: FR algorithm, Incremental algorithm [17], and Aging algorithm [16]. The FR
algorithm is the most widely applied network layout algorithm, which provides a baseline
for good layout quality. The Incremental algorithm and the Aging algorithms are classi-
cal online dynamic network layout approaches. The incremental algorithm is used for
incremental layout adjustments. The Aging algorithm introduces node age to limit node
movement probabilities.

Stability and Quality Metrics: For dynamic network layout algorithms, evaluation is
typically conducted from two perspectives: stability and layout quality.

In terms of stability metrics, a common approach is to measure the displacement δpos
of nodes between adjacent layouts. When the network structure is updated, a smaller
average displacement in the new layout indicates that there is less node movement between
adjacent layouts, signifying greater stability and better maintaining the mental map. Some
researchers also use layout energy as a metric, which is derived from relationships within
the layout. A lower energy value signifies lower energy within the network, indicating
a better layout quality. Since layout energy depends on the forces applied to nodes, and
different algorithms may use distinct energy models [17]. So, to ensure comparability, this
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paper adopts the average displacement metric to assess layout stability. Additionally, the
layout results for each method are provided directly to assist in the evaluation process.

For layout quality, this paper employs the following three metrics [10] for a multidi-
mensional assessment, including edge crossing metric, shape similarity metric, and edge
angle of incidence metric.

Edge crossing metric Mc: This metric is used to quantify the number of edge crossings
in a layout, with a larger value indicating fewer edge crossings in the layout. The definition
of Mc is as shown in Formula (8).

Mc = 1−
{

c
cmx

cmx > 0
0 otherwise

(8)

where c represents the number of edge intersections present in the network layout, and
cmx is an approximate upper limit of edge crossings in the network, considering that a
network with m edges can have up to m(m − 1)/2 crossings without considering their
degrees. Therefore, cmx is defined as the difference between m(m− 1)/2 and impossible
crossings, as shown in Formula (9):

cmx =
m(m− 1)

2
− 1

2

n

∑
i=1

d(vi)(d(vi)− 1) (9)

Shape similarity metric Ms: This metric is used to assess whether the layout accu-
rately reflects the network’s shape. A higher value indicates that the layout more faithfully
represents the network’s shape. It is defined as the similarity between the network and the
shape network generated by its layout, as shown in Formula (10).

Ms = η(G, µ(P)) (10)

where η represents the similarity function between two networks, µ is the shape network
function, and P represents the set of node positions in the layout Lcorresponding to the
network G.

Edge angle of incidence metric Ma: This metric’s quantification criterion is to maxi-
mize the minimum angle of incidence for node edges, with a larger value indicating more
equal angles of incidence for nodes. It is defined as Formula (11):

Ma = 1− 1
|V| ∑

v∈V
| θ(v)− θmin(v)

θ(v)
| (11)

where θmin(v) represents the minimum angle of incidence for the edges of node v, θ(v)
represents the ideal angle of incidence for node v , and it is defined as 360◦/d(v) .

5.1.2. Layout Result Analysis

Firstly, we present layout results of the three datasets using different algorithms.
Analysis on The McFarland Dataset: For the McFarland dataset, Figure 10 illustrate

the layout results for five consecutive states under different algorithms.
From the above layout result, all algorithms except FR can maintain structural stability

in minor changes (from time step 1 to 3); Our algorithm better preserve the relative position
on significant change (step 4) and on adding back a node (step 5). The detailed analysis is
illustrated as follows.

For the first three states, the network structure undergoes small changes, all algorithms
maintain the shape of this structure well except for the FR algorithm.

When transitioning from the third state to the fourth state, there is a significant
transformation in the network structure, with most nodes and edges disappearing, leaving
only a substructure consisting of nodes 4, 5, 7, 10, and 12 (highlighted in the figures).
Our algorithm’s layout better preserved the relative positions of nodes. This is because
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our algorithm considers the structural-based influence on different nodes, the node 7
has a greater degree of freedom, while the other nodes is reduced, resulting in smaller
positional changes.

Figure 10. Layout result comparison based on McFarland data. Node 12 and node 5 are highlighted
with red and blue circles, their spatial and relative positions are kept stable in our algorithm and
the incremental algorithm, but changes in the other two algorithms. The shape of the blue-color-
highlighted structure is better preserved with our algorithm on significant change (step 4) and on
adding back a node (step 5).

When the network updates from the fourth state to the fifth state and adds back
previously deleted node 14, the shape of this structure undergoes significant changes in the
layout generated by all algorithms except for our algorithm.

Analysis on The Newcomb Dataset: For the Newcomb dataset, Figure 11 displays
the layout results for the first ten consecutive states under different algorithms. Unlike the
McFarland dataset, the Newcomb dataset maintains a consistent number of nodes across all
states, and the variations in the network structure are solely attributed to changes in edges.

From the above layout result, the Incremental algorithm exhibits better stability than
the other three algorithms across all time frames though there are substantial changes in
actual network; Only the Incremental algorithm and our algorithm preserve the relative po-
sitions of nodes within the structure for some structure changes (as the example highlighted
portions in states 6–9). We elaborate the detailed analysis as follows.

First, when considering the overall layout shapes, the Incremental algorithm exhibits
relatively consistent layout shapes across all time frames, while the layouts generated by
the other algorithms undergo more significant changes. However, it’s important to note
that the actual network structure experiences substantial changes itself, and the Incremental
algorithm excessively restricts node movement, resulting in layouts that do not effectively
reflect the network’s structural changes.



Appl. Sci. 2023, 13, 12873 15 of 25

Second, for some structures with minor changes, such as the highlighted portions in
states 6–9, only the Incremental algorithm and our algorithm preserve the structure shape
and the relative positions of nodes within the structure.

Figure 11. Layout result comparison based on the Newcomb data. Node 13 and node 8 are highlighted
with red and blue circles, their spatial and relative positions are kept stable in our algorithm and the
incremental algorithm, but changes in the other two algorithms.

Analysis on The Email-Eu Dataset: For the emai-Eu dataset, which is large in scale
and exhibits significant changes in network structure between adjacent timeframes, it is
challenging to directly compare and observe layout differences at different timeframes.
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Therefore, this paper selected a specific day’s network structure with a two-hour time step
to showcase the formation process of this structure as the fourth experimental dataset. As
shown in Figure 12, the layout results for timeframes 3 to 6 are displayed.

From the layout results, the Incremental algorithm present least position changes, but
due to certain node positions are overly fixed, we can see the presence of long edges and
excessively clustered nodes. In comparison, our algorithm retain the shape and relative
positions of some unchanged structures, while also present the overall shape of the network.

Based on the layout results on these three datasets, our algorithm achieves a balance
between layout stability and quality. It better preserves structural and relative position on
significant changes (on time step 4–5 of the first dataset), yet it gives space for reflecting the
actual network changes (on the second dataset) and avoiding extreme layout such as too
clustered nodes or long edges (on the third dataset).

 (a) Incremental Algorithm 

 (b) Aging Algorithm 

 (c)  Our Algorithm

Figure 12. The layout result comparison based on the email-Eu_day1 data. Stable structures high-
lighted with red and blue circles can be found in the layout by our algorithm, but not in the lay-
outs by the other algorithms. Long edges and excessively clustered nodes exists in the layout by
Incremental algorithm.
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5.1.3. Quantitative Evaluation and Results Analysis

Result of network stability: We computed statistics on the average displacements
of nodes between adjacent layouts for different algorithms on three datasets to measure
degrees of node movement between adjacent layouts. The results are presented in Table 2.

Table 2. Average displacements. The best value for each metric is highlighted in bold.

Network Aging FR Incremental Ours

Newcomb 2.6905 3.9169 1.0798 3.1675
McFarland 0.3969 1.0571 0.9594 0.3851
email-Eu 9.4554 15.1272 9.1390 12.1970

email-Eu_day1 0.84235 6.1739 0.6715 4.5652

As seen from the table, for average displacement, our algorithm outperforms FR
algorithm, similar to Aging algorithm, and not as good as Incremental algorithm. Except
for the McFarland dataset, the Incremental algorithm consistently achieves the smallest
average displacement, aligning with the previous layout result analysis. The average
displacement of our algorithm is larger than that of Incremental algorithm. This is because
our algorithm makes some trade-offs on the impact of changes in network structure on the
entire network.

Result of layout quality: Finally, we assessed the layout quality of different algo-
rithms. The results are presented in Tables 3–5 below.

Table 3. Edge crossing metric. The best value for each metric is highlighted in bold.

Network Aging FR Incremental Ours

Newcomb 0.9361 0.9394 0.8979 0.9468
McFarland 0.9236 0.9292 0.8910 0.9430
email-Eu 0.9949 0.9962 0.9916 0.9968

email-Eu_day1 0.9948 0.9970 0.9953 0.9952

Table 4. Edge angle of incidence metric. The best value for each metric is highlighted in bold.

Network Aging FR Incremental Ours

Newcomb 0.3388 0.3334 0.2860 0.3723
McFarland 0.5710 0.6498 0.5506 0.6040
email-Eu 0.7733 0.7725 0.7743 0.7848

email-Eu_day1 0.81342 0.8203 0.8496 0.8165

Based on the above layout quality metrics, except the email-Eu_day1 dataset, our
algorithm produces layouts with the smallest number of edge crossings, and our algorithm
also outperforms or closely matche the FR algorithm in terms of edge angle of incidence
and shape similarity, indicating that our algorithm achieves better results in network layout
quality. Incremental algorithm achieves best layout quality on the email-Eu_day1 dataset,
highlighting its effectiveness for incremental data like email-Eu_day1.

Table 5. Shape similarity metric. The best value for each metric is highlighted in bold.

Network Aging FR Incremental Ours

Newcomb 0.3362 0.3812 0.2905 0.3515
McFarland 0.4292 0.2723 0.3526 0.4854
email-Eu 0.2289 0.2500 0.2838 0.3090

email-Eu_day1 0.2928 0.3371 0.3916 0.3368
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In summary, from both the layout result analysis in Section 5.1.2 and the quantitative
metric analysis in Section 5.1.3, the SIPA algorithm achieves a balance between network
stability and layout quality. Though the SIPA produces slightly larger node displacement
between adjacent layouts than that of the Incremental and Aging algorithms, it brings
chances for more nodes to seek ideal positions globally, thus better preserving overall
structural shapes and relative positions within structures on significant network changes,
and it presents better layout quality comparing to the other two algorithms with constraints.

5.2. Informal Evaluation on Visualization System

To demonstrate the effectiveness and usability of our visualization system, we conduct
evaluations through case studies and user experiments.

5.2.1. Use Cases

The email-Eu dataset was chosen for case studies, aiming to analyze and explore
the dataset to validate the utility of the system. First, there is the variation in network
scale. Based on the temporal views (Figure 13), the network scale exhibits clear periodicity,
with a cycle of 7 days aligning with the patterns of weekdays, weekends, and a three-day
holiday in the second week. Additionally, there are subtle differences in the network scale
during weekdays, with Monday and Friday having slightly larger networks than the other
workdays. This aligns with people’s work habits, as emails are typically sent before and
after weekends. Furthermore, the temporal views reveal significant structural changes
as the network evolves, with a substantial number of edges being added and removed
between adjacent networks.

Figure 13. Temporal views with periodicity.

Secondly, there are similar structures within the email network. While observing
the evolution of the network, the network contains a significant number of “star-shaped
structures”, as shown in Figure 14. In the context of real data, nodes in the network
represent email senders or recipients. The reason for the frequent occurrence of these
“star-shaped structures” is attributed to mass email distribution. Senders employ the group
email feature to send emails to multiple recipients simultaneously, but there are no email
records between the recipients, leading to this start network structure.

Lastly, for adjacent network structures comparison: As indicated by the temporal
views, the structural changes between adjacent networks are quite substantial, making
it challenging to directly compare their structural differences. The Figure 15 presents
snapshots of the network at the 5th and 6th time steps. The upper part directly shows the
layout results, three structures seem to be retained after the network update (marked with
blue circles), concerning relative positions and structural shapes. However, when we use
3-step animation to highlight different node changes (as shown in the bottom of Figure 15),
emphasizing deleted, newly added, and retained nodes and structures. It becomes apparent
that, despite the top right and the bottom structures (marked with blue circles in the top
part) having similar shapes and relative positions as the former time step, they are newly
added structures. Only top left structure is retained.
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Step_6 Step_11 Step_19  

Figure 14. Similar star-shaped network structures.

 

Direct Layout 

 

With interpolation and highlighting 

Figure 15. The network structure comparison for time step 5 (left) and 6 (right).

5.2.2. User Experiment

To demonstrate the usability and utility of our system, we conducted a system evalua-
tion with recruited users. First, below four tasks are designed based on the three datasets:

1. Identify changes in network scale (increase, decrease, or unchanged).
2. Determine if there have been significant changes in network structure.
3. Identify whether specific structures have been preserved.
4. Provide the previous layout position of specific nodes.

Then, 15 volunteers were recruited, including 10 undergraduate students and 5 grad-
uate students. We first demonstrated our system to them, and then they were asked to
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complete the four tasks using our system. After the volunteers completed the tasks, they
were invited to rate the system for its usability, readability, interpretability, and effectiveness
on a scale ranging from 0 (strongly disagree) to 5 (strongly agree). These ratings were used
to evaluate the system’s performance in assisting users in completing the tasks.

The statistical results, as shown in Figure 16, indicate that the users generally had a
high acceptance level for the visualization system. The system are helpful in completing
routine analysis tasks and enabling users to understand and explore the data in a straight-
forward manner. Through the system’s interactive operations and highlighting features,
users could rapidly grasp changes in the network’s structure, facilitating exploration of the
network dynamics.

Figure 16. The user study result based on Likert scale.

While the visualization system is helpful to users in understanding network changes
and capturing relatively stable structures, there were instances where the effectiveness of
the system received low ratings from two volunteers, scoring 0 and 1, respectively. Through
user interviews, we found that these two users struggled when dealing with large-scale
dataset (the email dataset) or when the network underwent significant structure changes. In
such scenarios, users found it challenging to track changes, especially for multiple structural
changes within the network, resulting in lower effectiveness ratings. This inspired us a
direction for future optimization efforts, where we will explore potential technologies to
enhance the comparative analysis of large-scale networks and the multi-focus tracking.

6. Discussions

Our method focuses on preserving stable structures in the node-link-diagram-based
online dynamic network visualization. Comparative experiments demonstrate that our
method better maintains the shape and relative node positions of stable structures as the
network evolves. These stable structures provide anchors for users’ tracing of network
evolvement. The general feedback from user study is positive; however, the feedback on
larger network (the email network data [48], with hundreds of nodes and edges) is not
promising. We would like to discuss the scalability limitation in this section.

Although scalability has been discussed in-depth for static graph, it has only played
a minor role in designing most dynamic graph visualization approaches , from Fabian
Beck’s dynamic visualization survey [34] in 2014. In recent years, several more scalable
techniques have been proposed. The layout form of massive sequence view [37,38] pro-
vides consistent node positions across the entire time, and it is able to detect patterns
in relatively larger network (150 nodes is presented in [38], networks within 1000 nodes
are tested in [37]). Various time-slicing techniques [38,49] are proposed to optimized the
scalability on time dimension. Also network simplification techniques such as filtering [6],
aggregating [50–53] are proposed to reduce the large network to manageable size. But due
to the spatial sparseness nature of node-link diagram [54], direct presenting a large-scale
dynamic network with node-link diagram is still a challenging problem. In the following
paragraphs, we discuss our scalability limitation from algorithmic, visual, and perception
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aspects per Richer’s scalability model [55]. We also discuss workarounds for this limitation.
For visualizing large-scale networks, the joint employment of interaction techniques, or
network simplification techniques may be required.

Algorithm Scalability: our method comprises of three steps executed sequentially.
Supposing a network with |V| vertices, |E| edges, and |delta| node changes on average, the
most complex step costs O(|delta| ∗ (|V|+ |E|)) in time and O(|V|) in space. The running
time of all three test cases are within dozens of milliseconds. The complexity is at a similar
level to existing works [14,17]. The algorithmic scalability is not a major issue in our case.

Visual Scalability: Visual scalability primarily maps to readability [55]. Our method
is built upon the node-link diagram layout. The node-link representation by design leaves
significant background space empty and thereby may encounter scalability problems
when applied to larger graphs [54]. Thus it is not as scalable as matrices, space-filling
layouts, or the massive sequence view. Although our method improves the node-link
layout quality by preserving stable structures, its readability on a large-scale dynamic
network is still challenging. In practice, node-link diagrams are extremely common and
widely employed [15], and are suitable to present the global overview and high-level
changes [16] and perform better on path tracing tasks [36]. So there are usage scenarios
of visualizing large node-link diagram. For these cases, visual abstraction interactions,
including highlighting, brushing, and semantic zooming as in an overview + details-on-
demand approach, may be required to enhance the visual scalability [1].

Perceptual and Cognitive Scalability: Perception and cognitive scalability investi-
gate the scalability of human perception and cognition when performing a visualization
task [55]. Evaluating the cognitive load on the user during the insight generation process
is a challenge that crosscuts general, large, and dynamic network visualization [55]. We
evaluated user perception on our system through user studies, the general feedback is
positive. Yet more rigorous evaluation is expected in the future, such as the controlled user
experiment comparing the perception on the node-link and the matrices diagrams [36],
or the animation versus static display [33]. As a complementary, we also provide sev-
eral designs to enhance user perception, adopting highlighting, zooming and time slider
interactions, and providing multiple views.

Workarounds: Before discussing workarounds, we would like to make clarification
on the definition of “large” in our context. There are different definitions for “large-scale”,
ranging from 50 nodes [56] to thousands of nodes [57] and even to millions of nodes [58].
These variations account for differences in the domain, the data itself, tasks and visual
techniques [56]. In the context of our presentation, directly presenting the network with
node-link diagram and considering user perception capabilities, the number is relatively
small. In the empirical study of literature on human-centered experiments [56], networks
with 51 to 200 nodes are identified as a large network. According to this identification and
combining our user experiment results, we define networks with more than 50 nodes as a
large network in our context. To address the issue of visual clarity with large networks (with
more than 50 nodes), other than using more sophisticated layout techniques, algorithms
for network simplification have been investigated [1]. Network simplification techniques
such as aggregating [50–53], sampling [21,39,59–62], and filtering [6] minimize the problem
scale while keep important information. As a workaround, for a large-scale network, users
can first use these simplification techniques to reduce the network to a manageable size,
then use our method to compute the layout of the final network.

In light of the above discussions, we propose that our method can support the large-
scale online dynamic network visualization in two ways. First, for usage scenarios of
directly presenting large-scale dynamic networks with node-link diagrams, our method
can better preserve stable structures of the network, while the challenge on visual and
perception efficiency can be alleviated by interaction approaches such as highlighting,
panning-and-zooming, and filtering; or it can be used together with other visual forms
in multiple-view designs, as a “level-of-detail” or an “overview + details-on-demand”
approach. Such example design can be found in egoSlider [6] which presents large dy-
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namic network in node-link diagrams with multi-focus-highlighting and with multiple
coordinated views. Second, for the scenarios where network simplification techniques are
used, our method can act as a visual effect for the final layout. The clustering, sampling,
bundling, and filtering techniques acquire representative “small networks” of the original
network. Their analysis processes generally involve observing the “small network”. For
small network visualization, node-link diagrams are more readable and more familiar than
matrices [36]. Our method can then be used to present the “small network” evolution in a
coherent manner.

7. Conclusions and Future Work

This paper introduces the Structural Influence and Preservation (SIPA) Algorithm as a
solution to the challenge of preserving stable node structures in online dynamic network
visualization. The SIPA employs a novel strategy to compute and propagate node influence
within the network based on structural changes and incorporates a node aging mechanism.
The algorithm’s performance is evaluated through layout result analysis and quantitative
metrics. Results show that SIPA can better maintain the relative node positions and shapes
of stable structures, thereby enhancing the overall layout stability. In addition, given that
comprehending network dynamics solely through network layout results is challenging,
we complement the algorithm with an interactive visualization system, enriching the layout
results with various interactions and views of temporal context, network features, animated
graph-diaries and network snapshots. Case studies and user experiments demonstrate the
system’s effectiveness in analyzing and tracking network changes over time.

In future work, we would like to study the possible techniques to extend our research
to address the challenges of visualizing large-scale networks. We will adopt multilevel
approaches and community detection algorithms to partition extensive networks into man-
ageable layers, allowing users to analyze network dynamics at various levels. Additionally,
we plan to develop adaptive algorithms to automatically adjust the multiple parameters
within our current algorithm, enhancing its adaptability and efficiency. These efforts will
make large-scale dynamic network analysis more accessible, expanding the applicability of
our visualization framework in the process.
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