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Abstract: Although NAND (Not And) flash-based Solid-State Drive (SSD) has recently demonstrated
a significant performance advantage against hard disk, it still suffers from non-negligible performance
under-utilization issues as the access conflict often occurs during servicing IO requests due to the
share mechanism (e.g., several chips share one channel bus, several planes share one data register
inside the die). Many research works have been devoted to minimizing access conflict by redesigning
IO scheduling, cache replacement, and so on. These works have achieved reasonable results; however,
the potential data similarity characterization is not utilized fully in prior works to alleviate access
conflict. The basic idea is that, as data duplication is common in many workloads where data with
the same content from different requests could be distributed to the address with minimized access
conflict (i.e., the address does not share the same channel or chip), the logic address is mapped to
more than one physical address. Therefore, the data can be read out from candidate pages when the
channel or chip of its original address is busy. Motivated by this idea, we propose Data Similarity
aware Flash Translation Layer (DS-FTL), which mainly includes a content-aware page allocation
scheme and a multi-path read scheme. The DS-FTL enables maximization of the channel-level
and chip-level parallelism and avoids the read stall induced by bus-shared mechanisms. We also
conducted a series of experiments on SSDsim, with the subsequent results depicting the effectiveness
of our scheme. Compared with the state-of-art, our scheme reduces read latency by 35.3% on average
in our workloads.

Keywords: NAND flash; data duplication; page allocation; read redirection

1. Introduction

Data-dominated workloads, such as artificial intelligence (AI) and high-performance
computing (HPC), have become the dominant applications in data centers. To close the
performance gap between computation and storage, NAND flash-based solid-state drives
(SSDs) instead of hard disks have been extensively deployed in data centers. SSDs utilize
multi-parallel channels that connect NAND flash chips, enabling parallel read/write
operations and advanced command designs to simultaneously operate multiple planes.
This architecture provides enhanced parallelism for serving the host. However, when
multiple requests from the host access the same channel or chips simultaneously, these
requests must wait for each other and be serviced sequentially. This access conflict among
requests hampers the rich parallelism offered by multiple channels and chips per channel,
leading to a decrease in overall performance.

Reducing access conflict has become a hot topic in the research field of NAND flash-
based SSDs. On the host side, some studies propose grouping I/O requests without
conflicts into the same batch to avoid access conflicts [1], while others suggest replicating
hot data at different parallel units (e.g., channel, chip, and plane) as potential solutions [2].
Additionally, some researchers focus on redesigning the connection topology between the
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channel and NAND flash chips to alleviate the limited bus resource issue [3]. These works
successfully mitigate access conflicts in NAND flash-based SSDs and achieve considerable
performance improvements. However, it is important to note that these approaches entail
modifications to the hardware/software stack or result in storage capacity overhead.

This paper is motivated by the observation of data duplication being a common
occurrence in various workloads. The main idea behind this research is to allocate sub-
requests with identical content but different logical addresses to different parallel units (i.e.,
channels, chips, or planes) in the SSD. The SSD records this 1-to-n mapping information,
allowing it to read data with the same content from any physical address, thereby avoiding
access conflicts. Unlike previous approaches, such as replicating and spreading hot data
across the SSD [2], our method does not incur any additional storage cost. Furthermore,
unlike many studies that focus on data deduplication schemes within the SSD [4–6], we
utilize data duplication characteristics to improve performance while maintaining data
reliability. Overall, this paper offers the following contributions.

• We conduct preliminary experiments that reveal a low and skewed utilization issue
among channels, indicating insufficient bus utilization within the SSD. Additionally,
we analyze the data redundancy ratio in various workloads, which highlight the
potential opportunity in data placement. These findings motivate us to leverage the
data duplication characteristics for performance improvement.

• We reveal the limitations of the traditional static page allocation scheme and dynamic
page allocation scheme. To address these limitations, we propose a new approach
called Data Similarity aware Flash Translation Layer (DS-FTL). DS-FTL consists of a
content-aware page allocation scheme and a multi-path read scheme. This approach
maximizes channel-level and chip-level parallelism while preventing read stalls caused
by bus-sharing mechanisms.

• We conduct a series of experiments and validate the effectiveness of our scheme. The
results demonstrate its superiority compared to state-of-the-art approaches. On average,
DS-FTL improves the channel utilization ratio and reduces read latency by 35.3%.

The remainder of this paper is structured as follows. Section 2 discusses the back-
ground of SSDs and motivations behind our design. Section 3 presents the proposed
scheme in detail. Section 4 describes the experimental methodology and analyzes the
results. Section 5 describes the related work. Lastly, the conclusion of this paper is given in
Section 6.

2. Background and Research Motivation
2.1. SSD Architecture

Figure 1 shows the internal organization of an SSD. The components of an SSD are
divided into two groups :the front-end and the back-end. The front-end is responsible for
managing the back-end resources and issuing I/O transactions to the back-end channels [7].
The Host Interface Logic receives an I/O request from the host, splits it into page-sized
sub-requests with specific Logical Page Number (LPN) [8], and inserts them into device
queues for internal processing. The Flash Translation Layer (FTL) maintains a mapping
table that tracks the current physical location, known as the Physical Page Number (PPN),
of each LPN. When handling read sub-requests, the FTL searches the mapping table to
find the corresponding PPN based on the LPN. For write requests, the FTL employs a page
allocation scheme to assign free pages for data storage. The page allocation determines the
target channel ID, chip ID, die ID, and plane ID of a page-sized transaction, following a
specific priority order of the parallelism levels [9].

In the subsequent steps, a block ID is assigned to the target plane, and pages are
programmed in a predetermined order within the block. Subsequently, the PPN of the
block is calculated. After the completion of address translation, the page-sized transactions
are delivered to the transaction scheduling unit (TSU) for scheduling their execution on the
target die [10]. The front-end manages the back-end resources and issues I/O requests to
the back-end channels via the I/O scheduler. The SSD back-end contains multiple channels.
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Each channel is connected to one or more chips. Each chip is made up of one or more chips,
each of which has one or more planes. For processing I/O requests, such an organization
offers four layers of parallelism (channel, chip, die, and plane).

Figure 1. An illustration of SSD architecture.

2.2. Page Allocation Scheme

The page allocation scheme plays a crucial role in determining how free physical pages
are allocated to accommodate the data of write requests, which can significantly impact the
read performance of the SSD as it determines the degree of access parallelism [11].

Many studies have been conducted on page allocation schemes, and two primary
types are widely used: static allocation and dynamic allocation. Static allocation is based
on fixed striping, where logical pages are initially allocated to predefined channels, chips,
dies, and planes, followed by allocation to the first available page in the active block of the
target plane [12]. The target channel, chip, die, and plane addresses for a page-sized flash
transaction are determined in a specific order of priority for these four levels of parallelism,
usually calculated using specific formulas.

On the other hand, dynamic allocation allocates physical pages dynamically, allowing
logical pages to be assigned at runtime to any available physical page across the SSD. When
a write request arrives, the dynamic allocation scheme selects free physical pages based on
several factors, such as the idle/busy status of the channel and chip, the erase counts of the
block, and the priority of the parallel level. It also takes into consideration the utilization of
multiple parallel levels [13].

While dynamic allocation is more flexible and adaptive in exploiting the parallelism of
SSDs and generally provides better performance in most cases, static allocation is simple to
implement and can be highly effective in certain workloads. Static allocation performs best
for read operations in all workloads, while dynamic allocation tends to exhibit superior
overall performance and durability under most workloads in aging SSDs [13].

2.3. Motivation

The FTL employs various page allocation schemes to address the challenge of data
placement for write requests. These allocation schemes determine the placement of data,
which subsequently impacts the read and write performance of SSDs. This section provides
a detailed discussion of the drawbacks associated with the current page allocation scheme,
which serve as the motivation for presenting the proposed Data Similarity aware FTL
(DS-FTL).

2.3.1. Uneven Utilization of Channels and Chips

The allocation schemes used in SSDs can result in an uneven distribution of workload
across different channels and chips [3,14], leading to a phenomenon known as skewed
requests. This phenomenon leads to significant variations in the utilization of channels
and chips, ultimately impacting the overall performance of the SSD. Figure 2 presents the
observed channel and chip utilization, with the specific configuration outlined in Section 4.
The figure clearly illustrates the substantial variation in utilization, with a difference of
approximately 34% between chips. In the case of read requests, the distribution of data
across different channels, chips, dies, planes, and blocks is determined by the employed
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page allocation scheme and the workload characteristics. Similarly, for write requests, the
data distribution is also influenced by the page allocation scheme. Although dynamic page
allocation schemes can effectively address the issue of load imbalance, they can lead to
further disparities in utilization, subsequently impacting read performance.

Figure 2. Utilization of different channels and chips.

2.3.2. Data Similarity in the Workload

In Figure 3, we present our findings after conducting an initial analysis to determine
the percentage of duplicate data in eight real traces. The results reveal that data duplication
is a prevalent characteristic in these traces, with some traces even exhibiting a duplication
rate as high as 70.4%. This high data redundancy rate is caused by the intrinsic user pattern,
such as write-ahead logs and copy operations within the application. Additionally, we
assess the data duplication rate across different planes following data writing, as depicted
in Figure 4. These results demonstrate that the percentage of duplicate data ranges from
5.1% to 44.5% across different planes, reaffirming the commonality of data duplication in
actual SSD data storage [4,5,15].
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Figure 3. The data redundancy ratio of different traces.
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Figure 4. The proportion of duplicate data on each plane.

2.3.3. Key Idea of the Proposed Solution

To address the aforementioned issues, designing an effective page allocation scheme
emerged as the most direct and efficient approach to enhance channel and chip utilization,
harness data similarity in workloads, and thus improve SSD performance. However,
mainstream allocation schemes, including static and dynamic schemes, possess limitations.
Static allocation schemes fail to evenly distribute the read and write loads, whereas dynamic
allocation schemes address the bus resource underutilization and imbalance during data
writes but impede the exploitation of rich parallelism during data reads from flash chips,
thereby impacting read performance. As a result, the channel and chip utilization imbalance
problem remains unsolved [16]. Consequently, based on the observed high data similarity in
workloads, we propose a novel page allocation scheme that combines the strengths of static
and dynamic allocation while accounting for the need for simplicity and lightweightness.
This scheme aims to improve the channel and chip balance for read operations by leveraging
the feature of data content similarity. In this paper, we present DS-FTL, which facilitates the
allocation of page-size sub-requests to different parallel units to maximize channel and chip
utilization and enhance overall write performance. Additionally, we adopt a multi-path
read scheme based on data similarity to boost overall read performance.

3. Related Work

In Table 1, we present a comprehensive summary of the body of literature related to
page allocation schemes, data deduplication in SSD, and path conflict resolution in SSD.

3.1. Page Allocation Schemes

Shin et al. [12] proposed 16 different levels of static page allocation schemes according
to different priorities of flash memory parallel cells, such as channel-level first and chip-level
second parallelism. Hu et al. [13] experimentally analyzed the impact of static and dynamic
page allocation schemes based on SSD performance, and experimentally showed that
dynamic allocation outperform static allocation in terms of write amplification and wear
levels, the static allocation is usually used for read-intensive workloads, while the dynamic
allocation is suitable for write-intensive workloads. On this basis, Jung et al. [11] simulated
a cycle-accurate SSD platform with 24 page allocation schemes and found that flash-level
parallelism is disturbed by system-level concurrency mechanisms. However, internally
in SSDs, there are limitations to static and dynamic allocation schemes. Chang et al. [17]
proposed an adaptive striping allocation scheme for handling load imbalance between
flash units. In addition, Reddy et al. [18] also proposed a hybrid data allocation scheme by
dynamically monitoring and analyzing the access load characteristics of flash memory to
establish an access model for data, through which the relevant parameters of the hybrid
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data allocation scheme can be adjusted. Paik et al. [19] proposed a read-aware dynamic
allocation mechanism for multi-channel solid-state devices, this read-aware mechanism
reduces read latency by avoiding read operation conflicts when trying to access resources
already occupied by pre-issued write operations. Wu et al. [20] proposed OSPADA, a
one-shot programming aware data allocation policy, which reorders the written data and
allocates logically ordered data pages to different flash parallel cells based on a distance-
cycling-aware scheme to optimize flash read performance by exploiting the multi-level
parallelism of flash channels. Sun et al. [21] proposed a hybrid page allocation scheme
called HIPA, which uses a load prediction mechanism to monitor chip-level load in real
time, thus determining the page allocation scheme based on the state of chip-level load and
improving SSD read and write parallelism.

Table 1. Related work.

Problem Literature

Adopting diverse page allocation strategies to
enhance the parallelism of SSD read and
write operations

Shin et al. [12], Hu et al. [13], Jung et al. [11],
Wu et al. [20], Chang et al. [17], Reddy et al. [18],
Paik et al. [19], Sun et al. [21]

Implementing data deduplication in SSD to
reduce the amount of data being written

Chen et al. [4], Gupta et al. [15], Kim et al. [5],
Wu et al. [22], Chen et al. [23], Ni et al. [6]

Employing path conflict resolution in SSD to
improve the parallelism of read and
write operations

Schuetz et al. [24], Gillingham et al. [25],
Kim et al. [3], Tavakkol et al. [26],
Kim et al. [14], Nadig et al. [27]

3.2. Data Deduplication in SSD

Chen et al. [4] introduced a content-aware flash memory translation layer (CAFTL) to
enhance SSD endurance at the device level. It employed a combination of online and offline
data deduplication techniques to eliminate redundant data and effectively reduce write
traffic to flash memory. However, CAFTL utilized a pre-hashing technique that did not
detect duplicate data pages in subsequent arrivals, resulting in a loss of deduplication rate.
Gupta et al. [15] proposed CA-SSD, a flash SSD that employed content addressable storage
(CAS) for internal data management. CA-SSD leveraged value locality, which exploits the
likelihood of data being accessed again in the near future, based on the content of the data.
Unlike CAFTL, CA-SSD fully implemented online data deduplication and did not rely on
offline deduplication mechanisms. However, CA-SSD utilized a dedicated hardware pro-
cessor for hash computation, thereby increasing the production cost of SSDs and limiting
its universal applicability. Kim et al. [5] further examined the impact of data deduplication
on SSD performance. They proposed managing fingerprints based on temporal locality,
retaining only the most recently generated fingerprints instead of all generated finger-
prints. This method maximized SSD deduplication rate while reducing memory space
consumption. Unfortunately, this technique also required a dedicated hardware processor
similar to CA-SSD, resulting in increased SSD costs. Wu et al. [22] presented ∆FTL (Delta
Flash Translation Layer), a data deduplication method that minimized redundant data in
SSDs using a compression increment strategy. ∆FTL achieved a small compression ratio by
leveraging content locality between written data and its corresponding old version stored
in the SSD. Instead of writing the entire new data, only the compression increment was
stored, ultimately reducing the amount of data written to the SSD. However, during reads,
∆FTL required the SSD to be read twice and the data to be decompressed and merged,
which negatively impacted the read performance. To mitigate the overhead of fingerprint
computation, Chen et al. [23] introduced NF-Dedupe. Unlike traditional deduplication
methods, NF-Dedupe avoided using the time-consuming SHA-1 algorithm for fingerprint
computation. Instead, it employed the weaker CRC32 fingerprint to identify potential du-
plicate data pages. Non-duplicate data were filtered, and only potentially duplicated data
were read from the SSD. Byte-by-byte comparison was then used to confirm duplication,
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thus achieving the desired deduplication effect. Ni et al. [6] presented WOJ (Write-Once
data Journaling), a data journal-based deduplication system. WOJ utilized data deduplica-
tion techniques to eliminate redundant data from the journal records, thus reducing the
amount of data written to the SSD and enhancing the device’s lifespan.

3.3. Path Conflict Resolution in SSD

Previous research has suggested the implementation of an interconnection network
within SSDs to enhance parallelism in flash arrays. Effectively managing path conflicts
is crucial for improving parallelism and performance in SSDs. The HyperLink NAND
flash architecture (HLNAND) utilizes either a daisy-ring or hierarchical ring topology to
connect flash chips [24,25]. In terms of mitigating path conflicts by increasing flash channel
bandwidth, Kim et al. [3] proposed the utilization of packetized communication to enhance
the effective flash memory interconnect bandwidth. They presented the packetized SSD
(pSSD) system architecture, which enables higher effective flash channel bandwidth by
utilizing “packets” instead of dedicated signals. However, this technique necessitates
significant modifications to the NAND flash chip, resulting in substantial overhead and
only partially addressing the path conflict problem. Alternatively, to mitigate path conflicts
by increasing path diversity, Kim et al. [3] proposed the Packet Network Solid State Drive
(pnSSD). This technology incorporates an interconnection network resembling a 2D mesh
topology, providing two paths to access each flash chip and thus reducing the performance
overhead caused by path conflicts. Similarly, Tavakkol et al. [26] suggested replacing
shared multi-channel bus wiring with an interconnection network. They introduced the
Network-on-SSD (NoSSD), which enables pipelined multi-router access to flash memory,
resulting in improved performance and greater bandwidth compared to traditional SSD
architectures. However, Tavakkol’s study lacks implementation details of network routers
and practical models of NoSSD for realistic messaging protocol-related considerations.
Another proposed solution is the Decoupled SSD system, as proposed by Kim et al. [14].
This system decouples the front-end (i.e., cores, system bus) from the back-end (i.e., flash
memory) and incorporates an on-chip network to interconnect the controllers. However,
none of these approaches effectively mitigate the path conflict problem due to their lack
of providing sufficient path diversity between the flash controller and the flash chip. In
contrast, Nadig et al. [27] proposed Venice, a novel mechanism that introduces a cost-
effective interconnection network of flash chips and efficiently utilizes path diversity to
fundamentally address the path conflict problem in SSDs. Venice significantly enhances
SSD performance for various real-world data-intensive workloads.

4. Design
4.1. Design Overview

In order to address the issue of performance degradation caused by read access
conflicts, we have redesigned the existing components of the Flash Translation Layer and
propose a new approach called Data Similarity aware FTL (DS-FTL). The main idea behind
DS-FTL is to evenly distribute the data with the same content across all channels, chips, and
planes as quickly as possible, while also keeping track of the address mapping information.
This allows multiple PPNs to be mapped to a single LPN, enabling data targeting a single
LPN to be read from multiple PPNs. This approach helps avoid stalling due to busy
channel or chip buses during read operations. To achieve this objective, DS-FTL introduces
two novel techniques: the content-aware page allocation scheme and the multi-path read
scheme, as illustrated in Figure 5. The content-aware page allocation scheme determines
the physical address allocation by comparing the new coming data’s content with the
existing data resident inside the SSD. This scheme builds upon state-of-art page allocation
schemes. The multi-path read scheme allows for data to be read from any idle channel or
chip by looking up the mapping table if a LPN has multiple target PPNs.

Based on the above principle, some design challenges are discussed in detail. The
main issue includes:
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1. How to integrate the content similarity comparison into the existing write procedure
inside SSD with less or negligible overhead.

2. How to utilize the physical page with the same content at different parallel units for
read performance improvement, that is how to redesign the mapping management
and IO scheduler inside SSD for multi-path read.
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Figure 5. The Design of Data Similarity aware FTL.

4.2. Content-Aware Page Allocation Scheme

To alleviate the read access conflict issue, it is crucial to ensure that data with the same
content is evenly written across all parallel units. In DS-FTL, we propose a content-aware
allocation scheme that leverages existing page allocation schemes to redirect data to the
parallel unit with the least likelihood of data duplication.

4.2.1. Write Operation Procedure

Figure 6 illustrates the process of writing data into SSD in detail. (1) When a write
request is received from the host, the SSD divides each data into page-sized segments
(e.g., 4 KB) and caches them in the DRAM. The first phase of content comparison involves
calculating the fingerprint (i.e., SHA-1 [5]) of each data segment. This computation time
overhead can be hidden by performing these steps concurrently.

(2) The cached page-sized data segments are evicted from the DRAM and written
into the NAND flash back-end. DS-FTL utilizes existing static or dynamic page allocation
schemes or other widely used schemes [9,10,13,17], to calculate the target PPNs for the
data segments. Then, it looks up the fingerprint table of the corresponding channel, which
records the fingerprints of all resident pages in that channel. It is worth noting that we
maintain the fingerprint table at the channel level, as it imposes the least parallelism
restriction compared to the chip or plane level. In the figure, the symbol “#” denotes the
respective label number.

(3) If the fingerprint of the write request matches one in the channel’s fingerprint table,
indicating that the same data segment is already stored in this channel, a round-robin
approach is used to select the next channel or chip as a candidate until the write sub-request
is serviced.

(4) If the fingerprint does not match, we then update the mapping table and schedule
the write sub-request to be written into this PPN as normal.
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Figure 6. Write operation process.

4.2.2. Data Content Comparison

Due to the limited DRAM space in SSDs, performing byte-to-byte comparisons results
in significant time consumption and computational overhead. In order to mitigate this,
we propose dividing the data content comparison process into three parts. In the first
phase, we employ the bloom filter, which is a hash-function-based algorithm used widely
in data deduplication systems [28], to store written data information. During the page
allocation procedure, our DS-FTL verifies whether the written data contains the same
content on the target channel by employing the bloom filter. Bloom filter is a space-
efficient probabilistic data structure characterized by an m-bit array and k-independent hash
functions h1, h2, ..., hk, where the value domain of the hash function is 1, 2, ..., m. Suppose
the input data set S = X1, X2, ..., Xn has n elements, each element is mapped to a different
position of the array by each hash function, and the value of the corresponding position is
set to 1, x ∈ S, B f [hi(x)] = 1, i ∈ [1, k]. Thus, if the element y has a value of 1 at all positions
mapped by all hash functions, then it is highly likely that this element has existed in the
set S, as shown in Figure 7. On the contrary, if there is any position with a value of 0, the
element must not be in the set S.

Figure 7. Bloom filter design.
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In the second phase, we conduct byte-to-byte comparison further to validate the data
segment having the same content in the channel, and this time-consuming operation is
performed asynchronously in idle time.

After the fast approximate comparison using the bloom filter, DS-FTL compares the
data of the write request with the data comparison set. The data comparison set consists of
PPNs whose data are hashed in the same position in the Bloom filter but are not identical. It
is worth noting that DS-FTL periodically performs the byte-to-byte comparison task in the
background or during idle periods, consuming only limited CPU and memory resources.

In the third phase, after the data content comparison is completed, DS-FTL updates
the mapping table, which is discussed in Section 4.3.1.

4.3. Multi-Path Read Scheme
4.3.1. Address Mapping Management

As data with the same content are distributed across different parallel units, such as
different channels or chips, DS-FTL utilizes the modified mapping table to enable reading
data from an idle channel/chip, even when other channels/chips are busy. This further
enhances parallelism and improves system performance. The existing mapping table in
SSDs typically stores a one-to-one mapping pair between logical and physical addresses.
However, DS-FTL modifies this mapping to a one-to-many (1-to-n) relationship. To facilitate
this, DS-FTL employs a two-level mapping table, as utilized in previous works [4,29], to
record the 1-to-n mapping. The two-level mapping table consists of a preliminary mapping
table and a secondary mapping table. The preliminary mapping table contains entries with
LPN and PPN pairs. The highest bit in the PPN is utilized to indicate whether a lookup in
the secondary mapping table is required. For unique data within the SSD, the mapping
table records the mapping entry as usual. However, for redundant data within the SSD,
multiple LPNs point to the same Virtual Physical Page Number (VPPN), and a lookup in
the secondary mapping table is performed using the VPPN to retrieve the page addresses
with the same content. The garbage collection scheme works as normal; the only difference
is that DS-FTL updates the 1-to-n mapping pair in the secondary mapping table if the data
in the corresponding PPN are deleted.

4.3.2. I/O Scheduling Optimization

Figure 8 illustrates the detailed process of reading data in DS-FTL. Similar to existing
FTL works, DS-FTL handles read sub-requests in the following manner. When a read
sub-request is received by the flash back-end, DS-FTL performs a lookup in the mapping
table and the indirect mapping table to retrieve the associated PPNs. One or several PPNs
may be obtained. DS-FTL then transfers this result to the I/O scheduler and selects an
idle path to retrieve data from one of the resident pages. If a single PPN is obtained,
this indicates that the data to be read are unique within the SSD. In this case, the read
sub-request is directly inserted into the corresponding I/O request queue. However, if a
set of PPNs is obtained, corresponding to multiple chip queues (e.g., chip A queue, chip
B queue, and chip C queue), DS-FTL chooses the chip C queue with the lowest number
of requests and more available idle slots, as depicted in Figure 9. This approach ensures
maximum utilization of the SSD’s parallelism and improves the efficiency of processing
read requests. Furthermore, if there is a sub-request in the selected chip queue that reads
similar data, DS-FTL can merge the two sub-requests to reduce duplicate read operations
and unnecessary time overhead.
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Figure 8. Read optimized design.

Figure 9. I/O scheduling policy optimization.

4.4. Analysis and Limitation Discussions

The SSD typically employ a scrambler module to randomize user data before writing
them into a page. This randomization helps balance the distribution of 1s and 0s and
improves flash reliability [30]. DS-FTL, being aware of the data content, performs data
content comparison before data randomization, allowing it to coexist with the scrambler
module. DS-FTL enhances read performance by distributing duplicate data from the host
across different parallel units. This arrangement enables retrieving data from multiple
candidate physical pages without any blocking in subsequent read operations. The per-
formance benefit of this approach depends on the workload. For workloads with a high
data duplication ratio [31], DS-FTL can effectively improve performance. However, for
workloads with less duplicated data, the write procedure of DS-FTL does not introduce
significant time overhead, as fingerprint computation occurs while the data are cached in
DRAM. Hence, DS-FTL eliminates the overhead associated with hash computation on the
critical write I/O path. Although write performance may slightly degrade due to the bloom
filter, the read performance remains the same as the baseline. In cases where data with the
same content undergo modification, only the PPN is modified, while other data remain in
their default positions. Therefore, the utilization of read/write parallelism remains normal
in the worst-case scenario.
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5. Experiment
5.1. Experimental Environment Setup

We implemented and evaluated our proposed optimization scheme in SSDsim, an
SSD simulator. In this section, we introduce the SSD simulator, SSD configuration and the
characterization of these traces utilized in the experimental section.

5.1.1. SSD Simulator

We used an open-source simulator, SSDsim [13], to implement our proposed scheme.
We modify the page allocation scheme, mapping management module and so on into

SSDsim to evaluate our scheme.

5.1.2. SSD Configurations

According to the hardware information and software configuration in real commercial
SSD, we configured the parameters of the SSDsim for the experiment, as shown in Table 2.

Table 2. SSD configurations.

Parameter Value

Number of SSD channels 8

Chips per Channel 2

Dies per Chip 2

Planes per Die 2

Blocks per Plane 2048

Pages per Block 64

Flash Page Size 4 KB

5.1.3. Workload Characteristics

We utilized a set of block I/O trace data obtained from an operational system running
for several days. These traces were collected from four different end-user/developer home
directories, a course management system, and three network servers, making them widely
applicable in related research [32,33]. Table 3 presents the three-week I/O data for these
workloads and the characteristics of these traces.

5.1.4. Comparison with Other Schemes

In this subsection, we compare the following schemes.

• static allocation [12]. This scheme is a simple but effective page allocation used
widely, it could spread the user data by calculating LPN across the parallel unit evenly.

• dynamic allocation [11]. This scheme improves the write performance by allo-
cating physical pages for write requests in a round-robin way, and sacrifices the
read parallelism.

• HIPA [21]. This scheme uses a load prediction mechanism to monitor chip-level
load in real time, thus determining the page allocation scheme based on the state of
chip-level load and improving SSD read and write parallelism.

• DS-FTL. We implement DS-FTL in the SSD simulator to optimize the read performance
based on the access conflict reduction idea.
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Table 3. Workload characterization.

Trace Total I/Os Write I/Os Write Ratio
Average
Request
Size (KB)

home1 8,973,201 8,882,831 0.990 16.06

home2 5,390,703 4,901,091 0.909 23.47

home3 918,010 908,863 0.990 34.16

home4 2,491,157 2,354,060 0.945 7.99

online 5,700,499 4,211,806 0.739 7.99

webmail 7,795,815 6,381,985 0.819 7.99

webresearch 2,414,031 2,414,008 0.999 24.57

webusers 5,697,272 5,127,101 0.900 12.31

5.2. Results and Analysis

In this section, we empirically investigate the performance of DS-FTL in terms of
read/write latency, data distribution, and channel utilization. Additionally, we compare
the performance of DS-FTL with state-of-the-art schemes.

5.2.1. Read and Write Latency Comparison

To evaluate the performance, we employ different page allocation schemes on eight
real trace files under the same SSD environment configuration. The corresponding average
read and write latency results are normalized and presented in Figure 10.

Figure 10a illustrates the write latency under different allocation schemes. In com-
parison to the two static allocation schemes, DS-FTL exhibits a significant improvement
by reducing the average write latency by up to 54.0% and an average reduction of 24.7%.
When compared to dynamic allocation, DS-FTL achieves a 36.7% decrease in average write
latency, with the largest improvement observed for the webusers trace. In addition, we
compare DS-FTL with the HIPA [21], DS-FTL demonstrates a more substantial reduction in
write latency of 30.3% for write-intensive workloads (e.g., home3 and webusers), with an
overall average write latency reduction of 19.0%.

Figure 10b illustrates the read latency under different allocation schemes. Compared
to the two static allocation schemes, DS-FTL can reduce the average read latency time by
up to 56.3% and 35.3% on average. Compared with dynamic allocation, the average read
latency is reduced by 34.2%. HIPA exhibits better performance in reducing read latency, and
DS-FTL shows a similar performance with HIPA. HIPA is even better on online workloads
with more read requests, but overall, DS-FTL reduces the read latency by up to 23.0% and
9.8% on average compared to HIPA.

5.2.2. Distribution Degree of Redundancy Data

Figure 11 illustrates the average redundancy rate for the eight workloads under
different allocation schemes. The redundancy rate for static allocation ranges from 2.3%
to 46.5%, with an average of 18.5%. The high redundancy rate in the static allocation is
primarily caused by the assignment of duplicate data with the same LPN to the same
planes in webmail workloads. This results in an uneven data distribution, excessive data
duplication, and missed opportunities for parallel read access. The dynamic allocation
scheme, which employs a round-robin mapping strategy with update tokens, effectively
reduces the data duplication rate. The duplication rate in the dynamic allocation ranges
from 1.9% to 29.3%, with an average of 13.5%. In contrast, DS-FTL allocates duplicate
data to different planes whenever possible, enhancing the efficiency of subsequent read
requests. The final duplication rate for DS-FTL ranges from 1.2% to 28.3%, with an average
of 12.2%. In comparison to static and dynamic allocation, DS-FTL consistently reduces data
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duplication in individual planes across all workloads, resulting in a reduction ranging from
3.4% to 62.8%, with an average reduction of 23.6%.

(a)

(b)

Figure 10. Read and write latency under different allocation schemes. (a) Write Latency. (b) Read
Latency.

To further investigate the impact of DS-FTL on reducing data duplication, we compare
the duplication rates between static allocation and DS-FTL in different planes for the home2
workload, as demonstrated in Figure 12. DS-FTL significantly reduces the duplication rate
in planes with a high density of duplicate data, enhancing uniformity in the overall data
distribution.
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Figure 11. Data redundancy rate under different allocation schemes.

Figure 12. Duplication rate of home2 in each plane.

5.2.3. Proportion of Read and Write Requests That Are Redirected

We evaluated the percentage of redirected read and write requests, as depicted in
Figure 13. Redirected requests refer to those where the target PPN is occupied, causing the
system to read data from alternative candidate PPNs in the mapping table. As mentioned in
the previous subsection, the webmail workload contains a significant amount of duplicate
data with the same LPN. To address this, DS-FTL assigns these duplicate data to different
planes and reads them from the candidate physical address, resulting in relatively higher
redirected read and write request ratios of 15.6% and 29.2%, respectively. On the other
hand, the home3 workload exhibits a smaller number of read and write requests, leading
to lower probabilities of data duplication within the same plane. Consequently, the final
redirected read and write ratios for the home3 workload are smaller, at 1.46% and 1.48%,
respectively. In general, workloads with a higher occurrence of duplicate data and a greater
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number of write requests tend to have a higher proportion of redirected read, while the
proportion is lower for other scenarios. Overall, the average percentage of redirected read
and write requests across all eight workloads is 8.21% and 10.5%, respectively.

Figure 13. Redirected read/write request ratio.

5.2.4. Comparison of Channel Utilization

Figure 14 illustrates the standard deviation of channel utilization for the eight work-
loads under different allocation schemes. A higher standard deviation value indicates a
greater disparity in channel utilization and a more uneven distribution of read and write
requests. As depicted in Figure 14, the standard deviation for static allocation ranges from
0.30 to 3.00, with an average of 1.12. Similarly, the standard deviation for HIPA ranges from
0.23 to 3.52, with an average of 1.11, demonstrating little difference from static allocation.
In contrast, DS-FTL effectively reduces the unevenness of channel utilization by allocating
duplicate data to different planes. The standard deviation of DS-FTL ranges from 0.22 to
1.31, with an average of 0.61, representing a significant improvement compared to the pre-
vious allocation schemes. This reduction in standard deviation demonstrates the improved
balance in channel utilization achieved by DS-FTL.

Figure 14. Standard deviation of channel utilization.
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6. Conclusions

Motivated by the observation of under-utilization issues in parallel units, such as
channels and NAND flash chips, as well as the phenomenon of data duplication, we have
developed a data similarity Flash Translation Layer to address the read access conflict
problem. Our approach is based on the principle that the FTL distributes page-sized data
with identical content across different parallel units and records this information in the
mapping table. In DS-FTL, we introduce two novel schemes. The first is the content-
aware page allocation scheme, which optimizes storage efficiency and reduces conflicts
by intelligently allocating physical addresses based on content similarity. The second is
the multi-path read scheme, which improves read performance and utilizes SSD resources
effectively by allowing data to be read from any available idle channel or chip through a
mapping table lookup for LPNs with multiple corresponding PPNs. This allows for the
alleviation of read access conflicts by enabling data to be read from multiple alternative
pages in different parallel units. We conducted a series of experiments to evaluate our
proposed scheme, and the results demonstrate that it achieves an average read performance
improvement of up to 35.3%. Our research is dedicated to enhancing the parallelism
and read performance which ignore high-density NAND flash-based SSDs. As high-
density NAND flash becomes the mainstream technology, identifying a feasible method of
employing DS-FTL in high-density NAND flash-based SSDs has become a key issue, where
high-density NAND flash (e.g., TLC, QLC and PLC) exhibits high latency and renders
byte-to-byte comparison unacceptable for inline deduplication. We intend to devote our
efforts to developing more effective data deduplication schemes for high-density NAND
flash-based SSDs.
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