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Featured Application: The proposed bi-objective model is suitable to provide solutions for the
bus synchronization problem to enhance successful transfers in public transportation, consider-
ing the cost of the system and the quality of service provided to the users.

Abstract: Modern cities heavily rely on public transport systems to enhance citizen access to urban
services and promote sustainability. To optimize public transport, intelligent computer-aided tools
play a pivotal role in decision making. This article tackles the complex challenge of bus timetabling,
specifically focusing on improving multi-leg trips or transfers. It introduces a novel multi-objective
Mixed-Integer Programming Linear (MILP) model that concurrently maximizes passenger transfers
and minimizes budgetary costs, while also adhering to the minimum required quality-of-service con-
straints for regular (non-multi-leg) trips, and an exact resolution approach based on the ε-constraint
method to obtain a set of efficient solutions is used. The competitiveness of the model is validated via
a computational experimentation performed over real-world scenarios from the public transportation
system of Montevideo, Uruguay. The findings evinced that the MILP model was able to compute a
set of Pareto efficient solutions that explore the tradeoff between the number of successful transfers
and the cost of the system. Moreover, the best tradeoff solutions surpass the current city timetable,
excelling in both the number of transfers and cost efficiency.

Keywords: smart public transport; bus timetabling problem; mixed integer programming; bi-objective
optimization

1. Introduction

The paradigm of smart cities involves the development of interconnected and intel-
ligent systems to enhance the livability and sustainability of the cities [1]. Within this
framework, a key component is the implementation of smart mobility, which entails de-
signing and operating intelligent transportation networks using cutting-edge technological
approaches and effective methods for planning, operation, and management [2].

An emerging problem for decision makers in current cities is the escalating depen-
dence of cars and non-sustainable transportation modes. This upward trend not only has
detrimental effects on the environment of the city, including greenhouse gas emissions,
visual and noise pollution, and inefficient fuel resource utilization [3–5], but it also con-
tributes to an increased number of road traffic accidents [6]. In order to tackle this issue,
the paradigm of smart mobility places a strong emphasis on utilizing public transportation
systems [7]. By incorporating efficient vehicles, electric vehicles, and other innovative
modes of transportation, it aims to mitigate pollution, alleviate traffic congestion, and ad-
dress various related challenges. However, in order to encourage citizens to choose public
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transportation over private vehicles, the operation of public transport systems must be
adapted to the needs of inhabitants [8,9], which requires a careful planning stage of the
public transport modes.

Planning and operation of public transport systems involves several decision-making
problems including route design, timetabling, and drivers’ scheduling, among others [10].
This work focuses on the timetabling problem, i.e., determining bus trip frequencies for
a specific operating period [11]. Achieving synchronization of multi-leg (transfer) trips
is a critical aspect of the timetabling problem. Synchronization implies ensuring that
passengers that have to combine different modes of transport (e.g., different bus lines)
to reach their destination have sufficient time to alight from one mode of transport and
board the other mode of transport in intermediate stops [12]. Among the diverse modes
of transport, the synchronization of timetables of bus lines is widely recognized as a
highly complex problem in public transport [13–15]. Experienced public transportation
planners and managers often resort to custom intuitive approaches to ensure a satisfactory
level of service for citizens. In our previous publications [16–18], we have proposed
exact and metaheuristic approaches to address an expanded version of the multi-trips
synchronization problem, which takes into account extended transfer zones. This article
extends our previous work “Smart mobility for public transport systems: Improved bus
timetabling for synchronizing transfers”, presented in V Ibero-American Congress of Smart
Cities, 2022. The new contents include (i) a new mathematical formulation which aims to
simultaneously maximize successful transfers and minimize the budgetary cost; (ii) the
implementation of an exact resolution algorithm to solve the bi-objective optimization
problem and obtain a set of Pareto efficient solutions; and (iii) an extended experimental
evaluation of over 25 problem instances including instances with a diverse number of bus
lines based on the city of Montevideo.

This article is organized as described in the following. Section 2 presents the bi-
objective Bus Synchronization Problem (BSP), including the main related work, the bus
occupation and cost models, and the mathematical formulation. Section 3 describes the
proposed methodology for solving the problem. Section 4 presents the computational
experimentation, with a description of the implementation details, the instances used,
and the main numerical results. Lastly, Section 5 provides a summary of the key findings
from this study and suggests potential directions for future research. Table 1 presents the
main abbreviations, parameters and variables used in this article.

Table 1. Description of abbreviations and notation used in the article.

Abbreviations

STM Metropolitan Transport System of Montevideo
BSP Bus Synchronization Problem
MILP Mixed Integer Linear Problem
CT Current Timetable of Montevideo
QoS Quality of Service
CO2 Carbon Dioxide
GPS Global Positioning System

Global parameters and variables

[0, T] planning period

Bus occupation model

tsi average daily number of tickets sold for line i
Λi rate at which passengers board buses on line i
Li travel distance for passengers on line i
Vi average speed of buses on line i
tdi time a passenger spends on a bus before alighting
T2Ei end-to-end travel time for buses on line i
Fi fixed headway for line i
samples number of simulations performed
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Table 1. Cont.

Cost model

VH Operating hours of a bus
VKM Distance traveled by a bus in kilometers
UVH Unitary cost per operating hour of buses
UVKM Unitary cost per kilometer traveled by a bus

Mathematical formulation of Bus Synchronization Problem

H Set of bus lines

B Set of transfer zones

RH Set of indices of available trips for bus line h ∈ H along the planning horizon

T Duration of the planning horizon, measured in minutes.

Demhg
b

Estimated demand for transfers between lines h, g ∈ H at transfer zone b ∈ B during the
whole planning horizon.

Coh Cost per trip for bus line h ∈ H

Wdhg
b

Time that takes to users to walk between bus stops of bus lines h ∈ H and g ∈ H in transfer
zone b ∈ B.

Tolhg
b

maximum threshold time that users are willing to wait for a transfer from bus line h ∈ H to
bus line g ∈ H in a transfer zone b ∈ B.

TTh
b

Travel time that requires a bus line h ∈ H to travel from the departure station to transfer zone
b ∈ B.

Nh
Minimum number of trips of bus line h ∈ H to guarantee the quality of service for users who
do not transfer.

Hdmin
h Minimum bound for the headway of bus line h ∈ H.

Hdmax
h Maximum bound for the headway of bus line h ∈ H.

ah
rb

Continuous variable that indicates the time when users alight from the trip r ∈ Rh of bus line
h ∈ H at the transfer zone b ∈ B.

qh
r Binary variable that is 1 when trip r ∈ Rh of line h ∈ H is to be scheduled.

xh
r Continuous variable that indicates the departure time of trip r ∈ Rh of bus line h ∈ H.

zhg
rsb

Binary variable that is 1 when the trip r ∈ Rh of line h ∈ H and the trip s ∈ Rg of line g ∈ H
are synchronized at transfer zone b ∈ B and 0 otherwise.

2. The Bus Synchronization Problem

This section presents the bi-objective BSP under the operational premises of the city of
Montevideo, including the conceptual problem, the tailor-made bus occupation and cost
models, the mathematical formulation, and the main related works.

2.1. The Bi-Objective Bus Synchronization Problem in Montevideo

The target problem of this work is based on the public transport system in Montev-
ideo, Uruguay, which is operated under the Metropolitan Transport System (STM) [19].
The STM was implemented to integrate all public transport services in Montevideo and
its metropolitan area, including urban agglomerations in nearby departments, namely
Canelones and San José. In total, the STM consists of 145 main bus lines, over a thousand
line variants, and approximately five thousand bus stops across three departments [20].
These numbers are substantial for a city like Montevideo and emphasize the importance
of effective planning to ensure a high-quality service for citizens relying on public trans-
portation. Since its beginning, the STM has introduced various technologies to enhance the
efficiency of public transport. One significant advancement was the implementation of a
smart card payment system for trips [21,22]. Apart from diverse practical advantages for
users, the smart card enables the collection of relevant data and facilitates the extraction
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of valuable insights into the mobility patterns of Montevideo’s citizens [18]. The STM
system stores historical data on the number of trips, ticket sales, GPS records for each bus,
and other relevant information [21]. These data have been utilized to develop official and
third-party applications that provide accurate information and engage with users.

Passengers using the STM have two main options to reach their destinations. They
can choose the traditional “direct” trips, which involve traveling from the origin to the
destination without any transfers. Alternatively, passengers can opt for multi-leg trips,
also known as transfers [23], within a specified time frame (e.g., one hour or two hours)
using the STM card. Within this context, the target Bus Synchronization Problem aims to
determine the optimal arrangement of headways (i.e., time intervals between consecutive
trips of the same bus line) for each line, in order to simultaneously maximize the number
of successful transfers and minimize the cost of the system. Transfers are successful or
effective only when two trips are synchronized, i.e., when a passenger has sufficient time
to walk from the bus stop from which they alighted the first trip to the stop in which they
are going to board the second trip. Additionally, the waiting time at the bus stop for the
second trip must not exceed a certain threshold, ensuring a minimum quality of service
(QoS) for passengers. Synchronizing transfers is also a very relevant issue in backbone-type
networks for public transportation, such as the one proposed for Montevideo [24].

Driving travel times in a urban zone can be highly uncertain since they depend on
several aspects (traffic, streets network conditions, weather, etc.). However, by analogy with
similar works of the related literature [25,26], the timetabling problem is addressed within
a reference interval, during which relevant data for the problem—such as travel times
between points and passenger volumes per unit of time—can be considered steady and
of uniform distribution. This contributes to simplifying the complex timetabling problem
and enables obtaining (near) optimal schedules for a specific period of interest, such as
peak hours of the transport system. A particular feature of the model addressed in this
work in comparison to others of the related literature is that the model does not assume a
predetermined number of trips per line. Instead, the model considers that headways must
fall within pre-established minimum and maximum values for each bus line. Additionally,
the model guarantees a minimum number of trips per bus line to provide the quality of
service for users who do not transfer.

2.2. Bus Occupation Model

Concerning the proposed bus occupancy model, it combines random passenger board-
ing with deterministic alighting processes. The random boarding process is based on a
Poisson distribution, which is a probabilistic distribution that is a commonly used model
for random arrivals that are independent and identically distributed [27,28]. Given the
assumption of regularity throughout the planning period—during which relevant data for
the problem can be considered steady—the Poisson process is considered to have a fixed
rate. Consequently, given the average daily number of tickets sold for line i within the
planning period [0, T], represented by tsi, the rate at which passengers board any bus on
that line is denoted as Λi = tsi/T. Λi signifies the rate of passengers that any running bus
i is expected to pick up, including those who board at any bus stop along the entire set of
stops covered by the bus line. The bus occupancy model requires a reference occupancy
distribution for each individual bus. By assuming independent passenger arrivals and
considering the large number of bus stops, the arrival process at each bus can also be
characterized as a Poisson process, and its arrival rate needs to be adjusted to match the
overall line’s arrival rate. In contrast, the rate of passengers alighting is assumed to be
deterministic and constant. Let Li represent the travel distance for passengers on line i,
and Vi represent the average speed of buses on the same line. The time each passenger
spends on a bus before disembarking can be calculated as tdi = Li/Vi. All buses on line
i commence their trips empty, to pick up passengers along the route. Since the alighting
time is fixed at tdi, during the time interval [0, tdi], buses solely receive new passengers (i.e.,
no passengers disembark during this interval). This interval is referred to as the ramp-up
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period. The end-to-end travel time for buses on line i, denoted as T2Ei, is known because it
is calculated from Global Positioning System (GPS) records for each bus. For consistency,
the model also assumes a ramp-down period at the end, specifically [T2Ei − tdi, T2Ei], dur-
ing which no new passengers board the bus. Finally, the bus occupancy model assumes
fixed headways, represented as Fi, for each line i. If passengers for a particular line are
evenly distributed throughout the entire end-to-end travel time, the arrival rate for each bus
would be Λi · Fi/T2Ei. However, to maintain the expected number of tickets sold, the rate
must be adjusted to Λi = Λi · Fi/(T2Ei − tdi), taking into account the ramp-down period.

The previous model was implemented using the discrete event simulator as in
Algorithm 1, where function poissrnd (Λi, T2Ei − tdi) draws T2Ei − tdi samples of in-
dependent and identically distributed Poisson random variables of parameter Λi. The
parameter Samples indicates the number of simulations to be performed.

Algorithm 1 Bus Occupation Simulator

Input: Samples, T, Λi, T2Ei, tdi

1: busocup← zeros(Samples, T2Ei) . A T2Ei minutes simulation per-row
2: for {s← 1; s ≤ Samples; s++} do
3: arrivals = poissrnd(Λi, T2Ei − tdi) . One Poisson sample per-minute&simulation
4: busoccup(s, 1) = arrivals(1)
5: for {t← 2; t ≤ tdi; t++} do . Ramp-up: arrivals only
6: busoccup(s, t) = busoccup(s, t− 1) + arrivals(t)
7: for {t← tdi+1; t ≤ T2Ei−tdi; t++} do . Cruise: arrivals and alightments
8: busoccup(s, t) = busoccup(s, t− 1) + arrivals(t)− arrivals(t− tdi)

9: for {t← T2Ei − tdi+1; t ≤ T2Ei; t++} do . Ramp-down: alightments only
10: busoccup(s, t) = busoccup(s, t− 1)− arrivals(t− tdi)

Output: arrivals ∈ NSamples,T2Ei

A sample distribution of passengers on a bus is illustrated in Figure 1. In this figure,
the magenta crosses represent outliers in the sample. It must be ensured that the whiskers
of the box plot do not exceed the bus capacity, which is 65 passengers in the given case
study. Therefore, for each line i, larger values of Fi are explored until an upper whisker
reaches the passenger limit. Let Fi represent the maximum headway that respects this
requirement for line i. Then, for respecting the capacity of the buses, higher outliers—those
located above the upper whiskers—were excluded from consideration.

Figure 1. Box plot of an example simulation of the bus occupation along a T2Ei = 60 min end-to-end
travel with tdi = 16 min and Λi =

9
8 min−1, after Samples = 10,000 simulations.
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2.3. The Cost Model

As aforementioned, the proposed model considers two different objectives: the number
of successful transfers and the cost of the system. For estimating the cost of the system,
several aspects of the case study are taken into account.

The local authorities in Montevideo conduct regular analyses of the expenses related
to the bus system to calculate the kilometer-based fare. This information is utilized to
determine the level of state subsidies allocated to the system. Various types of subsidies
are applied for public transportation in Montevideo, with two being particularly note-
worthy [29]. The first type involves a discounted fuel price that benefits the bus system,
whereas the second type entails reduced fares for specific user groups such as students,
those retired, and commuters who travel to and from their destinations on a consistent basis.
These subsidies have a substantial impact on the cost structure of the system. For instance,
the discounted fuel price significantly reduces the cost burden in comparison to other bus
systems. In Montevideo, it accounts for only 5% of the total estimated cost [30], as opposed
to 13% in comparable public transportation systems [31]. Nevertheless, the discounted
fuel price poses a significant cost for the Uruguayan government. Recently, Montevideo
has initiated a shift from diesel to electric buses as part of an environmentally conscious
approach [5]. The primary objective of this shift is to decrease fossil fuel consumption and
mitigate greenhouse gas emissions.

The two primary expenses in the system consist of the driver’s salary and the cost of
fuel or electricity, depending on the type of bus (diesel or electric). These costs correspond
to the operating hours (UVH) for the driver’s salary and the distance traveled (UVKM) for
fuel or electricity expenses.The driver’s salary totals 9.2 USD per hour, which encompasses
an 8 USD basic wage along with 1.2 USD in social charges. In term of fuel, the average
consumption for a standard diesel bus operating in Montevideo is 0.396 L per kilometer,
with the fuel price in the city being approximately 1.6 USD per liter.

The costs models considered for public transportation varies according to their distinct
objectives [31]. In this article, the focus is on the problem of determining bus schedule
headways without affecting the layout of the bus lines. In cases where the bus line layout
remains fixed, the cost functions generally are composed of linear combinations of several
unit costs for relevant parameters, such as the bus operating time and the distance trav-
eled [32–34]. Although more complex models can be devised, practitioners also commonly
employ these linear functions since they are simple to understand and use in the decision-
making process [35]. Hence, this article employs a cost function that is associated with
vehicle operating time and distance-traveled variables.

Regarding vehicle operating time, certain operating costs (driver salaries and admin-
istrative supervision hours) are directly associated with the number of vehicle operating
hours. Consequently, these expenses are appropriately distributed based on vehicle hours.
Moreover, vehicle hours are frequently utilized as a proxy for the working hours of em-
ployees in cost models, due to their simplicity of calculation [36].

Regarding vehicle distance, several operating costs, including fuel, oil, tires, and vehi-
cle maintenance, are directly related to the distance traveled by buses. Operating costs are
determined based on statistical information about operating time and distance traveled [37].
Some linear cost models incorporate the number of buses on the system [33] or consider the
number of vehicles needed to meet peak-hour demand, which differs from the demand in
off-peak periods [36]. The proposed model focuses on studying time windows during peak
hours, assuming a fixed fleet size. Furthermore, the examined case study corresponds to a
system with a relatively stable fleet size, as new buses are acquired every five years or even
longer. The employed cost function is given as Cost = UVH ·VH +UVKM ·VKM, with VH
representing operating hours and VKM the distance traveled by buses. UVH denotes the
hourly unit costs, and UVKM denotes the unit costs per kilometer.
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2.4. Mathematical Formulation

An assumption that is made is that during the planning horizon T, some relevant data
remain stable and follow a uniform distribution. For example, travel times. However, travel
times are generally affected by special conditions, such as traffic or street blockades, due to
repair works or special fairs (e.g., fairs of food producers which are usual in Montevideo).
In this model it is considered constant for the planning period, which is a usual convention
in planning problems. Another relevant aspect is that demand for transfers is uniform
throughout the planning horizon.

For defining the mathematical formulation of the bi-objective BSP, the following sets,
parameters, and variables are used.

Sets

H = set of bus lines. The routes of buses are fixed and known in advance.
B = set of transfer zones. A transfer zone is a geographic area that includes two nearby
bus stops from different bus lines.
Rh = set of indices of available trips for bus line h ∈ H along the planning horizon.

Parameters

T = duration of the planning horizon, measured in minutes.
Demhg

b = the estimated demand for transfers between lines h, g ∈ H at transfer zone b ∈ B
during the whole planning horizon. Demand is uniform throughout that period.
Coh = cost per trip for bus line h ∈ H.
Wdhg

b = time that takes for users to walk between bus stops of bus lines h ∈ H and g ∈ H
in transfer zone b ∈ B.
Tolhg

b = maximum threshold time that users are willing to wait for a transfer from bus line
h ∈ H to bus line g ∈ H in transfer zone b ∈ B.
TTh

b = travel time that requires bus line h ∈ H to travel from the departure station
(beginning of the line) to transfer zone b ∈ B.
Nh = minimum number of trips of bus line h ∈ H to guarantee the quality of service for
users who do not transfer.
Hdmin

h = minimum bound for the headway of bus line h ∈ H.
Hdmax

h = maximum bound for the headway of bus line h ∈ H.

Variables

ah
rb = (continuous) time when users alight from the trip r ∈ Rh of bus line h ∈ H at the

transfer zone b ∈ B.
qh

r = (binary) 1 when trip r ∈ Rh of line h ∈ H is to be scheduled.
xh

r = (continuous) departure time of trip r ∈ Rh of bus line h ∈ H.
zhg

rsb = (binary) 1 when the trip r ∈ Rh of line h ∈ H and the trip s ∈ Rg of line g ∈ H are
synchronized at transfer zone b ∈ B and 0 otherwise.

A relevant feature is that the model does not assume a predefined number of trips per
bus line. Although there is a maximum number of possible trips for each bus line h ∈ H,
i.e., |Rg|, not all the trips have to be used. Conversely, the model aims at obtaining good
headways and offset within the minimum and maximum specified headways’ bounds,
i.e., Hdmin

h and Hdmax
h .

The utmost time interval that passengers are willing to wait before boarding line j,
subsequent to alighting from line i and traversing to the relevant stop of line j at transfer
zone b, is designated as Wij

b . Then, it is considered that two trips, one of line i and the other
of line j, are synchronized when the following conditions hold: (i) passengers are able to
alight from line i and reach the second bus stop in time to catch the trip of line j; (ii) the
waiting time for these passengers at the bus stop awaiting the transfer is less than or equal
to Wij

b ; and (iii) both of the previous conditions occur within the defined planning period.
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With these elements, the MILP model formulation can be presented as follows:

max FOt = ∑
b∈B

∑
h,g∈H

∑
r∈Rh ,r>1

∑
s∈Rg

(
zhg

rsb ·
Demhg

b × (xh
r − xh

r−1)

T

)
(1)

min FOc = ∑
h∈H

Coh ·
(

∑
r∈Rh

qi
r

)
(2)

s.t. zhg
rsb ≤ 1 +

(ah
rb + Wdhg

b + Tolhg
b )− ag

sb
BigM

, ∀ h, g ∈ H, r ∈ Rh,
s ∈ Rg, b ∈ B

(3)

zhg
rsb ≤ 1 +

ag
sb − (ah

rb + Wdhg
b )

BigM
, ∀ h, g ∈ H, r ∈ Rh,

s ∈ Rg, b ∈ B
(4)

ah
rb = xh

r+TTh
b , ∀ h ∈ H, r ∈ Rh

b ∈ B,
(5)

∑
s∈Rg

zhg
rsb ≤ 1, ∀ h, g ∈ H, r ∈ Rh,

b ∈ B
(6)

T + 1− xh
r

T + 1
≤ qh

r , ∀ h ∈ H, r ∈ Rh (7)

qh
r ≤ 1 +

T − xh
r

N
, ∀ h ∈ H, r ∈ Rh (8)

zhg
rsb ≤ qg

s , ∀h, g ∈ H, r ∈ Rh,
s ∈ Rg, b ∈ B

(9)

∑
r∈Rh

qh
r ≥ Nh, ∀ h ∈ H (10)

Hdmin
h ≤ xh

r − xh
r−1,

∀ h ∈ H,
r ∈ Rh, r > 1

(11)

xh
r − xh

r−1 ≤ Hdmax
h ,

∀ h ∈ H,
r ∈ Rh, r > 1

(12)

0 ≤ xh
0 ≤ Hdmax

h , ∀ h ∈ H (13)

z, q∈{0, 1}, x, a ≥ 0 (14)

The objective function outlined in Equation (1) aims at maximizing the demand
fulfilled by the successful transfers throughout the planning period by considering the
transfer between all the trips of any pair of bus lines in all the transfer zones. The de-
mand is calculated under the assumption of uniform distribution in the planning horizon
and thus is directly proportional to the interval of time between two consecutive trips
(xh

r − xh
r−1) as long as a successful transfer was achieved (zhg

rsb = 1). The objective
function (2) aims at minimizing the cost of the system in which each bus line is multi-
plied by a cost parameter Coh estimated with the cost model described in Section 2.3.
Clearly, both objective functions represent conflicting goals. In the pursuit of increasing
the number of possible transfers, it becomes necessary to schedule a greater number of
trips of the bus lines, thereby escalating the overall system cost. Conversely, opting for a
more reduced cost of the system by scheduling only a limited number of trips may lead
to challenges in effectively synchronizing successful transfers. Regarding Constraints,
Constraint (3) enforces zhg

rsb to take value 0 whenever passengers should wait longer than

Tolhg
b at transfer zone b ∈ B before the next trip of bus line g ∈ H arrives (i.e., when

a successful transfer is not achieved). BigM is a sufficiently large value to prevent the
right-hand side from becoming negative. Constraint (4) forces zhg

rsb to be 0 if passengers
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from trip r ∈ Rh of line h ∈ H do not have enough time to walk to the subsequent bus
stop at zone b ∈ B to board the s ∈ Rg of line g ∈ H. Constraint (5) calculates the auxiliary
variable ah

rb, which indicates the arrival time of trip r ∈ Rh of bus line h ∈ H to transfer
zone b ∈ B, adding the travel time to the zone to the departure time.

The characterization of synchronization events with zhg
rsb variables deserves further

elaboration. Figure 2 shows a hypothetical synchronization attempt, where a passenger
on the r-th bus on line h alights at some stop with the intention of boarding the next bus
on line g. Let us assume that the picture spans the entire transfer zone b, that is, there
are only two stops involved. The time at which this passenger arrives at the first stop is
ah

rb = xh
r+TTh

b : the result of adding the departure time of the bus r (xh
r ) with the travel

time TTh
b is necessary for that bus to move from the departure station until transshipment

zone b.

route of line h

route of line g

(s-th bus, line g)

(r-th bus, line h)

bus stop
for line h

bus stop
for line gwalking path

between stops

Figure 2. Actors and entities of a synchronization event with the path of vehicles and users indicated
in dashed blue and red lines, respectively.

In the example above, the boarding stop is different from the first, so the passenger
has to walk to the other stop to catch the next bus, which requires a walking time Wdhg

b .
Those situations where both stops are one (i.e., there is no need to walk) can be modeled
by setting Wdhg

b = 0. Once the passenger arrives at the bus stop for line g, they take the
following bus, namely the s-th bus of that line, which arrives at time ag

sb = xg
s +TTg

b . Both
arrival times are computed by means of constraint (5).

Observe that in Equation (1), since variables zhg
rsb are factors multiplying positive values

(0 < Hdmin
h ≤ xh

r − xh
r−1 because of Equation (11)), the optimization itself is going to push

zhg
rsb values upwards, so zhg

rsb are to be 1 whenever they allowed for it. When the arrival time

ag
sb of bus s surpasses the time at which the passenger reaches the second stop (ah

rb + Wdhg
b ),

plus the waiting tolerance (Tolhg
b ), Equation (3) prohibits zhg

rsb from having a value of 1. In
addition, the bus s cannot be taken by the passenger when the bus arrives at the stop (ag

sb)

earlier than the passenger itself (ah
rb + Wdhg

b ), a case that is covered by Equation (4). It is
possible yet that more than one bus (s1, s2, etc.) could satisfy Equations (3) and (4). Since the
passenger is only to take one bus, constraint (6) sets that the number of transfers between
two trips of two bus lines in the same transfer zone cannot be counted more than once.

Constraint (7) forces qh
r to be 1 when the trip r ∈ Rh of bus line h ∈ H is to be scheduled

(within the planning horizon). Only the trips that are scheduled with a departing time
within the planning horizon (i.e., less than or equal to T) are considered valid trips and
are counted in the solution. Complementary, Constraint (8) forces qh

r to be 0 when a trip is
scheduled with a departing time beyond the planning horizon, i.e., hh

r > T; thus, it is not
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part of the solution. To summarize, only those trips scheduled with a departing time within
the planning horizon are considered valid. The trips scheduled beyond this time are unused
trips for that bus line. Whenever the s-th trip of g ∈ H (i.e., s ∈ Rg) is not to be scheduled,
passengers from any other trip r ∈ Rh at any zone b ∈ B cannot transfer to it. The last fact
is captured by Constraint (9). The values for Nh with h ∈ H are the result of the QoS model
in Section 2.2. For every line h in the system, Constraint (10) schedules—at least—the
minimum number of trips required to statistically prevent congestion. Constraints (11)
and (12) impose the time interval between two consecutive trips of the same bus line (i.e.,
the headway) to fall within the predefined boundaries of Hdmin

h and Hdmax
h , respectively.

Similarly, Constraint (13) enforces that the first trip of each bus line h ∈ H in the planning
horizon, i.e., xh

1 , departs in the interval [0, Hdmax
h ]. Finally, Constraints (14) succinctly assert

the nature of the variables.
The presence of products zhg

rsb(xh
r − xh

r−1) in the objective function renders the for-
mulation akin to a Mixed-Integer Quadratic Programming (MIQP) problem. Addressing
non-linear programming presents a distinct challenge compared to linear problems, usually
requiring a larger amount of computational resources [38,39]. To tackle this issue, the
variable transformation proposed by [40] is used. Let us define yhg

rsb as zhg
rsb(xh

r − xh
r−1). After

the redefinition of variables, the linear objective becomes
∑b∈B ∑h,g∈H ∑r∈Rh ∑s∈Rg yhg

rsb ·Demhg
b

T . To
ensure equivalence between the original objective and the modified version, two equations
are added for each yhg

rsb variable: (i) yhg
rsb ≤ (xh

r−xh
r−1) and (ii) yhg

rsb ≤ Hdmax
h · zhg

rsb.

It is important to highlight that within a maximization context, variables yhg
rsb strive to

attain the highest possible value. Thus, the third restriction of method proposed by [40]—
to force yhg

rsb to adopt value (xh
r−xh

r−1) when zhg
rsb = 1—is not necessary. In this manner,

the introduced variable transformation renders the problem linear, akin to Mixed Integer
Linear Programming (MILP), alleviating the computational complexities associated with
quadratic terms.

2.5. Related Work

The topic of bus timetabling has been explored in various studies with different
criteria [26]. The most commonly considered optimization objectives include minimizing
user waiting time as well as the required number of buses for providing the service or the
total travel time of buses, and maximizing the occupation of buses. Only a few works have
addressed the optimization of bus frequencies to enhance synchronization between buses or
with other modes of transportation [26]. Improving synchronization involves designing trip
schedules that ensure buses arrive at transfer zones at convenient times that facilitate users
to take other buses in the zone. A convenient transfer should achieve a balance by ensuring
that waiting times are brief to enhance passenger Quality of Service (QoS), while also being
sufficiently long to enable passengers to transfer smoothly from one line to another [25].
Consequently, the Synchronization Bus Problem aims to determine the departing time
for each trip of each bus line in a network in order to maximize the number of successful
transfers in synchronization nodes. Additionally, due to its computational complexity,
there is a scarcity of research that employs exact methods to solve the Bus Synchronization
Problem (BSP). The computational complexity was proved for both single-objective [26]
and multi-objective versions of the problem [41].

As far as we are concerned, there is no work that addresses the multi-objective bus
synchronization problem with a multi-objective exact resolution algorithm. However, there
are a few works that solved, with exact methods, a single-objective version of the problem.
In their work, Ibarra and Rios [42] introduced an exact mathematical formulation of the
problem to address small instances. However, due to the computational complexity of the
problem, this exact formulation becomes intractable for large instances. Another group of
authors that used mathematical formulations for this problem were Fouilhoux et al. [25].
In their formulation, the number of trips per bus line was considered fixed. To strengthen
the formulation, they proposed some valid inequalities to strengthen the formulation. They
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demonstrated that these valid inequalities offer a stronger formulation of the problem,
enabling the solution of instances of practical size that would otherwise be unsolvable
with the plain mathematical formulation. In a more comprehensive model, Chu et al. [43]
focused on reducing passenger travel time from the start of their journey to their destination
as the primary objective, with the synchronization of buses being a subordinate result of
this objective. The authors presented two different mathematical formulations: a plain
formulation similar to other related works, and a formulation based on set-partitioning.
The formulation based on set-partitioning proved to be more competitive to solve larger
instances in smaller computing times than the plain formulation. Cortés et al. [44] presented
a bus synchronization planning problem that, as a novel feature, considers dwelling
times. In operating models, the dwelling time refers to the duration that a bus remains
stopped at a bus stop. Despite being an important factor to consider for day-to-day
operations management, when it comes to models used in the tactical planning stage of
the system, the dwelling time is often not taken into account. The authors proposed a
MILP model to obtain the specific timetables and the duration of the dwelling periods
of the buses that maximize the number of successful transfers. The model is enhanced
via the introduction of some valid inequalities. The computational experimentation is
performed in real instances of the transport system of Santiago de Chile, showing that
solutions obtained with the model have around 70% more transfers than the current base-
case operation. In our previous article [18], we focused on addressing two distinct variants
of the Bus Synchronization Problem (BSP) specifically during peak hours. The first variant
considered buses of the same line departing at regular intervals, requiring determination
of only the offset, i.e., the departure time of the first bus. The second variant allowed for
variable headways between consecutive bus departures of the same bus line within given
predefined limits. To tackle both variants, we developed an exact MILP formulation. We
applied this formulation to real instances retrieved from the bus network of the city of
Montevideo. The results significantly outperformed the current schedules used in the city
in terms of the number of successful transfers achieved and average waiting times for users.
Our proposed schedules demonstrated clear improvements over the existing schedules,
highlighting the efficacy of our approach.

Among the authors that addressed this problem with heuristic methods is the work
of Wu et al. [41], who proposed a multi-objective optimization model for the bus syn-
chronization problem to obtain solutions which simultaneously balance the objectives of
maximizing the number of successful transfers and minimize the deviation from the depar-
ture times of the previous timetable. This is performed in order to acknowledge the impact
that the redesign of the timetable of the existing schedule can have on the usual trip plans of
passengers. They addressed the problem using a non-dominated sorting genetic algorithm
(NSGA-II) as a solution approach and performed a computational experimentation in in-
stances based on the city of Shenyang, China. Elbaz et al. [45] addressed a synchronization
problem to maximize the number of synchronized buses and minimize the total waiting
time of users. As a resolution strategy, they combined an evolutionary algorithm and a
multi-agent system to alternate between the intensification and diversification phases of
the metaheuristic. No computational experimentation is performed.

Another relevant aspect discussed in the related literature is the behavior of different
stakeholders when bus transport parameters are varied, primarily focusing on which
parameters can affect the demand of users for the service [46]. For instance, Ali et al. [47]
proposed a unified model as a bi-level optimization problem. In the upper level, the fare
of the bus operator is optimized, constrained with bus frequency. In the lower level,
the travel costs of commuters are minimized as a sub-assignment traffic model. Simulations
are conducted for studying how demand varies according to different bus ticket fares to
determine tradeoffs that attain benefits for both users and the public transport company.
Similar to the model proposed in this work, Canca et al. [48] studied the captured demand
depending on the frequency of the transport unit (in this case, the train transport network).
Additionally, they studied the behavior of demand given different levels of government
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subsidies to the ticket fare. The more frequent the transport units depart, the more demand
is captured, but the larger the cost of the system. Additionally, Wirasinghe [49] studied
a bus network feeding an urban train line, analyzing how demand varies depending on
the distance of users to the bus stop, which serves as a proxy for the accessibility of the
system. Dou and Meng [50] presented a similar work in which not only the departure
times of buses are optimized but also the bus capacity in terms of the number of users to
be transported.

This article makes a valuable contribution by presenting a formulation based on math-
ematical programming for the timetable synchronization problem that, unlike previous
approaches, considers a multi-objective perspective that aims to maximize the number of
successful transfers for passengers undertaking multi-leg trips, while simultaneously mini-
mizing the cost of the system based on a specific cost model. This objective, incorporating
a cost model, has not been explored in previous multi-objective versions of the problem.
Furthermore, the proposed model takes into account specific constraints related to the
Quality of Service (QoS), which are essential for ensuring a satisfactory level of service
for passengers. Additionally, different from the usual practice in the related literature,
the article employs an exact resolution algorithm to address this bi-objective problem. This
algorithm allows for the solution of realistic instances of the problem.

Overall, this article offers a comprehensive and innovative approach to the timetable
synchronization problem, introducing a multi-objective perspective considering the cost of
the system, taking into account specific QoS constraints, and employing an exact resolution
algorithm for realistic instances.

3. Resolution Methodology

In multi-objective optimization, it is not possible to find a unique optimal solution
that simultaneously optimizes all the objective functions [51]. Thus, the goal is to identify
a set of efficient solutions that cannot be compared mathematically and demonstrate
the tradeoff between two objectives. Specifically, in bi-objective minimization problems,
a solution vector s∗ within the feasible space S is considered a non-dominated or efficient
solution if there is no other solution s ∈ S that is strictly better, i.e., simultaneously
holds f1(s) ≤ f1(s∗), f2(s) ≤ f2(s∗) and fi(s) < fi(s∗) for some objective i (where fi(s)
is the objective function of objective i evaluated on solution s). For example, Figure 3
illustrates a bi-objective minimization problem. In this depiction, solution c is evidently
dominated by solutions a, b, and d, as these three solutions exhibit superior values in both
objectives. Subsequently, solution d is dominated by solution a since, despite having the
same value for f2, solution a excels in terms of objective f1. Finally, solutions a and b emerge
as non-dominated solutions, with neither being preferable over the other based on the
provided information. The set of non-dominated or efficient solutions is the Pareto frontier.

Figure 3. Example of non-dominated solutions in a bi-objective minimization problem.
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The most commonly used methods for handling multi-objective problems are the
weighting or weighted-sum method and the ε-constraint method. These methods need to
be executed multiple times to find in each run a non-dominated solution and iteratively
construct the Pareto front. However, the weighting method usually requires a larger
number of runs as many of them can result in repeated solutions. Additionally, this
method cannot reach solutions located in non-convex regions of the Pareto front [51,52].
In this work, the ε-constraint method [53] is chosen to address the target problem. This
selection is based on the evidence in the related literature that has been successfully
applied in other similar bi-objective problems related to transport planning. For example,
Cervantes et al. [54] solved a bi-objective optimization problem for the transit network
design of public transport while minimizing the travel times and the monetary costs of
users and while also considering the cost of the system as a constraint. They implemented
the ε-constraint method, which was able to obtain approximations of the Pareto front for
benchmark instances based on benchmark instances developed by Mandl [55] in reasonable
computing times. Moreover, the ε-constraint method allowed them to study the tradeoff
among both objectives, leading to relevant information for the decision-making process.
Guerriero et al. [56] used the ε-constraint to addressed a Dial-a-Ride public transport
problem in which the customer requires a delivery to be made specifying the place of
pickup (origin) and delivery (destination), time windows for the pickup and the delivery,
and the quantity of a certain product that has to be transported. The model aims at assigning
vehicles for the required trips while minimizing the maximum total ride time and the total
waiting time for customers. The model is applied over benchmark instances [57]. Finally,
in another transport planning problem, Ko and Song [58] applied the ε-constraint method
to design the route of a CityTour Bus service, minimizing the total investment cost and
CO2 emissions. Their study, focused on the city of Seoul, effectively explored the tradeoff
among objectives, showcasing the versatility and applicability of the ε-constraint method
in diverse transport planning scenarios.

In bi-objective optimization, the ε-constraint method consists of solving a single-
objective optimization problem considering only one objective function, while the other
objective is limited in an additional constraint. In a minimization (maximization) problem,
in this additional constraint, the objective function is forced to be smaller than (greater than)
the certain parameter ε. Then, the method obtains different non-dominated solutions to
approximate the Pareto front by performing several runs with different values of ε, which
successively modifies the feasible region of the problem. The modification of the feasible
region is illustrated in Figure 4, representing an optimization problem with the objective
to minimize f1 and maximize f2. From left to right, the process begins by obtaining the
solution with the maximum value of f2 ( f Max

2 ), representing an extreme point on the
Pareto front. Subsequently, two intermediate non-dominated solutions are obtained using
parameters ε and ε′ to restrict the objective f2 and thereby modify the feasible region. Finally,
in the last step, f2 is restricted to its minimal value f Min

2 , further restricting the feasible
region. In this last step, the solution with the minimal value f2 is obtained, representing
another extreme point on the Pareto front.

Figure 4. Example of the modification of the feasible region of the problem in successive runs of the
ε-constraint method in a bi-objective problem.
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The application of the ε-constraint method is performed as is described in Algorithm 2.
First, it starts by calculating the extreme solutions. To calculate the extreme solution with
the maximum number of transfers, a single-objective model is solved considering only
the objective of the number of transfers FOt (as in Equation (1)) (line 1 of Algorithm 2).
The obtained solution is added as the first solution of the Pareto front (line 2) and the
maximum value of the cost of the system within the Pareto front maxC is retrieved from
this solution (line 3). Similarly, to obtain the extreme solution with minimal cost, a single-
objective model is solved considering only the objective of the cost of the system FOc as in
Equation (2) (line 4 in Algorithm 2). The obtained solution is added as the first solution
of the Pareto front (line 5) and the minimum value of the cost of the system within the
Pareto front minC is retrieved from this solution (line 6). Then, the step for the variation
in ε is calculated by considering the two extreme values of the cost and the number of
efficient solutions which are aimed to obtain n (line 7). For launching the iterative process
to obtain the rest of the solutions of the Pareto front, the ε is initially set to the minimum
cost value (line 8). Afterwards, the iterative process for constructing the Pareto front
is performed (lines 9–12). In each iteration of this process, a single-objective problem
is solved which aims at maximizing the number of transfers FOt subjected to both the
constraints of the problem (Equations (3)–(13)) and an additional constraint, which forces
the cost to be smaller or equal to ε (Fc ≤ ε) (line 10) in order to obtain an efficient solution.
The obtained solution is added to the Pareto front (line 11) and the ε is incremented with the
step (line 12) for the next iteration. Notably, the use of the minimum cost to initialize ε (line
8) is different from which is usually performed when applying the ε-constraint method.
Usually the ε is initialized with the worst value of the restricted objective [59], in the case of
this problem, the maximum cost. Initializing the ε with the worst value of the restricted
objective allows for the iterative process to start with a problem which is relatively easy to
solve and, by moving the ε towards the best value of the restricted objective, progressively
incriminates the complexity of the successive problems in each iteration (with the restricted
objective forced to reach values nearer to the best attainable value). However, in this case,
using the minimum cost as the initial value of the ε allows the solution of the problem
of the previous iteration to be a feasible solution of the problem of the next iteration and,
thus, can be used as a warm start via the solver for the new problem. The warm start can
be advantageous as it assists CPLEX in narrowing down the search space and allows it to
use heuristics, which require a feasible solution right from the beginning of the search [60].
In preliminary experiments, it was found that the warm start significantly improved the
performance of the solver for the problem addressed in this paper.

Algorithm 2 ε-constraint method for bus synchronization problem
Input: Instance, n

1: (FO∗c , FO∗t )← Solve max{FOt|Equations (3)–(13)}
2: ParetoFront← (FO∗c , FO∗t )
3: maxC ← FO∗c
4: (FO∗c , FO∗t )← Solve min{FOc|Equations (3)–(13)}
5: ParetoFront← ParetoFront∪ (FO∗c , FO∗t )
6: minC ← FO∗c
7: step← maxC−minC

n−1
8: ε← minC
9: for {i← 0; i ≤ n; i ++} do

10: (FO∗c , FO∗t )← Solve max{FOt|Equations (3)–(13) ∪Fc ≤ ε}
11: ParetoFront← ParetoFront∪ (FO∗c , FO∗t )
12: ε← ε + step

Output: ParetoFront
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4. Results

This section provides an overview of the application of the proposed model on
real-world instances of the city of Montevideo. It includes the implementation details,
a description of the instance set used, as well as the report and analysis of the obtained
numerical results.

4.1. Implementation Details and Execution Platform

The MILP formulation for the bus synchronization problem was coded and solved
with IBM ILOG CPLEX Interactive Optimizer 12.6.3.0. To facilitate the process, a program
in C was used to translate the instances from the .csv format to the LP-format that CPLEX
uses. The pre-processing and post-processing of the obtained solutions was performed in
Matlab (version R2015a-8.5.0). Additionally, Matlab was also used to develop the discrete
event simulation model for estimating bus occupation as described in Section 2.2.

The experiments were conducted on an HP ProLiant DL380 G9 high-end server
equipped with two Intel Xeon Gold 6138 processors, each having 20 cores and a RAM
memory of 128 GB. The computing resources were provided via the high-performance com-
puting infrastructure of the National Supercomputing Center, Uruguay (Cluster-UY [61]).

4.2. Description of Instances

For the computational experimentation, 25 instances were created using real data from
Montevideo. Various sources of information were utilized to build these instances. Details
about the route of bus lines, the schedules, and the location of bus stops were obtained from
the National Open Catalog of Uruguay. The information about transfers was provided by
the City Hall of Montevideo and was processed using the urban data analysis methodology
proposed in [21]. The planning horizon was set to the rush hour at midday in Montevideo,
which is from 12:00 to 14:00 [3].

To construct the instances, the demand function was derived from the information of
the smart cards ticket sales’ database. The transfer zones were selected based on demand,
i.e., pairs of bus stops with the highest number of registered transfers during the specified
period. Then, the considered bus lines are those that pass through these synchronization
points. Each instance included information from 30, 70, and 100 transfer zones, chosen
randomly from the 170 most demanded transfer zones in the city. The time traveling
function, denoted as TT, for each bus line was empirically computed using GPS data.
The walking time between bus stops was estimated by considering a walking speed of
6 km/h and the distance between bus stops within each transfer zone, which was obtained
using geospatial information about the stops.

For each instance, different levels of Quality of Service (QoS) provided to the citizens
were used. The different levels of QoS were modeled with different values of the parameter
Tolhg

b , which represents the maximum threshold time that users are willing to wait for
a transfer from bus line h ∈ H to bus line g ∈ H. This parameter was set as λHdmax

g ,
where λ took values from the range [0.5, 0.7, 0.9, 1] and Hdmax

h is the maximum bound
for the headway of the bus line g ∈ H. This allowed for the consideration of different
thresholds of user tolerance regarding the time they are willing to wait. The problem
instances were named in the format NL.λ.id, where NL represented the number of bus
lines, λ was the percentage coefficient applied to the waiting time of the line (representing
different thresholds of tolerance), and id is an identifier for differentiating instances with
the same NL and λ.

4.3. Numerical Results

In this section, we present the main results of the application of the MILP model to the
set of instances.
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4.3.1. Distance of the Best Trade-Off Solution to the Ideal Vector

In Table 2, the distance between the ideal vector, representing an unattainable solution
characterized by the best objective values across all executions, and the best trade-off or
compromising solution is presented for each instance. The best trade-off solution is the
efficient solution that has the smallest (Euclidean) normalized distance to the ideal vector
within the space of the objectives [62], as depicted in Figure 5. To find the best trade-off
solution, distances to the ideal vector are computed using the expression of the overall
deviation provided in Equation (15).

∆ =

√√√√∑
o∈O

(
valueo − idealo

idealo

)2
(15)

Since Pareto fronts usually consist of multiple solutions, summary metrics are nec-
essary. In this context, it is common to analyze the best trade-off solution as one of the
suitable candidate solutions for implementation in the real problem, since it is the solution
that better balances the fulfillment of all the objectives [63]. The expression computes the
overall normalized Euclidean distance of a solution to the ideal vector. To obtain this value,
each objective is normalized with the ideal value. Thus, the solution with the minimal
deviation ∆ is chosen as the best trade-off solution.

Moving from left to right, Table 2 reports the percentage difference from the ideal
vector for the number of transfers (δt), the percentage difference from the ideal vector for
the cost of the system (δc), and lastly, the comprehensive overall deviation ∆.

Figure 5. Ideal vector and best trade-off solution.

Table 2. Distances of the best trade-off solution to the ideal vector.

Instance
Successful Transfers Cost

∆
Ideal Trade-Off δT Ideal Trade-Off δT

37.100.1 312.77 308.30 1.43% 6346.24 6346.24 0.00% 1.43%
37.30.1 309.44 301.37 2.61% 6348.56 6470.94 1.93% 3.24%
37.50.1 311.76 303.17 2.76% 6346.57 6453.30 1.68% 3.23%
37.70.1 310.81 305.60 1.68% 6344.95 6344.95 0.00% 1.68%
37.90.1 312.60 308.21 1.40% 6339.61 6339.61 0.00% 1.40%

40.100.0 246.14 245.01 0.46% 6188.41 6312.70 2.01% 2.06%
40.100.4 273.10 268.17 1.81% 6106.75 6159.77 0.87% 2.00%

40.30.0 242.72 236.93 2.39% 6193.28 6293.08 1.61% 2.88%
40.30.4 264.70 255.06 3.64% 6103.68 6281.73 2.92% 4.67%
40.50.0 247.69 240.08 3.07% 6193.28 6280.23 1.40% 3.38%
40.50.4 272.71 266.12 2.42% 6106.75 6272.04 2.71% 3.63%
40.70.0 247.62 243.23 1.77% 6188.41 6320.16 2.13% 2.77%
40.70.4 274.18 266.86 2.67% 6103.68 6269.77 2.72% 3.81%
40.90.0 249.03 244.10 1.98% 6191.48 6297.10 1.71% 2.61%
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Table 2. Cont.

Instance
Successful Transfers Cost

∆
Ideal Trade-Off δT Ideal Trade-Off δT

40.90.4 273.52 268.57 1.81% 6103.68 6177.02 1.20% 2.17%
41.100.2 289.12 287.72 0.48% 7052.32 7199.76 2.09% 2.15%

41.30.2 284.95 273.22 4.12% 7052.32 7212.24 2.27% 4.70%
41.50.2 286.95 277.29 3.37% 7052.32 7170.65 1.68% 3.76%
41.70.2 290.47 285.84 1.59% 7052.32 7219.65 2.37% 2.86%
41.90.2 290.82 285.14 1.95% 7052.32 7137.91 1.21% 2.30%

42.100.3 277.42 272.06 1.93% 7642.51 7642.51 0.00% 1.93%
42.30.3 270.57 264.93 2.08% 7644.06 7773.12 1.69% 2.68%
42.50.3 275.31 268.87 2.34% 7643.71 7788.25 1.89% 3.01%
42.70.3 276.38 273.92 0.89% 7643.40 7794.86 1.98% 2.17%
42.90.3 277.76 271.58 2.22% 7633.18 7633.18 0.00% 2.22%

Average 2.11% 1.52% 2.75%

Analyzing the results of the distance between the ideal solution and the solution with
the best tradeoff is shown in Table 2, where it can be concluded that the MILP model
is able to obtain, in general, accurate solutions for most of the instances. The average
overall deviation is just 2.75%. Moreover, the average of the percentage difference for each
particular objective is also low (i.e., 2.11% and 1.52% for the number of transfers and the
cost of the system, respectively). When the instances are grouped according to an increasing
λ, it can be depicted that in general, δT , δC and ∆ tend to be reduced. The exception is δC
when λ goes from 90 to 100. This information can be visually depicted in Figure 6.

Figure 6. Distance of the best trade-off solution and the ideal vector per λ.

4.3.2. Comparison with the Current Timetables

To establish a meaningful baseline for comparison, the timetables that are currently
used in Montevideo, hereafter current timetables (CT), are used. The enhancement of
the best trade-off MILP solutions in comparison to the CT is analyzed via metrics: (i) the
count of transfers, as stipulated in objective function (1); (ii) the cost of the bus schedule,
calculated as per the objective function (2); and (iii) the number of buses used in the solution
(Qi

r). Despite not being an optimization criteria of the MILP model, the number of buses
was reported because it is a relevant result for the operational management of the system.
The results stemming from the MILP model and the comparison with the Montevideo
CT are presented in Table 3. The table reports the values of the CT and the percentage
of improvement achieved via both the compromising solution and the extreme solution
of the MILP approach for each objective. Notably, the extreme solution that is compared
is different when evaluating each objective. The extreme solution is the solution with
the largest number of transfers when assessing the number of transfers, whereas it is the
solution with the lowest cost when evaluating the cost of the system. Regarding the number
of buses, the CT is compared with the compromising solution of the MILP model.
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Table 3. Comparison between MILP solutions vs. current timetable (CT).

Instance
Succesful Transfers Cost Number of Buses

CT %impr.
Comp. sol.

%impr.
Extreme sol. CT %impr.

Comp. sol.
%impr.

Extreme sol. CT %impr.
Comp. sol.

37.100.1 263.41 17.04% 18.74% 8721.80 27.24% 27.24% 439 13.21%
37.30.1 110.4 172.98% 180.29% 8721.80 25.81% 27.21% 439 3.87%
37.50.1 175.67 72.58% 77.47% 8721.80 26.01% 27.23% 439 5.24%
37.70.1 236.18 29.39% 31.60% 8721.80 27.25% 27.25% 439 −1.82%
37.90.1 263.41 17.01% 18.67% 8721.80 27.31% 27.31% 439 11.16%

40.100.0 209.02 17.22% 17.76% 8592.64 26.53% 27.98% 419 1.91%
40.100.4 226.72 18.28% 20.46% 8717.53 29.34% 29.95% 428 17.29%

40.30.0 92.19 157.00% 163.28% 8592.64 26.76% 27.92% 419 6.68%
40.30.4 106.48 139.54% 148.59% 8717.53 27.94% 29.98% 428 9.81%
40.50.0 136.12 76.37% 81.96% 8592.64 26.91% 27.92% 419 5.25%
40.50.4 134.54 97.80% 102.70% 8717.53 28.05% 29.95% 428 12.15%
40.70.0 184.56 31.79% 34.17% 8592.64 26.45% 27.98% 419 14.80%
40.70.4 198.87 34.19% 37.87% 8717.53 28.08% 29.98% 428 17.76%
40.90.0 209.02 16.78% 19.14% 8592.64 26.72% 27.94% 419 15.27%
40.90.4 224.82 19.46% 21.66% 8717.53 29.14% 29.98% 428 17.76%

41.100.2 244.42 17.72% 18.29% 10,056.59 28.41% 29.87% 471 14.01%
41.30.2 102.65 166.17% 177.59% 10,056.59 28.28% 29.87% 471 18.26%
41.50.2 158.69 74.74% 80.82% 10,056.59 28.70% 29.87% 471 20.38%
41.70.2 213.11 34.13% 36.30% 10,056.59 28.21% 29.87% 471 8.92%
41.90.2 243.96 16.88% 19.21% 10,056.59 29.02% 29.87% 471 19.53%

42.100.3 228.3 19.17% 21.52% 10,410.35 26.59% 26.59% 485 13.20%
42.30.3 98.26 169.62% 175.36% 10,410.35 25.33% 26.57% 485 7.63%
42.50.3 150.73 78.38% 82.65% 10,410.35 25.19% 26.58% 485 18.56%
42.70.3 203.04 34.91% 36.12% 10,410.35 25.12% 26.58% 485 13.40%
42.90.3 227.72 19.26% 21.97% 10,410.35 26.68% 26.68% 485 8.45%

Average 61.94% 65.77% 27.24% 28.33% 11.71%

Overall, the solutions obtained via the MILP approach are significantly superior
than the CT, particularly in terms of successful transfers. The average improvement of
the compromising solution over the CT in terms of successful transfers is 61.94% for all
the instances, achieving the greatest improvement in instance 37.30.1 (172%). Similarly,
the extreme solution excels the CT in terms of successful transfers of 65.77% on average,
obtaining the best improvement also in instance 37.30.1 (180.29%). Regarding the costs of
the system, the improvements of the best trade-off solution over the CT are on average
27.24%, with the greatest improvement on instance 40.100.4 (29.34%). The extreme solution
excels the CT on average by 28.33% in terms of costs of the system, obtaining the best
improvement simultaneously in three instances with forty bus lines, i.e., instances 40.30.4,
40.70.4, and 40.90.4 (29.98%). In the case of the number of buses, the compromising
solutions use on average 11.71% less buses than the CT, achieving the maximum reduction
in instance 41.50.2 (20.38%). Only in instance 37.70.1 does the compromising solution
of the MILP model use a slightly larger number of buses (1.82% larger). From these
results, when compared to CT, it can be observed that the MILP approach is particularly
efficient in generating schedules that excel in terms of the number of successful transfers.
However, the MILP approach is also able to improve the cost of the system as well. This
dual benefit underscores the versatility and effectiveness of MILP in optimizing public
transportation schedules, striking a favorable balance between passenger convenience and
cost effectiveness.

When the instances are grouped per λ, it can be depicted that the higher λ is, the smaller
the improvement of the compromising and extreme solutions in terms of successful transfer
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(Figure 7a). This pattern can be associated such that, when the tolerable waiting time of
users is smaller, the model has a smaller gap for synchronizing buses schedules to achieve
successful transfers. Regarding the number of successful transfers, the average percentage
improvement via the MILP model goes from 161.06% when λ = 30 to 17.89% when λ = 100
regarding the compromising solution. Similarly, the average percentage improvement of
the extreme solution goes from 169.00% when λ = 30 to 19.40% when λ = 100 regarding
the compromising solution. On the other hand, the increment of λ affects less the capac-
ity of the MILP model to obtain solutions with better costs, as is depicted in Figure 7b.
The average percentage improvement of the cost of the system via the MILP model goes
from 26.83% when λ = 30 to 27.64% when λ = 100 regarding the compromising solution.
Moreover, the average percentage improvement of the extreme solution remains almost
fixed around 28.33% for any value of λ.

(a) (b)
Figure 7. Average percentage improvement of the MILP model over CT for each value of λ. (a) Num-
ber of successful transfers. (b) Cost of the system.

4.3.3. Representative Pareto Fronts

As a graphic presentation of the general results, Figure 8 is introduced. In this figure,
the consolidated Pareto fronts are presented for four representative instances. From these
figures, it can be observed that the MILP model is able to compute a set of solutions
that efficiently explore the tradeoff among objectives. The model is also able to compute
solutions in non-convex regions of the Pareto front that, as aforementioned, is an advantage
of the selected resolution approach (ε-constraint method) over other traditional approaches,
such as the weighted sum.
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Figure 8. Pareto fronts of representative instances. (a) Pareto front of instance 40.30.4, (b) Pareto front
of instance 41.30.2, (c) Pareto front of instance 42.30.3, and (d) Pareto front of instance 42.90.3.

5. Conclusions

The smart cities paradigm involves the aim of developing more interconnected and
sustainable urban environments. Within this aim, the enhancement of public transport
systems is crucial for facilitating citizens to commute without using private cars. Since
it is impossible to provide users with direct connections to every location of the city,
an aspect that should be carefully planned when operating the public transport system
is the synchronizations among different bus lines. In this line, this article introduced a
novel Mixed-Integer Linear Programming (MILP) model for bus timetabling with a focus
on enhancing the multi-leg trip while ensuring a minimum level of quality of service for
passengers. As a second objective, the MILP model also aims at minimizing the cost of
the system.

The performance of the MILP model was assessed using a set of real-world instances
from the public bus system of Montevideo, Uruguay. The set of instances included in-
stances with different numbers of bus lines and different required levels of quality of
service represented by the maximum tolerable waiting time for transferring passengers.
The results showcased the competitiveness of the MILP model to provide a range of Pareto
efficient solutions that explore the tradeoff between the number of successful transfers of
passengers and system costs. Moreover, the results demonstrated the superiority of the
MILP solutions over the existing timetables used in Montevideo, specially in terms of the
number of successful transfers, but also in terms of the costs of the system. Particularly,
the model excelled in terms of successful transfers, with an average percentage improve-
ment of 65.77% for the best trade-off solution. It also demonstrated cost efficiency, with an
average improvement of 27.24% for the best trade-off solution over the current timetable.
Additionally, the results revealed that the capacity of the MILP model to synchronize bus
schedules is amplified when passengers are willing to wait longer, leading to significant
gains in the number of successful transfers obtained in solutions when the maximum
tolerable waiting time is increased.

Currently, our proposed approach has certain limitations that could be enhanced in
various aspects to model a broader range of realistic public transport systems. This includes
incorporating hybrid and electric buses and adopting a more advanced bus occupation
model. Therefore, regarding future work, there are several promising directions related
to addressing these limitations. One is the incorporation of electric or hybrid buses into
the model to include more sustainable practices that are being implemented worldwide.
This would involve introducing new control variables to assess the feasibility and benefits
of using these types of buses on specific lines as well as developing new cost models for
these types of buses. This would involve introducing new control variables (to evaluate
the feasibility and benefits of using this type of bus on specific lines) and developing new
cost models for this type of bus. Another line of research is improving the Quality of
Service (QoS) model in relation to the occupancy of buses during direct trips. The approach
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followed in this article combines random boarding with deterministic passengers alighting.
The first hypothesis is a standard assumption for arrival processes, but a stochastic alighting
process is a more realistic approximation. The bus occupancy simulator can be extended
to incorporate additional information, such as intelligent methods for inferring where
passengers alight the bus [21]. Another relevant line for future work is evaluating the
proposed algorithmic approach in a real setting, applying a microscopic traffic simulator
and using real traffic information for public and private transportation. Finally, another
research line is to use different integer solvers to address the problem in order to compare
CPLEX performance.

Finally, while our paper proposed an efficient methodology for optimizing bus
timetabling in public transportation systems, a more in-depth discussion on the prac-
tical implications of our proposed solutions and their real-world implementation is also a
relevant future research line. To bridge the gap between theory and practical application, it
is important to analyze the potential challenges and limitations that may arise during this
transition. For instance, the accuracy of travel time estimations, the reliability of bus occu-
pation models, and the appropriateness of cost considerations in real-world scenarios need
careful scrutiny. By addressing these practical aspects, our proposed solutions can be better
tailored to meet the dynamic demands and constraints of real-world public transportation
systems, ensuring their feasibility and effectiveness in implementation.
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