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Abstract: Farmed fish disease diagnosis is an important problem in the fish farming industry, af-
fecting quality of production and financial losses. In this paper, we present a web-based intelligent
system that tackles the problem of fish disease diagnosis. To this end, it uses multiple knowledge
representation and reasoning methods: rule-based, case-based, weight-based, and voting. Knowl-
edge, which concerns the diagnosis of sea bass diseases, was acquired from experts in the field
and represented in the form of decision trees. The diagnostic process is performed in two stages: a
general one and a specialized one. In the general stage, a level-based diagnosis is performed, where
environmental parameters, external signs, and internal signs are successively examined, and the three
most probable diseases are identified. In the specialized stage, which is optional, a specialized expert
system is used for each of the resulting diseases, where additional parameters concerning laboratory
tests (microbiological, microscopic, molecular, and chemical) are considered. The general stage is the
most useful, given that it can be performed on-site in real-time, whereas the specialized one requires
time-consuming lab tests. The system also provides explanations for its decisions. Evaluation of the
general-stage diagnostic process showed a top-3 accuracy of 78.79% on expert test cases and 94% on
an artificial dataset.

Keywords: fish disease diagnosis; expert system; intelligent system; hybrid reasoning; rule-based
reasoning; case-based reasoning; certainty factors; voting

1. Introduction

Fish farming is an extensive business activity all over the world. Fish farming man-
agement is a complicated task. One of the main problems to tackle is the diagnosis of fish
disease. The occurrence of diseases in fish farms restricts the quality of production and has
an economic impact on fish farm operations [1,2]. On the other hand, the problem itself
requires special skills and expertise to be solved [3], which most farmers lack. Therefore,
it is necessary to develop systems that can automatically or semi-automatically diagnose
or help in diagnosing fish diseases. Given that for solving the problem of fish disease
diagnosis, human expertise is necessary, artificial intelligence (AI) techniques should be
employed [4]. There are two general AI approaches that could be used in such a system:
the knowledge representation (KR) approach and the machine learning (ML) approach [4].

The KR approach consists of representing knowledge and the way an expert (or many
experts) uses it in making diagnoses of fish diseases. Its most practical representative is the
expert system (ES) approach. An ES represents expert knowledge, usually in the form of
if-then rules, and employs an inference engine to produce conclusions (diagnoses). To build
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an expert system, corresponding knowledge should be acquired from experts and other
knowledge sources and represented in the knowledge base of the system [5]. There are
also other representatives, like case-based reasoning (CBR), where new cases are compared
with (validated) old cases, stored in a case base, to find a solution for the new case; here,
similarity metrics play a crucial role [6].

Given that the problem of making fish disease diagnoses can be considered a classifi-
cation problem, machine learning (ML) approaches can be used to solve it. ML approaches
seek out models, called classifiers, that can identify fish diseases based on suitable data.
There are various “traditional” ML models, like decision trees (DTs), neural networks
(NNs), or statistical models, like support vector machines (SVM), k nearest neighbors
(kNN), etc. To be able to build such a model, an adequate dataset consisting of real cases is
required for its training [7].

Recently, a modern approach called deep learning (DL) has become very popular due
to its very successful results. Deep learning neural networks (DLNNs) are complex neural
networks that require very large datasets to be trained [8]. The Convolutional Neural
Network (CNN) is the basic deep learning architecture used as the basis for more complex
DLNNs. Its main domain of success is image classification [9,10].

A full diagnosis of fish disease should take into account a variety of parameters:
environmental, clinical, microbiological, microscopic, and molecular [3]. The difficulty in
using ML approaches for fish disease diagnosis is the lack of real datasets that include all
necessary features. It is very difficult to find an adequate number of records of diseased fish
cases, as you can find for human patients in hospitals. Also, it is difficult to find the required
number of images of diseased fish to use DL methods. On the other hand, even if the
required number of images can be found, an image-based diagnosis is not wholly accurate.
On the other hand, ML and DL methods cannot give any explanation about their outputs
(decisions), while explanations are very desirable in such systems [11]. So, although the
expert system approach is an old one, it is still necessary as a primary framework for full
fish disease diagnosis [12].

Therefore, in this paper, we propose and present a web-based intelligent system for
farmed European sea bass disease diagnosis that uses a combination of the ES approach
with other KR approaches and a level-based diagnostic process. It can be regarded as an
implementation of the general architecture proposed in [12]. Our main focus is on the
hybrid reasoning scheme introduced here.

The contributions of this paper are the following:

• A novel knowledge acquisition and representation method.
• Introduction of a level-based diagnostic process for farmed fish diseases.
• Introduction of a novel integration of reasoning approaches for disease diagnosis.
• Integration of an image recognition system in the diagnosis process.

The structure of this paper is as follows: Section 2 presents background knowledge on
knowledge representation and reasoning methods, whereas Section 3 presents a literature
review on intelligent systems for diagnosing animal diseases. Section 4 deals with the
knowledge acquisition process from ichthyology experts, the diagnostic process, the used
diagnostic methods, and the image recognition system. Section 5 focuses on the user
interface of the system, whereas Section 6 presents the system evaluation. Finally, Section 7
concludes this paper.

2. Background Knowledge

There are a variety of knowledge representation and reasoning (KRR) methods used
in intelligent systems that make automated diagnoses. Systems for automated diagnoses
are different from decision support systems, where a human is involved in the decision
cycle. The most common KRR methods used in intelligent systems for animal disease
automated diagnosis, as evidenced by the corresponding literature review (see next section),
are rule-based reasoning, certainty factors-based reasoning, Bayes probabilistic reasoning,
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case-based reasoning, and ontology-based reasoning. In this section, we briefly present the
basics of those methods.

2.1. Rule-Based Representation and Reasoning

Symbolic rules are the oldest and most popular KRR method used by experts and
generally in intelligent diagnostic systems. Their popularity comes from the fact that they
are natural representations of human knowledge, which makes it easy to comprehend the
represented knowledge. The basic structure of a diagnostic rule is the following:

if e1 and e2 and . . . en
then h

where each ei represents an evidence statement (e.g., symptom presence) and h represents
the hypothesis (e.g., a disease). The evidence statements of a rule are connected to each
other with logical connectives, commonly with “and”. When the evidence statements of a
rule hold (or are observed), the hypothesis is derived, and the rule is said to be fired. Rules
represent general knowledge regarding a domain. The following is an example rule from
the domain of fish disease diagnosis:

R: if fish-weight > 15 and mouth-lower-jaw is deformed and anorexia is yes
then fish-disease is ceratothoa

In such systems, there are two basic inference strategies: forward chaining and back-
ward chaining. The first is more common and natural for such cases; it starts from the
evidence statements (known facts) and goes towards the hypotheses (derived facts), even-
tually ending up with the searched disease(s). Technically, the rules that can fire (i.e., their
evidence statements hold) are found and produce their hypotheses, until a disease related
hypothesis is reached. For an extensive treatment of rule-based reasoning see [5] (ch. 7)
or [13] (ch. 2).

2.2. Rules with Certainty Factors

Given that in many situations, things are not always certain, there is a need to represent
that uncertainty. Certainty may refer to a rule itself or to evidence statements. Rules
provided by experts may not be 100% certain. Certainty Factors (CFs), introduced in the
expert system MYCIN [14], are an old, empirical, but widely used method of dealing with
uncertainty in rule-based systems.

CFs can take values in the interval [−1, 1], where “−1” means “totally uncertain”,
“1” means “totally certain”, and “0” means “undefined” (this is an impractical case). Usually,
CFs have positive values. The above rule is presented below, with a certainty factor of
0.7 (CFR = 0.7):

R: if fish-weight > 15 and mouth-lower-jaw is deformed and anorexia is yes
then fish-disease is ceratothoa (0.7)

This means that when the rule is fired, the fact that “fish disease is ceratothoa” is
derived with a certainty of 0.7. When using CFs, more than one rule with the same
hypotheses but different evidence statements may be used. In such a case, if we have,
let say, two rules, R1 and R2, with certainties CFR1 and CFR2, the common hypothesis is
derived with a certainty CFR1R2 calculated by the following formula (which can be used for
more rules consecutively), given that CFR1 and CFR2 are positive:

CFR1R2 = CFR1 + CFR2 (1 − CFR1)

In cases where the truth of the evidence is not totally certain, the certainty of the
hypothesis is reduced. For example, in the above rule, if we have the following CFs for
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the three antecedents: CF1 = 0.6, CF2 = 0.8, and CF3 = 1.0, the CF of the hypothesis will be
calculated as follows:

CF = CFe × CFR1, CFe = min (CF1, CF2, CF3)

given that we have only the “and” connective in the evidence statements. So, CF = min
(0.6, 0.8, 1.0) × 0.8 = 0.6 × 0.8 = 0.48 (<0.7).

In practice, the CFs of elicited rules are given by the expert(s) during the design
phase, whereas the CFs of the evidence statements are given by the user(s) of the system
during its running phase. For an extensive treatment of rule-based reasoning, see [5] (ch. 8)
or [13] (ch. 3).

In most diagnostic systems that use CFs, especially those dealing with fish diseases,
the CFs of the evidence statements are given by the experts during the design of the system
as representing the importance of the corresponding evidence (symptom) in deriving the
hypothesis and are treated as normal CFs [15,16]. This is not absolutely correct, because the
semantics of a CF are not related to its importance but to the uncertainty of the symptom.
Therefore, in such cases, they should be treated in a different way (see our approach
in Section 4.3.3).

2.3. Probabilistic Reasoning with Bayes Theorem

As we saw above, the interpretation of a rule in diagnostic systems is as follows:

if e (evidence)
then h (hypothesis)

which is exactly the diagnostic task of an expert: given some medical evidence, derive a
corresponding hypothesis (disease). This is a case of abductive reasoning, which does not
assure a 100% correct conclusion. That is, a hypothesis is concluded with some probability.
The answer to the question of whether we can compute that probability is the Bayes
theorem, expressed by the following formula:

p(h/e) =
p(e/h)× p(h)

p(e)

where p(h/e) is a conditional or posterior probability, which represents the probability that
hypothesis h holds given that evidence e holds (or is observed). A more convenient formula
(from a computational point of view) for the Bayes theorem is the following:

p(h/e) =
p(e/h)× p(h)

p(e/h)× p(h) + p(e/¬h)× p(¬h)

given that e depends on the mutually exclusive h and ¬h.
Given that in reality there are multiple evidence (e.g., symptoms) and more than one

hypothesis (disease), Bayes developed a generalization of the above theorem for n elements
of evidence and m hypotheses, as follows:

p(hi/e1e2 . . . en) =
p(e1/ hi)× p(e2/ hi)× . . .× p(en/ hi)× p(h)

∑m
k=1 p(e1/ hk)× p(e2/ hk)× . . .× p(en/ hk)× p(hk)

which holds when h1, h2, . . ., hm are mutually exclusive and exhaustive, and e1, e2, . . ., en
are mutually exclusive, exhaustive, and conditionally independent of any hi. In practice,
the required probabilities are given by the experts. Then, all conditional probabilities
p(hi/e1e2 . . . en) are calculated, and the hypothesis with the largest conditional probability
is proposed as the conclusion. For an extensive treatment, see [13] (ch. 3).
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2.4. Case-Based Reasoning

The main idea of case-based reasoning (CBR) is to store a large set of previous (solved)
cases with their solutions in a case base (or case library) and use them to deal with (solve)
new (similar) cases [6,17]. There is no specific way to represent stored cases. Various
schemes can be used for that, like semantic nets, frames, objects, patterns, and even rules.

CBR works in a way that can be represented by the so-called CBR cycle [16]: (a) retrieve
(the most similar case), (b) reuse (that case to create a solution), (c) revise (the solution to
adapt to the case at hand), and (d) retain (the produced case as a new case).

Whenever a new input case has to be dealt with, the case-based system performs an
inference following the above four phases. In the retrieval phase, the system retrieves from
the case base the most relevant stored case(s) to the new case. In the reuse phase, a solution
for the new case is created based on the most relevant case(s) retrieved. The revise phase
validates the correctness of the proposed solution, perhaps with the intervention of the
user. Finally, the retain phase decides whether the knowledge learned from the solution of
the new case is important enough to be incorporated into the system’s case base.

Similarity metrics are used for assessing the relevance of the existing cases to the new
cases, such as ‘Jaccard’, ‘Sorensen–Dice’, ‘Otsuka–Ochiai’, ‘Simpson’, ’Kulczynski2’, etc.
There are various methods that use the above metrics, like the nearest neighbor approach,
which is most commonly used for small cases.

2.5. Ontology-Based Representation and Reasoning

An ontology refers to a formal representation of knowledge within a domain. It defines
a set of concepts and the relationships between them, providing a structured and organized
framework for understanding a specific domain of knowledge. It is tightly related to the
Semantic Web. Key components of an ontology are:

• Concepts (domain entities organized in hierarchies, regarded as classes)
• Relationships (between concepts)
• Properties (attributes of the concepts that define them)
• Axioms or Rules (logical statements that hold true in the domain)
• Individuals (specific entities, regarded as instances of classes)

Reasoning with ontologies means making explicit the implicit knowledge represented
in the ontology. Ontologies are based on the description logic model. The types of reasoning
that can be accomplished in an ontology are:

• Class hierarchy reasoning
• Concept subsumption
• Property restriction inference
• Consistency checking
• Rule-based reasoning
• Logic-based reasoning

OWL is a semantic web language for constructing ontologies on the web. SWRL is a
semantic web language for constructing first-order rules. SWRL rules are often used for
producing new knowledge based on the knowledge explicitly represented in an ontology.
For a comprehensive introduction to ontological reasoning, see [18].

3. Related Work

A variety of intelligent systems have been recently developed that deal generally with
animal disease diagnosis and specifically with fish disease diagnosis. As a matter of fact,
most of them use some kind of rule-based reasoning.

The authors in [19] use rules with certainty factors (CFs) in their conclusions for the
diagnosis of horse diseases. Conditions of the rules, which represent symptoms of the
diseases, are assigned a weight factor given by the experts. A CF is also assigned to each
condition by the users during system running. Additionally, there is a threshold for the
conclusion CF, over which the conclusion is acceptable.
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The system in [20] is an expert system for fish disease diagnosis that uses case-based
reasoning combined with an expert symptom scoring method. Both methods are used
after the input of symptoms, and their results are compared. If the results are different, the
system shows the symptoms of both diseases to the user and asks for re-entering symptoms
until common results are produced. If the results are the same, then the case similarity
metric is checked; its value should be between 0.65 and 0.95. If it is not, the user is asked
either to accept it, despite the low similarity, or re-enter symptoms.

The system in [21] uses rule-based representation to relate symptoms to diseases,
elicited from experts in the field. A forward-chaining strategy for dog disease diagnosis
is proposed.

The Expert System in [15] is based on the CFs method for diagnosing Catfish Diseases.
It does not use rules but works directly with CFs. Symptoms are associated with diseases
of Catfish and a weight is associated with each symptom, representing its influence on the
associated diseases. The user is asked to specify the symptoms, and the system calculates
the CFs of all affected diseases. The disease with the largest CF is the most certain. The
MYCIN expert system’s calculation formulas are used. However, there are two problems
with this paper. First, the provided CFs (weights) have only two different values (0.7 and
0.8). Second, the same weight for each symptom is considered for all diseases, which may
not be reasonable.

The system in [22] concerns the diagnosis of cattle diseases, where a hybrid approach
is employed. Case-based reasoning (CBR) is primarily used, and if it fails, rule-based
reasoning (RBR) takes over. Domain knowledge is represented via an ontology and a
relational database. Discrete weight values are assigned to the specified symptoms. The
nearest neighbor approach is used for assessing case similarity.

The System of Diagnosing Koi’s Fish Disease [23] uses rules with CFs for knowledge
representation and reasoning. A Koi fish disease-symptoms association table is used for
extracting rules. The weights of the symptoms were specified by numerical interpretation
of the uncertain terms (e.g., not probably, maybe not, probably, almost certainly) used by
the experts and considered as CFs of corresponding rule antecedents. Also, rule CFs were
assigned in the same way. The users can complete an input form by choosing the symptoms
of the koi fish and answering some questions regarding the symptoms. After the validation
is over, a solution is presented, along with a level of confidence.

The system in [24] includes an ontology that represents knowledge elicited from
experts and concerns concepts such as disease, symptom, body system, treatment, etc.,
implemented in OWL. The system uses rule-based reasoning for the diagnosis of cattle
diseases based on the symptoms provided by the user. Symptoms are assigned weights,
representing their significance in the diagnosis. Rules are implemented in SWRL.

An expert system for the diagnosis of chicken diseases is presented in [25]. The system
uses the Bayes theorem for making diagnoses in a forward-chaining way. The required
probabilities are given either by experts or taken from statistical reports.

A pure CBR model is used in [26] for fish disease diagnosis. Knowledge elicited
from experts and other sources was formulated in 10 cases concerning 6 diseases and
15 symptoms, mainly concerning external clinical signs, and considered the golden cases.
The Euclidean distance metric is used for estimating case similarities. The system was
evaluated with a set of 40 new cases and achieved an accuracy of 95% compared with the
diagnosis results of an expert. The case base looks quite simplistic.

In [27], the authors created an expert system for diagnosing diseases of the freshwater
Betta fish. They use a forward-chaining rule-based approach, where rules are produced
from a disease-symptom association table completed by experts in the field and related
sources of knowledge, which is then converted into a decision tree. Only external clinical
signs are considered.

The system in [28] uses a forward-chaining rule-based approach for Catfish disease
diagnosis. Again, a disease-symptom association table is used for extracting production
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rules. The system provides an interface for problem data input and a result display after a
diagnosis is performed. Only external clinical signs are considered.

4. Materials and Methods
4.1. Knowledge Acquisition and Representation

There are various sources of knowledge to acquire such knowledge, such as the world
wide web, databases, atlases, etc., but the main source of diagnostic knowledge is the
experts in the field. Knowledge elicitation from experts for the creation of expert systems is
a difficult process and is a bottleneck in the development process of such systems. Experts
are not always able to convey this knowledge through verbal descriptions because it is not
easy to put into words something that has become their experience and acts most of the
time automatically, unconsciously. To overcome this difficulty, various methods are used to
obtain this knowledge, such as interviews, observation, questionnaires, charts, etc.

In our case, we used the interview and decision tree methods to capture the knowledge
of the experts involved in the project. Several interviews were conducted with all four fish
pathologists, who were instructed how to record the European sea bass disease diagnosis
procedures in decision trees, upon which subsequent successive interviews were conducted,
in order to arrive at the final trees, which were converted to production rule sets in the
expert disease diagnosis system. There were various problems, which were overcome.
One of them was the adaptation of each side (engineers, ichthyologists) to the technical
terminology of the other, but also of the ichthyologists among themselves. There was
difficulty in understanding the decision trees by ichthyologists, which was gradually
overcome. Figure 1 illustrates the process followed for knowledge acquisition from fish
pathologists.
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First, the European sea bass diseases were recorded. These diseases are shown in
Table 1. The list is not exhaustive but includes a major part of sea bass diseases. Also,
metabolic diseases were not analyzed further because such an analysis was not considered
necessary. Then, the parameters and symptoms related to the diagnosis of each sea bass
disease were recorded.

Table 1. Seabass diseases elicited from experts.

No Disease Category

1 Aeromonas disease Bacterial
2 Mycobacteriosis Bacterial
3 Myxobacteriosis Bacterial
4 Photobacteriosis Bacterial
5 Vibriosis (Vibrio anguillarum) Bacterial
6 Vibriosis (Vibrio harveyi) Bacterial
7 Caligus Parasitic
8 Ceratothoa Parasitic
9 Diplectanum Parasitic

10 Lernanthropus Parasitic
11 VNN Viral
12 Metabolic Diseases Metabolic

Then, the process of creating the decision trees for each disease began. Project Fish
Health Specialists (FHSs) were given standard decision tree diagrams and explained how
to design and operate them. The first diagrams had difficulties. It was observed that the
semantics of the decision trees had not been understood by FHSs, and therefore several
sessions of correcting the trees took place. The systematic effort to record the reasoning
dures as well as a re-evaluation of the parameters/symptoms recorded. This is illustrated
in Figure 1 by the feedback to step 2 from step 3.

In Table 2, the parameters and the symptoms related to the disease Myxobacteriosis
are presented as an example.

Table 2. Parameters/Symptoms of Myxobacteriosis elicited from experts.

Parameter/Symptom Type (Values)

Temperature numeric
Lethargic fish boolean
Anorexia boolean
Hemorrhagic stomatitis boolean
Skin color darkening boolean
Skin discoloration boolean

Skin ulcers Categorical
(no, small, mild, large)

Hemorrhagic and necrotic skin changes in fins boolean
Hemorrhagic skin changes in tail boolean
Necrotic skin changes in fins boolean
Necrotic skin changes in tail boolean
Corrosion of tail boolean
Corrosion of fins boolean
Stress boolean

Also, after each change to a decision tree, there was a validation check of the tree
with itself but also in relation to other related trees, which usually led to changes in the
previous design of the tree; this was repeated until we arrived at a fully acceptable tree.
This iterative process is captured in the flowchart in Figure 1 by the decision element after
step 4 and the feedback arrow to step 3. Figure 2 shows an example of a decision tree, that
of Myxobacteriosis.
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Figure 2. Decision tree for Myxobacteriosis diagnosis elicited from experts.

The representation of the decision trees generated by the knowledge elicitation
from the experts was carried out utilizing the VisiRule (https://www.lpa.co.uk/vsr.htm
(accessed on 30 September 2023)) tool. This tool is ideal for such cases, as it allows for
easy drawing of decision trees through its graphical interface. So, all the decision trees
were captured through VisiRule. VisiRule is a graphical tool to develop and deliver rule-
based expert systems, created by LPA (https://www.lpa.co.uk/ind_hom.htm (accessed on
30 September 2023)). The user can draw from the VisiRule graphical interface a decision
tree and define the points where the program will request a value for one of the variables,
the type of data they receive (e.g., numeric or alphanumeric), and how the flow of the
decision-making line branches, depending on their value, leading to the diagnosis result
(leaves of the tree). After the decision tree is finalized as a diagram in VisiRule, it can be
exported as an expert Flex rule-based system (https://www.lpa.co.uk/flx.htm (accessed
on 30 September 2023)), which practically contains Prolog code. This code can be executed
in the LPA Prolog runtime environment to insert values into the required input variables
and output diagnostics.

https://www.lpa.co.uk/vsr.htm
https://www.lpa.co.uk/ind_hom.htm
https://www.lpa.co.uk/flx.htm
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Figure 3 illustrates the process of creating a rule-based expert system for each decision
tree through VisiRule. Each decision tree is transferred by the knowledge engineer to a
corresponding VisiRule diagram, which is then converted into Flex rules automatically
by the VisiRule system. To test the correct transfer of the decision tree to VisiRule, Flex
code is executed and tested by the expert(s) in a recursive way. These expert systems are
called specialized expert systems (SESs) because of their adaptation to a particular disease
and constitute the golden standard diagnostic model.
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4.2. Diagnostic Process

The above-produced diagnostic SESs are autonomous; that is, each one of them is
dedicated to one disease. Each SES essentially represents the steps that one must follow to
arrive at a diagnosis for the particular disease. Each system usually starts with questions
about environmental parameters, such as temperature or the average weight of the fish,
continues with questions about external clinical symptoms and observations from the
image of the fish inside the cage, then proceeds with questions about symptoms of internal
organs, the answers of which require an operation on the fish, and ends up with questions
related to the results of microbiological, microscopic, or other specialized laboratory tests.
In practice, it is not convenient to use the individual diagnostic systems (decision trees)
independently because one would have to start exploring the trees one by one until arriving
at the possible disease(s). Also, in most cases, a quick, real-time decision based on elements
that can be available on-site is desirable. This is why an attempt was made to unify, in
some way, the individual systems and produce a general diagnostic system based on
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environmental, external, and internal clinical signs, that is, parameters whose values can
be specified on-site. This general diagnostic system produces an ordered list of the three
most probable diseases. After that, if required, the user can proceed with the corresponding
three SESs to finalize the decision; so, in this way, the number of systems (diseases) to be
examined is reduced.

In order to realize such a method, it was initially necessary to unify the parame-
ters—symptoms—used in the decision trees. It is noted that the decision trees for each
disease were designed with the participation of several experts, and the same practical
symptoms were represented by different or slightly different phrases (terminologies) in the
tree for each disease. So, an attempt was made to unify these expressions into one. The
list of parameters progressed as we recorded the diagnoses as decision trees. Furthermore,
for better presentation and use in the diagnostic process, they were divided into different
categories. The final diagnostic parameters/symptoms and their categories are presented
in Table 3.

Table 3. Parameters/Symptoms of sea bass diseases elicited from experts.

(Sub)Category Parameter Type

Environmental
Temperature numeric
Average weight numeric

External Clinical Signs (Symptoms)
Behavioral Anorexia boolean

Lethargic fish boolean
Weight loss boolean
Reduced weight increase rate boolean
Swimming Bladder Control Loss boolean
Stress boolean
Mortality Categorical (zero, massive, nonmassive)
Swimming Behavior Categorical (normal, alien, slow, fast)
Time between symptoms and deaths Categorical (normal, small, large)

Physiological Skin color darkening boolean
Skin discoloration boolean
Whitish areas boolean
Conjugal fins redness boolean
Retinopathy boolean
Exophthalmos boolean
Corneal Clouding boolean
Mouth lower jaw deformity boolean
Corrosion-Necrosis of Tail and Fins boolean
Scales Loss boolean
Bleeding areas boolean
Hemorrhagic and necrotic lesions boolean
Hemorrhagic stomatitis boolean
Skin ulcers Categorical (no, small, mild, large)
Fins and Tail ulcers boolean
Scoliosis or Lordosis
or Hypercalcification boolean

Release of Mucus Fecal Casts boolean
Internal Clinical Signs (Symptoms)
Gills Excess gill mucous boolean

Gill discoloring boolean
Anemic gills boolean
Local changes boolean

INTERNAL
Organs Pseudoenteritis boolean

Splenomegaly boolean
Granulomatosis boolean
Inflamed liver boolean
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Based on the above remarks and the way different categories of parameters were
used in the decision trees, we concluded to use a level-based diagnostic process. So, we
distinguish four levels of the diagnostic process (see Figure 4). At the 1st Level Diagnosis,
only the environmental parameters (i.e., water temperature and fish average weight) are
considered. They are quite crucial parameters whose values can exclude some diseases for
further investigation. So, after the 1st level diagnosis, a reduced number of diseases are
passing for consideration at the next level diagnosis.
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At the 2nd Level Diagnosis, the external clinical symptoms are considered, distinguished
in behavioral and physiological terms (Table 3). The user gives as input information about the
observed external symptoms and/or their values (depending on the type of the symptom).
In some cases, the user may provide an image of a fish, and the system calls the image
recognition unit (see Section 2.4) to automatically extract the required information. The
output of this level is a list of possible diseases, ordered from the most probable to the least
probable. The number of diseases may be further reduced.

At the 3rd Level Diagnosis, the internal clinical symptoms are considered, distinguishing
between gills and internal organs related symptoms (Table 3). The user gives as input
information about the observed external symptoms or their values (depending on the type
of the symptom). In most cases, the user may provide an image of a fish organ section.
Then, the system calls the image recognition unit (see Section 2.4) to automatically extract the
required information. The output of this level is a list of possible diseases, ordered from
the most probable to the least probable. The number of diseases may be further reduced.



Appl. Sci. 2023, 13, 13059 13 of 27

At the Final Level Diagnosis, if necessary, the user calls, one by one, the SESs of the
diseases in the order provided in the output list.

4.3. Diagnostic Methods
4.3.1. Blocking Rules

To reduce the diseases under consideration, specific rules were extracted from the
decision trees, which have as assumptions (conditions) parameters and/or values of pa-
rameters that are necessary for a disease to be possible. Each of these rules can be used
to exclude one of the diseases if the necessary conditions are not met. Therefore, they are
called blocking rules.

Here is an example of the coding for one of these rules (in JASON format):
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The above rule states that if at least one of the three symptoms (anorexia, mouthDefor-
mity, gillMucous) does not apply, then the disease “ceratothoa” is excluded. It is also stated
to be about level 2 symptoms/parameters.

A total of 41 blocking rules have been extracted from the decision trees, distributed
between the three decision levels. So, given the input values for the parameters in the table
above, the subsystem first performs a process based on these 41 rules. Each blocking rule,
as we mentioned, describes some conditions that are considered necessary for the diagnosis
of a disease. So, every rule that is NOT activated excludes a corresponding disease. At
the end, the process returns a list of excluded diseases along with metadata that can be
used to justify/explain the exclusion. Essentially, for each disease, the information from
the rule that excluded it is contained. Accordingly, the list of remaining (probable) diseases
is provided, again with justification information (which rules were tested).

Here is an example code of the information produced after the exclusion of the disease
“ceratothoa” due to the rule we quoted above, which also contains an explanation of
the exclusion.
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The knowledge in this table has been implemented as cases in JSON format, one for 
each disease in the table. E.g., the JSON record for CERATOTHOA is: 

  

In this way, an explainability feature is given to the system.

4.3.2. Case Based Ordering (CBO)

For those diseases that were not excluded by the previous method, the system calcu-
lates and displays an indicative ranking (from the most likely disease to the least likely).
Again, based on the information captured in the decision trees, the system provides for
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each disease the symptoms associated with it. Thus, it can make a comparison for each
of the possible diseases between its symptoms and the symptoms given by the user and
derive a similarity metric so that it can rank them. Specifically, a record was made for
each disease of the symptoms found in the check points of the corresponding decision tree.
Thus, a table was formed where each row represents a symptom and each column a disease.
Table 4 depicts an indicative part of the table, showing the associated symptoms for 4 of the
12 diseases (where “X” means the presence of a symptom/parameter, whereas categorical
values are displayed).

The knowledge in this table has been implemented as cases in JSON format, one for
each disease in the table. E.g., the JSON record for CERATOTHOA is:
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In this method, diseases are ranked based on some similarity metric, which represents
the degree of similarity between the user input case and the disease base case based on the
reported symptoms and has a value in [0,1].

Existing similarity metrics are based on three key metrics:

• a: number of common elements in the two lists
• b: number of elements present only in the user list (user provided symptoms)
• c: number of items present only in the disease list (disease symptoms)

We considered several metrics for case similarity, like ‘Jaccard, ‘Sorensen–Dice’,
‘Otsuka–Ochiai’, ‘Braun-Blanquet’, ‘Simpson’, ‘Sokal & Sneath’, and ‘Kulczynski2’. Having
experimented with the above metrics, we realized that their similarity values sometimes
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differ substantially. So, we decided to exclude the two of them that produce the max and
min values. The rest were divided into two groups with relatively similar values. Then, we
chose one of each group so that their average values were close to the average values of
the other two. The Jaccard and Kulczynski2 metrics [29] were chosen, which are calculated
according to the following formulas:

jacc = a/(a + b + c) or = 1, if a = b = c = 0

kulcz2 = 1, if a = b = c = 0
kulcz2 = 0, if ((a = b = 0 6= c) or (a = c = 0 6= b))
kulcz2 = [(a/(a + b)) + (a/(a + c))], otherwise

The final similarity value is calculated as the average value of the values of the
two metrics:

similarity = 1/2 (jacc + kulcz2)

The method returns a list of the diseases ordered on the basis of the similarity values
of their base cases compared to the user input. This is a type of case-based reasoning (CBR)
method that follows the standard CBR cycle: retrieve-reuse-revise-retain [6], where we
use a novel combination of similarity metrics. Therefore, the system provides a facility for
inserting new base cases (see Section 5) to implement the retain phase.

In addition to the similarity metric that was calculated, the process includes in the
output information on how many and which were the common symptoms, as well as
information on which symptoms of the disease were not considered at all by the user.

Essentially, in this method, the more common symptoms there are, the higher the
metric will be, but at the same time, it decreases its value if the user declares some additional
symptoms that are not related to the disease.

Table 4. Table of correlations of parameters/symptoms and diseases (part).

Symptoms Photo-Bacteriosis Myxo-Bacteriosis Myco-Bacteriosis Ceratothoa

Weight loss X
Mortality (deaths) nomass, mass
Anorexia X X X
Lethargic fish X
Swimming Behavior normal, alien
Color Darkening X X
Skin discoloration X
Mouth Lower
Jaw Deformity X

Fins and tail corrosion X
Scales Loss X
Stomatitis X
Skin ulcers X X
Gill mucous X
Anemic gills X
Granulomatosis X

4.3.3. Method of Weights (WM)

This method uses some kinds of weights given by experts. After the symptoms related
to each disease were determined and the decision trees were produced, the experts were
asked to assign a value to each parameter/symptom, except those of the 1st decision
level, showing how important the presence of the symptom is considered for the diagnosis
of the corresponding disease, which is called the symptom significance factor (SSF). Those
values were then normalized with the min-max technique so that their sum equals ‘1’ at
each decision level. Based on SSFs, a level significance factor (LSFx) at each decision level
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x (x = 2, 3) is determined as the sum of the SSFs of the common (let say k) symptoms
between those given by the user and those related to the disease:

LSFx= ∑k
i=1 SSFi

The LSFx shows how important the given symptoms of level x are in diagnosing the
disease. So, with this metric, not just how many common symptoms there are matters,
but also how important they are. As it is obvious, additional symptoms not related to the
disease do not contribute to the LSFx.

We indicatively present the “ceratothoa” disease with its SFSs:
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For each level x, for each disease, a level certainty factor (LCFx) has also been determined
by the expert, showing how certain a decision about the disease is at that level if based only
on the symptoms up to that level. If we have a LSF3(ceratothoa) at level 3, calculated as above,
and LCF3(ceratothoa) is the corresponding level certainty factor, then we define the decision
certainty factor for ceratothoa at level 3 (DCF3(ceratothoa)), which is calculated as follows:

DCF3(ceratothoa) = LSF3(ceratothoa) × LCF3(ceratothoa)

If LCF3(ceratothoa) = 0.8 was given by the expert, then DCF3(ceratothoa) = 0.27 ∗ 0.8 = 0.216.
Also, this is a novel method of reasoning using a combination of different significance

or certainty factors. Existing expert systems [23,30–32] use the method of CFs based on
MYCINs approach. To implement that approach, they ask the experts to assign a CF factor
to each symptom, and the final CF is calculated based on those values. This approach
has two problems: (a) the values assigned to each symptom by the expert(s) represent
the significance of the symptom in diagnosing a disease, not the certainty of the observed
value, which is the normal semantics of the CFs, and (b) each symptom is assigned one
value independent of the disease, which is not valid. In our approach, the values assigned
to symptoms are not considered CFs (because they are not); thus, their aggregate result is
not calculated according to MYCINs policy, but they are added. Also, in our approach, the
values assigned to a symptom may be different for different diseases. Additionally, they do
not distinguish between levels of diagnosis and do not use level CFs.
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4.3.4. The ACRES Method

ACRES is a tool that creates rule-based expert systems with CFs from datasets [33].
We used it for aphasia diagnosis in the past [34]. Because such data were not available in
our fish-related case, we created a dataset from the decision trees based on blocking rules
by producing all valid combinations of the values of the parameters/symptoms.

The ACRES training method is based on statistical data from the dataset, that is, how
often the value combinations appear in the rule conditions for each disease. That dataset
was used to build an ACRES rule-based system with CFs. This expert system returns a CF
for each disease, which shows how certain it is that the corresponding disease prevails. So,
the diseases are ranked according to those CFs (values in [0,1]). This expert system is used
as a third method for producing a ranked list of possible diseases.

4.3.5. Aggregation Method (AGM)

The above three methods are applied in parallel at levels 2 and 3. After each level,
if the user wants to conclude the diagnosis process, the results of the three methods are
aggregated via an aggregation method, and a final ordered list is produced (see Figure 5).
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We follow a kind of Majority Voting algorithm as the aggregation method. The input
to the algorithm is three ordered lists, and the output is an ordered list of the three most
probable diseases. The algorithm works as follows:

• The most common of the three first ranked diseases in the three lists gets first in the
final list. If all the first three are different, majority voting is applied to the three first
ranked plus the three second ranked, and so on.
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• To determine the second disease in the final list, we apply majority voting to the first
three and the second three diseases in the lists after removing the occurrences of the
disease selected as first in the final list in the previous step in the same way.

• This continues until the third most probable disease on the final list is determined.

4.3.6. Overall Diagnostic Process

As mentioned above, all three diagnostic methods are applied in parallel at all levels,
except level one. Only blocking rules are applied to all levels. The overall diagnostic
process is depicted in Figure 5.

At the first level, blocking rules for this level are applied, which reduces the number
of candidate diseases. At the second level, again, the first blocking rules of this level
are applied, which may further reduce the number of diseases. Consequently, the three
diagnostic methods are applied to the updated list of candidate diseases, and three separate
ordered lists are produced. Then, the aggregation method is applied, and a unified ordered
list is produced from the three separate lists. This is repeated at level three, except if the user
does not want to continue, is satisfied with the result, or cannot give further information.
Corresponding Algorithm 1 describes the process.

Algorithm 1: Overall Diagnostic Process

input: L = [d1, d2, . . ., dn]: all diseases list,
BRx: blocking rules of level x ε {1,2,3},
x = 1: level counter,
exit = false
output: L = [dp1, dp2, . . ., dpm]: ordered possible diseases

1. obtain Levelx user input;
2. apply BRx, based on user input; remove blocked di from L;
3. x = x + 1;
4. while x ≤ 3 do

obtain Levelx user input;
apply BRx, based on user input;
remove blocked di from L;
apply CBO to L and put result in LCBO;
apply WM to L and put result in LWM;
apply ACRES to L and put result in LACRES;
return LCBO, LWM, LACRES;
obtain user input for exit;
if exit = true then exit;
x = x + 1;

5. apply AGM to LCBR, LWM, LACRES

4.3.7. Specialized Expert Systems Based Diagnosis

When the final list of the most probable diseases is produced, the user has two options.
The first option is to stop, given that the result is satisfactory. For example, such a case is
the one where the first-ranked disease was first in all three lists and with a high degree of
confidence. Another case is the one where the first two diseases are quite relative and the
required treatment is similar.

The other option is to continue because the result is not satisfactory or a more se-
cure result is required. In this case, the user activates corresponding SESs, one by one,
until satisfaction is realized. SESs starts asking the user to input data from the beginning,
ignoring the input provided until then. However, this time, the data concerns only pa-
rameters/symptoms concerning the specific disease. Also, SESs go beyond level three
parameters to other level parameters not mentioned in Table 3. These parameters concern
laboratory tests or experiments, are called laboratory parameters, and are presented in Table 5,
where they are distinguished in microbiological, microscopic, molecular, and chemical terms.
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Table 5. Laboratory Examination Parameters.

Laboratory Parameters

Microbiological
GRAM Stain
Bacterial Culture
Viral Culture
Antibiogram
Urinary adhesion
Blood test
Biochemical API test
Microscopic
Gills microscopic examination
Histopathological examination
Molecular
PCR test
Chemical
Chemical examination

4.4. Image Recognition System (IRS)

At certain points in the general diagnosis process, the existence of a symptom requires
information from an image. For example, ‘whitish areas’ is such a symptom. In such
cases, the user can look at the image and give an answer or call the IRS, giving as input
that image.

IRS includes an image database that includes images called base images, which are di-
agnosed and validated cases of diseased fish associated with specific signs/symptoms. IRS
takes as input an image from the user, called the target image, and tries to find which base
image has a portion that matches the target image. If a match is found, it returns the base
image spotted on the matched areas and shows a number indicating the percentage of cer-
tainty of matching, called confidence. A threshold can be set so that if confidence ≥ threshold,
the matching is accepted and returned.

For the matching, an algorithm called Template Matching [35] has been implemented in
Python’s OpenCV.

In Figure 6, an example result of the IRS is depicted. The threshold of confidence was
set at 0.65. In the base image, several images of fish having inflamed liver are depicted, and
some of them match the target image with different confidence levels (equal to or greater
than 65%).
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5. User Interface

The interface of the main page of the system is depicted in Figure 7, which includes
the elements related to the first level (LVL 1) of diagnosis.
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The user can use the values of the environmental parameters to reduce the possible
diseases of the fish at hand. As soon as the user inserts the values and presses the “Di-
agnosis” button, the system displays the excluded and possible (not excluded) diseases
(see Figure 8).
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Figure 8. First level results example.

Afterwards, the user can proceed to the second diagnosis level (LVL 2) by selecting
it, as depicted in Figure 9. After this has been conducted, the second-level data interface
is unfolded, as presented in Figure 10, where the user selects the current second-level
(external) symptoms/signs.
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Figure 10. Selecting symptoms on the second diagnosis level.

Pressing the “Diagnosis” button of the second level (not shown in Figure 10), the
system operates and displays (a) the two lists (excluded and non-excluded diseases) af-
ter having applied the second level blocking rules, and (b) the three ordered lists of
most probable diseases, as returned by the three diagnostic methods (CBO, WBM, and
ACRES) applied to the above-produced non-excluded diseases (see in Figure 11 the two
ordered lists). Each disease in each list is assigned a confidence factor related to the
corresponding method.

Finally, a summary of results is displayed, where the three lists are summarized and
the result of the aggregation method is displayed (see Figure 12).

The same things happen when the user proceeds to the third diagnosis level, after the
user has inserted the (internal) symptoms of that level.

After the final list is produced, the user either accepts the result as valid or goes to
further investigation through the specialized expert systems (SESs). The user selects a SES
from the “Diagnosis” tab of the user interface menu, as shown in Figure 13, where the SES
corresponding to “Myxobacteriosis” is chosen.

As soon as the SES is selected, it starts asking questions of the user to obtain values
for its parameters. The SES questions follow the corresponding decision tree defined
by the experts. As in the general system, questions in most trees start with questions
related to environmental parameters and then proceed to external, internal, microbiological,
microscopic, molecular, and chemical, if any (see Figure 14).

The microbiological, microscopic, molecular, and chemical parameter-related ques-
tions require the existence of laboratory results. If they do not exist, the user should stop
processing and take care of obtaining those results.
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Figure 14. SES example questions.

In each question, there is a possibility of some explanation about why the question is
asked (see the “Explain” button in Figure 14).

Apart from the above, the user interface provides another facility for expert users.
They can provide a valid real disease case and store it in the system’s database as a base case
(Figure 15). These cases can be used to constitute either a valid dataset, which progressively
increases in size and is used from time to time for refining the system, or an improved case
base for the CBO method.
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6. System Evaluation
6.1. Expert Based Tuning and Evaluation

The system was given to three expert ichthyologists, two of them different from those
who designed the decision trees, for evaluation. They created a set of 33 real, validated-
characteristic test cases to be used for system evaluation. The evaluation was performed in
two stages. The results of the first stage were used for system tuning. The results of the
second stage, after system tuning, were reported as the performance of the system.

So, in the first stage, in 20 out of the 33 test cases, the system made correct diagnoses;
that is, the correct result was within the three first diagnosed diseases by AGM, which
means 60.6% success.

Examining the reasons for this rather low success, we found that it was due to a few ill-
designed blocking rules, which we changed. Entering the test cases in the system after the
changes showed success in 26 out of the 33 test cases, which means 78.79% success, which
was a vast improvement. Notice that the test cases were not random but characteristic ones,
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which makes the success quite important. All experts declared that the system was easy to
use and well suited to their concept of fish disease diagnosis.

6.2. Artificial Data Based Evaluation

Given the shortage of real data, we consider the decision trees designed by the experts
to be the golden knowledge (ground truth) of our domain problem. So, to evaluate our
system, we did the following:

Using the provided data from the experts (decision trees, symptoms per disease, and
their weights), we generated an artificial dataset of test cases. Since real cases were not
available, this dataset was crucial to test and implement additional ranking methods based
on machine learning techniques and to evaluate all the implemented methods.

More specifically, the dataset generation algorithm generates random combinations of
the input values (symptoms and environmental parameters), and for each one of them, it
applies the blocking rules to isolate the valid diseases. If there is more than one possible
disease available, the algorithm runs two ranking methods (based on the similarity of the
symptoms and their assigned weights) and combines the results into a single score value.
Then, it randomly selects one of the diseases, considering their scores (the disease with the
higher score has the highest probability of being selected, but it is not guaranteed). The
algorithm continues to generate cases until the specified maximum number of instances
has been reached for all the diseases. The final dataset has 1793 cases, each one related to
36 features (diagnostic parameters) plus the class feature (disease).

Using a subset of the generated dataset (50%), we trained a rule-based expert system
with certainty factors (CFs) using the tool and methodology of ACRES. The implemented
Expert System can take as input a case and return a ranked list of the diseases, accompanied
by a CF value.

Thus, the overall system for preliminary diagnosis based on symptoms, given a new
case, isolates the possible diseases and performs three separate ranking approaches (case-
based, weighted, and with the trained ACRES expert system) that are combined into a final
one via a voting method.

The entire generated dataset was used to evaluate the system. Since the overall diag-
nostic process results in the three most probable diseases, we are interested in evaluating
whether the process includes the right disease within that result. In Table 6, we present
the evaluation results for each one of the ranking methods. The ‘Accuracy’ column shows
the rate of the dataset cases that were correctly classified by their disease (the disease was
the first one in the ranked list). The ‘Top-3 Accuracy’ column shows the rate of cases in
which the disease was ranked in one of the first three positions, whereas the ‘Average Rank’
column shows the average rank of the correct disease in the list of predictions (a lower
average rank indicates better performance).

Table 6. Methods evaluation results.

Method Accuracy Top-3 Accuracy Average Rank

CBO 0.511 0.919 1.825

WBM 0.435 0.897 1.982

ACRES 0.622 0.909 1.743

AGM 0.658 0.940 1.569

The results in bold indicate that the aggregate method performed better than the
individual ranking methods. They also show that although ACRES is better at diagnosing
the right disease as first on the list, it is not in the top 3 cases where CBO does better.

Table 7 displays the results of the aggregate ranking for each one of the individual
diseases. It shows (results in bold) that ‘pasteridiasi’ is the most difficult to diagnose disease
in both cases, as first and in the top 3. This is consistent with the fact that its decision tree is
one of the most complicated ones.
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Table 7. AGM results per disease.

Disease Accuracy Top-3 Accuracy Average Rank

pasteridiasi 0.322 0.762 2.399

mixovaktiridiasi 0.673 0.940 1.547

metavolika 0.800 0.960 1.327

don-vibrio-anguil 0.707 0.967 1.473

don-vibrio-harv 0.660 0.947 1.580

egkefalopatheia 0.700 0.973 1.407

ceratothoa 0.720 1.000 1.333

galicus 0.520 0.933 1.773

diplectanum 0.520 0.840 2.007

lernantropus 0.627 0.973 1.493

mycobacteriosis 0.773 0.987 1.353

aeromonada 0.860 0.993 1.180

It is important to note that the CBO and WBM approaches perform similarly among
different randomly generated datasets. On the other hand, the ACRES expert system (ES)
performance depends on the similarity of the test dataset with the training dataset used to
train the ES. If we use a smaller percentage of the dataset to train the ES, the performance
is reduced. On the other hand, the dataset generation algorithm produces a very wide
range of symptom combinations that may not actually be realistic. We believe that a real
dataset of cases would include much more limited combinations of symptoms (following
specific recurring patterns), and the proposed ES would perform even better. The system
platform is temporarily hosted at http://aigroup.ceid.upatras.gr/manfish/ (accessed on
17 October 2023).

7. Conclusions

In this paper, we present the design, implementation, and evaluation of a web-based
intelligent system for the diagnosis of farmed fish diseases. The system performs diagnosis
in two stages: In the first stage, a general process based on all environmental, external,
and internal parameters/symptoms is performed, resulting in an ordered list of the three
most probable diseases. In the second stage, which is optional, the specialized expert
systems of the resulted diseases can be used for more valid results, where additional
parameters related to laboratory tests are considered. The system uses a novel hybrid
approach that combines several methods for diagnosis, like rule-based, case-based, weight-
based, and voting-based reasoning. The system was evaluated for the general process via
an artificial dataset created from the decision trees provided by the experts. The results are
very promising.

Of course, our hybrid approach can be easily used in any intelligent system that
deals with the diagnosis of any animal disease (including humans) and generally in any
system that deals with a classification problem and has similar requirements to farmed
fish diagnosis.

A future research direction concerns further tuning of the system and evaluation based
on real data to improve its performance, especially in diagnosing the first disease on the
list. Another one is related to using deep learning techniques for the image recognition
part of the system. Both directions, however, demand the gathering of adequate real
datasets, which is not an easy task. A final direction concerns the use of ontologies for
representing the domain knowledge of farmed fish diseases and ontological reasoning for
making decisions on diseases.

http://aigroup.ceid.upatras.gr/manfish/
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