
Citation: Pang, R.; Yu, F.; Zhang, Y.;

Yuan, Y. An Asynchronous Parallel

I/O Framework for Mass

Conservation Ocean Model. Appl. Sci.

2023, 13, 13230. https://doi.org/

10.3390/app132413230

Academic Editor: Jae Soo Yoo

Received: 9 November 2023

Revised: 30 November 2023

Accepted: 5 December 2023

Published: 13 December 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Asynchronous Parallel I/O Framework for Mass
Conservation Ocean Model
Renbo Pang 1,2 , Fujiang Yu 1,2,*, Yu Zhang 1,2,* and Ye Yuan 1,2

1 National Marine Environmental Forecasting Center, 8 Dahuisi Road, Beijing 100080, China;
pangrb@nmefc.cn (R.P.); yuanye@nmefc.cn (Y.Y.)

2 Key Laboratory of Research on Marine Hazards Forecasting, Ministry of Natural Resources of China,
8 Dahuisi Road, Beijing 100080, China

* Correspondence: yvfujiang_2022@163.com (F.Y.); zhangy@nmefc.cn (Y.Z.)

Abstract: I/O is often a performance bottleneck in global ocean circulation models with fine spatial
resolution. In this paper, we present an asynchronous parallel I/O framework and demonstrate
its efficacy in the Mass Conservation Ocean Model (MaCOM) as a case study. By largely reducing
I/O operations in computing processes and overlapping output in I/O processes with computation
in computing processes, this framework significantly improves the performance of the MaCOM.
Through both reordering output data for maintaining data continuity and combining file access for
reducing file operations, the I/O optimizing algorithms are provided to improve output bandwidth.
In the case study of the MaCOM, the cost of output in I/O processes can be overlapped by up to
99% with computation in computing processes as decreasing output frequency. The 1D data output
bandwidth with these I/O optimizing algorithms is 3.1 times faster than before optimization at 16 I/O
worker processes. Compared to the synchronous parallel I/O framework, the overall performance of
MaCOM is improved by 38.8% at 1024 computing processes for a 7-day global ocean forecast with
1 output every 2 h through the asynchronous parallel I/O framework presented in this paper.

Keywords: parallel I/O; asynchronous I/O; overlapping output; combining file access; NetCDF

1. Introduction

The Mass Conservation Ocean Model (MaCOM) is a numerical ocean model devel-
oped by the National Marine Environmental Forecasting Center of China based on the
non-Boussinesq momentum equations in the pressure coordinate system. The MaCOM,
along with its data assimilation system, is capable of providing short-term forecasts of
temperature, salinity, flow velocity, and sea surface height from global basins to regional
areas with a valid forecasting period of 7 days.

The MaCOM utilizes cubed sphere grids and the pressure vertical coordinate system.
The physical solving equations of the MaCOM are based on the Navier–Stokes equations,
which are simplified with methods including the spherical approximation of the Earth,
the thin layer approximation of seawater, and the hydrostatic balance approximation.
The simplified equations for solving the horizontal velocity component u in the Cartesian
coordinate system are shown in Equations (1) and (2), Φ represents geopotential height,
ζa represents absolute vorticity, KE (KE = 1

2 (u
2 + v2)) represents the kinetic energy of the

fluid element, Ghdiss represents the parameterization of small-scale physics for horizontal
momentum, Gvdiss represents the parameterization of small-scale physics for vertical mo-
mentum, G f orce represents the parameterization of surface turbulent fluxes between the
atmosphere and ocean, and Gdrag represents the parameterization of drag between water
and land/ice. The equation for solving the vertical velocity ω in the p coordinate system is
shown in Equation (3), and ∇p represents the generalized derivative vector operator in the
pressure vertical coordinate. The equations for solving the active tracers (temperature T and
salinity S) are shown in Equations (4) and (5), where Ghdi f f represents the parameterization

Appl. Sci. 2023, 13, 13230. https://doi.org/10.3390/app132413230 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app132413230
https://doi.org/10.3390/app132413230
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-1781-9509
https://doi.org/10.3390/app132413230
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app132413230?type=check_update&version=1

Appl. Sci. 2023, 13, 13230 2 of 16

of small-scale physics for horizontal tracer diffusion, Gvdi f f represents the parameterization
of small-scale physics for vertical tracer diffusion.

∂u
∂t

= −∂Φ
∂x

+ ζav− ∂KE
∂x
−ω

∂u
∂p

+ Ghdiss
u + Gvdiss

u + G f orce
u + Gdrag

u (1)

∂v
∂t

= −∂Φ
∂y
− ζau− ∂KE

∂y
−ω

∂v
∂p

+ Ghdiss
v + Gvdiss

v + G f orce
v + Gdrag

v (2)

∂ω

∂p
= −∇p · u (3)

∂T
∂t

= −∇p · (TU) + Ghdi f f
T + Gvdi f f

T + G f orce
T (4)

∂S
∂t

= −∇p · (SU) + Ghdi f f
S + Gvdi f f

S + G f orce
S (5)

NetCDF (Network Common Data Form) is the data format of I/O (Input/Output) in
MaCOM. It is a machine-independent format that is widely used for storing and retriev-
ing multidimensional data in large-scale scientific applications such as climate, oceanic,
and atmospheric models [1]. It is also user-friendly to read and write data in files through a
variety of interface libraries of NetCDF.

In the performance test of MaCOM, I/O becomes a bottleneck that impedes efficiency,
particularly when a large scale of parallel processes is involved. As the number of com-
puting processes increases, the computation time decreases proportionally, which shows
strong scalability. However, the time of I/O decreases disproportionately with computation.
For instance, for a global 1/12-degree modeling of ocean circulation with an output interval
of 2 h that is used in forecast result comparison and artificial intelligence (AI) models, I/O
takes up over 40% of the entire execution time when MaCOM runs on 1024 processors.
The sea surface temperature and salinity, generated by numerical ocean models, are com-
monly employed to provide rapid forecast results with AI methods such as long-short term
memory [2], convolutional neural network [3], gate recurrent unit [4], etc.

To enhance the efficiency of I/O, we provide an asynchronous parallel I/O framework
that can significantly reduce I/O costs in computing processes. The contribution of this pa-
per includes: (1) providing a highly efficient asynchronous parallel I/O framework, which
implements independent I/O processes for I/O operations, thus significantly reducing I/O
costs by overlapping I/O operations in I/O processes with computation in computing pro-
cesses; (2) presenting optimizing algorithms to improve output bandwidth by reordering
I/O data for continuous data access and decreasing the number of file accessing times by
combining file open and closing operations; (3) verifying the efficiency of the asynchronous
parallel I/O framework and data output optimization through a case study of MaCOM.

The remainder of this paper is organized as follows. Section 2 summarizes the related
work, including libraries of asynchronous parallel NetCDF I/O and their optimizing
algorithms. Section 3 explains the motivation behind developing an asynchronous parallel
I/O in MaCOM. The methods used to design and optimize the asynchronous parallel I/O
are discussed in Section 4. Section 5 presents experimental results and analysis. Finally,
the paper concludes in Section 6.

2. Related Work

There are several I/O methods based on NetCDF that are widely used in hydrody-
namic models, as shown in Figure 1. The basic NetCDF libraries include NetCDF and
PnetCDF (Parallel NetCDF). In contrast, higher-level I/O libraries such as XIOS (XML IO
Server), PIO (Parallel I/O Libraries), and CFIO (Climate Fast I/O) call NetCDF or PnetCDF
APIs to implement new features, including asynchronous I/O. NetCDF typically calls
HDF (Hierarchical Data Format) to store and retrieve data, but it can also call PnetCDF for

Appl. Sci. 2023, 13, 13230 3 of 16

reading and writing data with the classic NetCDF format. PnetCDF depends on MPI-IO
(Message Passing Interface Input Output) to store and retrieve data by default. However, it
can also call NetCDF for I/O to support NetCDF4 format.

File System

HDF MPI-IO

NetCDF PnetCDF

XIOS CFIO

Application

PIO

High level I/O library based on NetCDF

Basic NetCDF library

I/O processing library

Figure 1. I/O methods based on NetCDF.

NetCDF is a general basic library that defines a set of I/O functions and a machine-
independent file format to support the creation, access, and sharing of array-oriented
scientific data [5,6]. It is widely used by many physical simulation models, such as POP
(Parallel Ocean Program) [7], CLM (Community Land Model) [8], CICE (Community Ice
CodE) [9], and WRF (Weather Research and Forecasting) [10]. NetCDF provides a way to
encapsulate structured scientific data of a common variable data type to support high-level
data access and shell-level application programming [6]. NetCDF performs I/O to a single
NetCDF file via one process with the serial netCDF API through collecting and distributing
data from and to other processes [11]. However, this approach has the drawback of causing
an I/O performance bottleneck and may overwhelm its memory capacity [11]. Additionally,
NetCDF does not support irregular I/O data or asynchronous data reading and writing.

PnetCDF uses collective I/O operations through MPI-IO to optimize data reading
and writing in the file system [11,12], which is used in CAM (Community Atmosphere
Model) [13] and GEOS-5 (Goddard Earth Observing System, version 5) [14]. The collective
method in PnetCDF can improve parallel I/O performance by significantly reducing
many small and non-contiguous I/O requests [11]. PnetCDF supports irregular data
distribution [5], MPI derived data types, and non-continuous data accessing from different
processes on a single NetCDF file [11]. PnetCDF can collect multiple I/O requests over
a record variable and optimize the I/O over a large pool of data transfers by producing
more contiguous and larger transfers [15]. For access to large regions of single array

Appl. Sci. 2023, 13, 13230 4 of 16

variables, PnetCDF can achieve high performance [15]. However, PnetCDF does not have
asynchronous I/O APIs to improve I/O performance.

PIO supports several back-end I/O libraries including NetCDF and PnetCDF [16],
which is used in CESM (Community Earth Systems Model) [12,16] and MPAS-Ocean
(Model for Prediction Across Scales—Ocean) [17]. PIO can redistribute data in all the I/O
processes and rearrange data in memory into a more I/O-friendly decomposition [18]. PIO
facilitates continuous output for NetCDF format by using I/O decomposition methods
that relocate each data element in the multi-dimensional array according to its physical
layout, compared with the PnetCDF library [12]. PIO can perform data output operation
through dedicated I/O processes asynchronously [19]. These methods can improve the
I/O performance and minimize the memory consumption of PIO efficiently [18].

CFIO is a parallel I/O library that is based on PnetCDF and has been specifically
developed for climate models, with the goal of providing automatic computation and I/O
overlap [18]. A CFIO server is needed to be an independent program that runs on an I/O
process to receive I/O requests from computing processes. It then calls the PnetCDF API to
output the data into the underlying parallel file system [18]. However, the output operation
of the CFIO server can fail due to the failure of I/O forwarding or other errors, which
can result in data loss [18]. When using CFIO with a POP ocean model at a 0.1 resolution
degree, it was found to provide a 7.9 times speedup compared to using NetCDF [18].

The XML Input/Output Server (XIOS) is an asynchronous MPI parallel I/O server [20]
based on NetCDF that is used in NEMO (Nucleus for European Modelling of the Ocean) [21]
for I/O operations. The XIOS server is controlled by an XML file, which defines the
characteristics of input and output data, including model fields, domains, grids, I/O
frequencies, time averaging for outputs, etc. [21]. The computing processes send I/O
requests to the XIOS server, which buffer data in memory with a decisive advantage of not
interrupting computing processes as reading and writing in the file system [21].

3. Motivation

At the beginning, MaCOM used PnetCDF to implement I/O functions as MOM
(Modular Ocean Model) [22] and sbPOM (Stony Brook Parallel Ocean Model) [23]. Be-
cause PnetCDF does not support asynchronous I/O, computation and I/O are executed in
the same processes. For the I/O settings, the output frequency is once every 2 h, and the
output variables include 6 1D variables (with reduced dimension from horizontal 2D after
data optimization), including sea surface height and 5 2D variables (with reduced dimen-
sion from horizontal and vertical 3D after data optimization), including sea temperature,
salinity, and others. The data volume of each 1D variable is 43.9 MB and 3.3 GB for each
2D variable.

The breakdown of the MaCOM wall time with the global 1/12-degree grid resolution
for a 7-day forecast with a 2-h output frequency is shown as Figure 2. As the parallelism
increases, the performance of the MaCOM is dominated by the I/O efficiency. For example,
I/O takes 10.6% of the whole runtime with 128 processes, but it reaches 40.6% with
1024 processes. With an increasing number of computing processes, the computing cost
decreases proportionally, while the I/O cost declines slowly compared to computation.
Due to the I/O speed limit of a file system and competition to access the same file from all
processes, writing data into one file will be a bottleneck for synchronous I/O with massive
processes. That is a general performance problem for synchronous parallel I/O. To solve
this problem, asynchronous I/O with independent I/O processes implemented in PIO,
XIOS, or CFIO is an effective method [24–26].

In oceanic and meteorological models, the prognostic variables, including temperature,
salinity, and three velocity components (zonal, meridional, and vertical), are numerically
integrated forward in time by solving the governing equations. This allows for overlapping
the storage of computing results from the preceding time step with the dynamical integra-
tion of the subsequent time step. This feature enables MaCOM to utilize asynchronous
I/O, thereby improving its performance. Meanwhile, to facilitate post-processing of output

Appl. Sci. 2023, 13, 13230 5 of 16

of MaCOM, the output of all variables from I/O processes in the same period should be
written into a single NetCDF file.

1 2 8 2 5 6 5 1 2 1 0 2 4
0

1 0 , 0 0 0

2 0 , 0 0 0

3 0 , 0 0 0

4 0 , 0 0 0

5 0 , 0 0 0

T i m e
(S e c o n d)

N u m b e r o f C o m p u t i n g P r o c e s s e s

 I / O
 C o m m u n i c a t i o n
 C o m p u t a t i o n

Figure 2. Time of computation, communication, and I/O with PnetCDF in MaCOM.

MaCOM is an operational model that runs daily on a high-performance computer
to provide global operational service. To improve the timeliness of this model and save
computing resources, maximum improvement in I/O performance is required since it is a
bottleneck during the execution of the model. Non-blocking communication in MPI is an
effective way to save communication time when sending output data [27–29]. However,
to work with non-blocking communication in MPI, there should be a method to avoid the
buffer of sending output data in the current I/O step from being written by the next I/O
step before completing communication in the current I/O step. Unfortunately, there is no
flexible library including NetCDF, PnetCDF, PIO, and CFIO to meet the requirement of
sending I/O data with non-blocking communication and protecting the buffer of sending
output data from being overwritten incorrectly by the next step of sending output data.
Therefore, it is necessary to develop an effective communication method to meet the above
requirements of non-blocking communication for higher I/O performance.

Due to the unstructured nature of grid decomposition in MaCOM, I/O data is scattered
in different processes. Therefore, it can improve output performance after reordering
irregular and discontinuous output data into continuous data. It is also convenient for data
post-processing. However, there are no related functions to reorder output data according
to the user-defined order in the NetCDF, PnetCDF, PIO, XIOS, and CFIO libraries.

Combining I/O operations for multiple array variables has been proven to be a way
to improve I/O performance [15]. Unfortunately, this optimizing method is not currently
implemented in current NetCDF libraries. To best improve I/O performance, we need
to develop a new asynchronous output framework with all aforementioned optimizing
methods in the MaCOM.

Compared with the NetCDF, PnetCDF, PIO, XIOS, and CFIO libraries, the new fea-
tures of the asynchronous parallel I/O framework proposed in this paper are as follows:
(1) sending I/O data with non-blocking communication and protecting the buffer of send-
ing output data from being overwritten incorrectly by the next step of sending output
data; (2) reordering output data according to a user-defined order to improve output band-
width; (3) combining I/O operations for outputting multiple array variables to reduce
file operations.

Appl. Sci. 2023, 13, 13230 6 of 16

4. Design and Algorithm
4.1. Workflow of the Asynchronous Parallel Output Framework

In our new design, the I/O operation has been largely moved from computing pro-
cesses to dedicated I/O processes. The workflow for the asynchronous parallel output
framework in computing processes and I/O processes is shown in Figure 3. The com-
puting processes (total number is m) send output data to the I/O processes through MPI
non-blocking communication after completing a fixed number of user-defined integral
calculations. The computing processes continue to run without waiting for completion
of communication. To prevent the sending buffer of I/O data from being overwritten by
the next step of non-blocking communication, a method is employed to check commu-
nication status and protect the sending buffer until the communication in the previous
step is completed. This is a trade-off that increases the memory usage of output variables
in the preceding computing step in order to achieve asynchronous communication in
computing processes.

Computing Processes

(0, ..., m−1)

I/O primary processes

(0,...,n−1)

I/O worker processes

(0, ..., n−1)

File System

Continue to run without waiting

for completion of communication

Sending output data

Reorder and scatter

output data

Parallel output

with NetCDF

Output next variable

Figure 3. Workflow of the asynchronous parallel output framework.

In the I/O processes (total number is n), all processes are I/O workers responsible for
outputting data into the same NetCDF file. Some of the I/O processes (total number is p,
where 1 ≤ p ≤ n) are selected as primary processes. Each primary process collects data
from the corresponding computing processes through non-blocking communication. Then,
each primary process sorts the scattered data into a continuous order. Next, each primary
process partitions the adjusted data equally and distributes them to the corresponding I/O
worker processes. Finally, all I/O worker processes perform parallel output of the data into
the same NetCDF file. After completing the above steps, the I/O primary processes resume
receiving I/O data from computing processes for outputting next variables.

4.2. Data Communication and Protection in Computing Processes

The workflow of data communication and protection in computing processes is shown
in Figure 4. In step 1, the mpi_wait function is used to check the status of communication
in step 3 and wait until it is finished. Initially, communication check and protection
in step 1 is not executed until I/O data communication in step 3 has begun. In step 2,
the assemble function collects output data and saves them in the sending buffer of send_buf.
The send_buf can be accessed by a block of continuous elements instead of one element
for better memory accessing performance. In step 3, the mpi_igatherv function of the
MPI APIs is used to send data to the I/O primary processes through collective non-
blocking communication.

Appl. Sci. 2023, 13, 13230 7 of 16

Step 1: Call mpi_wait (req) to wait
for the completion of sending data

with req

If it is the first time
 to send output data

Step 2: Call assemble (send_buf) to
collect output data in send_buf

Step 3: Call mpi_igatherv (send_buf)
to send data in send_buf

Yes

No

Figure 4. Workflow of data communication and protection.

4.3. Reordering and Parallel Outputting Data in I/O Processes

The workflow for reordering and parallel outputting data in I/O processes is shown
in Figure 5. First, the I/O primary process receives data from the corresponding computing
processes through the mpi_igatherv function in step 1. Second, the I/O primary process
waits for communication to be completed in step 1 by calling mpi_wait of the MPI APIs.
Third, the I/O primary process calls a self-defined function of data_reorder to adjust
the data into a continuous order for output. The method of data reordering is shown
in the following section of data optimization. Next, the I/O primary process partitions
the output data equally and continuously based on the number of I/O worker processes,
and scatters these data to the I/O worker processes in step 4. Finally, all I/O worker
processes use data_output in step 5 to parallel write the output data into a NetCDF file by
calling nf90_put_var of the NetCDF APIs or nf90mpi_put_var_all of the PnetCDF APIs
according to the user’s preference.

To output data into a file in step 5, there are two methods: independent file access
and combined file access. The independent file access method executes the functions of
opening and closing a file for outputting each variable output. In the combined file access
method, the function of opening a file is only executed once at the beginning of outputting
all variables, and the function of closing a file is also only executed once at the end of
outputting all variables. With the combined file access method, the cost of frequently
opening and closing a file can be avoided.

4.4. Data Optimization

Redundant data on land grids that is not used in ocean models is removed, as shown
in Figure 6. The gray grids represent land, and the blue grids represent ocean. First, the pre-
processing program of MaCOM deletes all land grids that are not neighbors of ocean grids.
Second, the remaining ocean grids and their neighboring land grids are reordered from 2D
to 1D. This can save nearly 28% in memory usage and unnecessary computation in global

Appl. Sci. 2023, 13, 13230 8 of 16

ocean models. It can further improve load balance among computing processes due to the
different computational load between an ocean grid and a land grid.

Step 1: Call mpi_igatherv (recv_buf)
to receive data from computing

processes

If the current process is
the I/O primary process

Step 2: Call mpi_wait (req_recv_buf)
to wait for the completion of

receiving data with req_recv_buf

Step 3: Call data_reorder (recv_buf)
to reorder output data

Yes

No

Step 4: Call mpi_scatterv (recv_buf)
to scatter output data to the I/O

worker processes

Step 5: Call data_output (recv_buf)
to write output data

Figure 5. Workflow for reordering and parallel outputting data.

1,4 2,4 3,4 4,4

1,3 2,3 3,3 4,3

2,2 3,2 4,2

3,1 4,1

1,4 2,4 3,4 4,4

1,3 2,3 3,3 4,3

1,2 2,2 3,2 4,2

1,1 2,1 3,1 4,1

1
(1,4)

2
(2,4)

3
(3,4)

4
(4,4)

5
(1,3)

6
(2,3)

7
(3,3)

8
(4,3)

9
(2,2)

10
(3,2)

11
(4,2)

12
(3,1)

13
(4,1)

Remove
land grids

Y

X

Y

X

Change 2D to 1D

Figure 6. Removing redundant data on land grids.

Data partition in computing processes is completed by the multilevel graph partition-
ing tool of METIS [30]. Grid neighboring relations are the input for METIS to complete
data partition. After reordering the output data, the data is contiguous and sorted in I/O
primary processes. The data can be sequentially and continuously divided according to
the number of I/O worker processes. Both the data partitioning method in the computing
processes and I/O processes are based on horizontal 2D grids.

The order of grids in computing processes depends on the neighboring relation of grids.
The data is arranged in the result file in the order of a fixed grid index. The data received
from computing processes is disordered and non-contiguous for output. To improve output

Appl. Sci. 2023, 13, 13230 9 of 16

performance, the data is reordered in I/O primary processes, as shown in Figure 7. First,
we combine continuous elements in a block that are continuous in both the I/O primary
process and the output file, and operate on them together by block. For example, elements 5
and 6, which are continuous in both the receiving buffer and the output file, will be copied
at one time to the adjusted array. Next, we reorder and store these blocks in the same order
as the output file.

1 5 6 2 8 9 3 4 7

1 5 6 2 8 9 3 4 7

1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9

Receiving buffer sent by
Computing process 0

Receiving buffer sent by
Computing process ...

Receiving buffer sent by
Computing process n-1

Access by block with continuous grids

Reorder blocks

Store blocks

Figure 7. Data reordering method.

5. Experiment
5.1. Experiment Environment and Configuration

Our experiments were conducted on the cluster of the National Marine Environmental
Forecasting Center in Beijing of China. The software and hardware environment used in
the test is shown in Table 1.

Table 1. Software and hardware environment.

Name Version

CPU Intel(R) Xeon(R) CPU E5-2680 v4 2.40 GHz
Node 2 Intel CPU (14 cores each CPU)

Memory 128 GB
Hardware Architecture X86_64

Operating System Linux 3.10.0
Compiler Mpiifort version 2021.4.0

Compiling Option -O3
MPI Intel(R) MPI Library 2021u4

NetCDF NetCDF 4.7.4
PNetCDF PnetCDF 1.12.3

File System LUSTRE 2.12.6

For the MaCOM configuration, the grid resolution is global 1/12-degree, the number
of horizontal grids after removing land grids is 5,749,313, and the vertical layer is 75.
The execution time was calculated by calling the system_clock of Fortran intrinsic functions.
The parameter of system_clock is defined as a double precision integer, and its time
counting frequency is 106 per second.

We performed a test of MaCOM with a fixed number I/O processes and different
I/O output frequency to evaluate asynchronous output efficiency through overlapping
output with computation. We also measured parallel output bandwidth with different I/O
processes using several I/O optimizing algorithms. Finally, we compared the execution
performance of MaCOM after using the asynchronous parallel output framework provided
in this paper.

Appl. Sci. 2023, 13, 13230 10 of 16

5.2. Asynchronous Parallel Output Performance

We used 1024 computing processes and 4 I/O processes (1 primary process and 4 I/O
worker processes) to test the output time in computing processes with different output
frequencies. The total times of output was 5, while the output frequency increased from
1 output per 1 step of computation to 1 output per 10 steps of computation. One 1D double
precision real variable (43.86 MB) and one 2D double precision real variable (3.21 GB)
were outputted into a NetCDF file each time. The time statistics of the output operations
for 5 times of output in computing processes are shown in Figure 8. Due to the fixed
number of computing processes and I/O processes, it takes a fixed and small amount
of time to assemble and send data with non-blocking communication. The time for one
step of computation is much slower than the time for one time of output. To prevent
overwriting the reusable sending buffer, computing processes have to wait until sending
data to I/O primary processes is completed. The waiting time gradually reduces with
decreasing output frequency. It becomes an extremely small and stable amount of time
(0.2 s for 5 waiting operations) for 1 output per 9 or more computing steps.

1 2 3 4 5 6 7 8 9 1 0
0

2

4

6

8

1 0

1 2

1 4

1 6

T i m e
(S e c o n d)

O u t p u t F r e q u e n c y

 S e n d
 A s s e m b l e
 W a i t

Figure 8. Output time in computing processes.

The output time with four I/O processes to write five times of one 1D variable and one
2D variable (total volume of 16.28 GB) is 21.88 s. Based on the output time in the computing
processes shown in Figure 6, we calculated the percentage of overlapping output with
computation, as shown in Figure 9. The cost of outputting one 1D variable and one 2D
variable can be overlapped by up to 99.09% with one output per nine steps of computation.
It can significantly improve the I/O performance with the asynchronous parallel output
framework proposed in this paper by overlapping I/O operation with computation.

5.3. Parallel Output Performance

We measured the time of outputting one 1D variable and one 2D variable in I/O
processes with different numbers of I/O processes and the same 1024 computing processes.
Because each node has 28 cores, the last computing processes utilize 16 CPU cores, while
the initial I/O processes utilize 12 CPU cores within the same node. The subsequent I/O
processes exceeding 12 occupy an entire node. The total times of output for each variable is
5, and the output frequency is 1 output per 10 steps of computation. The number of I/O
primary process was the same as one. The bandwidth for outputting 5 times of one 1D
variable (reduced from horizontal 2D in data optimization, 43.86 MB each time of output)

Appl. Sci. 2023, 13, 13230 11 of 16

into a file is shown in Figure 10. The parallel output bandwidth through PnetCDF reached
the peak of 2 GB/s at 16 I/O processes. Due to competition for I/O bandwidth on the same
file, the output bandwidth decreases when there are more than 16 I/O processes to output
1D variable.

1 2 3 4 5 6 7 8 9 1 0
0

2 0

4 0

6 0

8 0

1 0 0
Pe

rce
nta

ge
(%

)

O u t p u t F r e q u e n c y
Figure 9. Percentage of overlapping output with computation.

Data reordering optimization to merge a large number of non-continuous blocks into
one continuous block can significantly increase output bandwidth. File accessing opti-
mization through reducing the number of times of opening and closing file for outputting
variable can also improve output performance. For example, the output bandwidth after
file accessing optimization and data reordering optimization is 3.1 times faster than before
optimization at 16 I/O worker processes.

The runtime for outputting the 1D variable five times at the same I/O primary and
worker process is shown in Figure 11. File opening and closing operations are only per-
formed once by all worker processes. The runtime of file operations slightly increases as
the number of worker processes increases, mainly due to I/O competition among them.
Data reordering is only executed by the primary I/O process, and its runtime remains
almost constant because of the consistent total data volume. The runtime for scattering data
increases gradually as the number of worker processes increases. The minimum runtime
for outputting data is achieved with 16 I/O workers.

The bandwidth for outputting five times of one 2D variable (3.21 GB for each time of
output) into a file is shown in Figure 12. Similar to outputting the 1D variable, reordering
the data can significantly improve the performance of outputting the 2D variable. The size
of the first dimension of the 2D variable is the same as that of the 1D variable, and the second
dimension of the 2D variable is 75. The reduced time through file accessing optimization is
fixed and only frequency-related. Due to the fact that file accessing operations consume a
decreasing percentage of output time as the output data volume rises, it has minor impact
on optimizing efficiency while outputting the 2D variable.

Data continuity is impacted by how I/O data is partitioned. I/O data along the
first dimension (5,749,313 horizontal grids) increases parallel scalability but breaks data
continuity. I/O data along the second dimension (75 vertical layers) reduces parallel
scalability but keeps all I/O data continuous. The output performance with data partition
along the second dimension has much better performance than that with data partition
along the first dimension. For example, output bandwidth after file accessing optimization

Appl. Sci. 2023, 13, 13230 12 of 16

and data reordering optimization along the second dimension is 2.55 times faster than that
along the first dimension, and 2.94 times faster than before optimization at 32 I/O worker
processes. The parallel output bandwidth through PnetCDF reached the peak of 1.79 GB/s
at 32 I/O processes, which is more than 16 I/O worker processes for outputting the 2D
variable. This shows that the amount of data can improve the parallel scalability of output.
However, since the size of second dimension is small, as being 75, it causes more load
imbalance compared to data partition along the first dimension. This could be the cause of
the peak output performance for the 2D variable being lower than for the 1D variable.

2 4 8 1 6 3 2 6 4
4 0 0
6 0 0
8 0 0

1 0 0 0
1 2 0 0
1 4 0 0
1 6 0 0
1 8 0 0
2 0 0 0
2 2 0 0
2 4 0 0

N u m b e r o f I / O w o r k e r p r o c e s s e s

 W i t h f i l e a c c e s s i n g o p t i m i z a i t o n a n d d a t a r e o d e r i n g o p t i m i z a t i o n
 W i t h f i l e a c c e s s i n g o p t i m i z a t i o n
 B e f o r e o p t i m i z a t i o n

Ou
tpu

t b
an

dw
idt

h(M
B/s

)

Figure 10. Bandwidth of outputting a 1D variable.

2 4 8 1 6 3 2 6 4
0 . 0 0

0 . 0 5

0 . 1 0

0 . 1 5

0 . 2 0

0 . 2 5

0 . 3 0

0 . 3 5

0 . 4 0

Tim
e (

Se
co

nd
)

N u m b e r o f w o r k e r p r o c e s s e s

 F i l e o p e n i n g a n d c l o s i n g
 D a t a r e o r d e r i n g
 D a t a s c a t t e r i n g
 D a t a o u t p u t

Figure 11. Runtime of outputting a 1D variable at the same I/O primary and worker process.

Appl. Sci. 2023, 13, 13230 13 of 16

2 4 8 1 6 3 2 6 4
2 0 0

4 0 0

6 0 0

8 0 0

1 0 0 0

1 2 0 0

1 4 0 0

1 6 0 0

1 8 0 0

2 0 0 0

Ou
tpu

t b
an

dw
idt

h(M
B/s

)

N u m b e r o f I / O w o r k e r p r o c e s s e s

 W i t h f i l e a c c e s s i n g o p t i m i z a t i o n a n d d a t a r e o r d e r i n g o p t i m i z a t i o n a l o n g s e c o n d d i m e n s i o n
 W i t h f i l e a c c e s s i n g o p t i m i z a i t o n a n d d a t a r e o d e r i n g o p t i m i z a t i o n a l o n g f i r s t d i m e n s i o n
 W i t h f i l e a c c e s s i n g o p t i m i z a t i o n a l o n g f i r s t d i m e n s i o n
 B e f o r e o p t i m i z a t i o n a l o n g f i r s t d i m e n s i o n

Figure 12. Bandwidth of outputting a 2D variable.

The runtime for outputting the 2D variable along the second dimension five times
at the same I/O primary and worker process is shown in Figure 13. The runtime for file
opening and closing operations has no connection to the output data volume. They have
minor effect on the performance optimization of outputting the 2D variable. The runtime of
data reordering, scattering, and output for outputting the 2D variable scales up compared
to outputting the 1D variable. The runtime of data scattering and output is also affected by
the number of worker processes.

2 4 8 1 6 3 2 6 4
0

5

1 0

1 5

2 0

2 5

3 0

Da
ta

ou
tpu

t

N u m b e r o f w o r k e r p r o c e s s e s

 F i l e o p e n i n g a n d c l o s i n g
 D a t a r e o r d e r i n g
 D a t a s c a t t e r i n g
 D a t a o u t p u t

Figure 13. Runtime of outputting a 2D variable along the second dimension at the same I/O primary
and worker process.

Appl. Sci. 2023, 13, 13230 14 of 16

5.4. Output Evaluation in MaCOM Model

We conducted a runtime test of MaCOM with different numbers of computing pro-
cesses, from 128 to 1024. The synchronous parallel I/O framework using PnetCDF utilizes
all computing processes for data output. This framework is also widely employed in other
oceanic and atmospheric models, such as the Modular Ocean Model 5 (MOM5) [22] and
the Weather Research and Forecasting model (WRF) [31]. The asynchronous parallel I/O
framework proposed in this paper employs 4 I/O processes exclusively and consistently
(1 primary process and 4 I/O worker processes) for data output. The forecast period is
7 days, which is required by operational forecasting service. The total computing steps
are 15,120. The output frequency is once per 2 h, and the total number of outputs is 84.
The output variables consist of six 1D variables and five 2D variables, and the total output
data volume is 1.37 TB.

The runtime of the MaCOM with both synchronous I/O and asynchronous parallel
I/O is shown in Figure 14. The asynchronous parallel I/O framework in this paper can
significantly improve performance of MaCOM. For example, it reduced the runtime by
3474.4 s at 1024 computing processes after I/O optimization, and improved the performance
of MaCOM by 38.8%. This means that with the asynchronous I/O framework the runtime
of MaCOM at 1024 processes can meet the requirement for operational service, as the
runtime to provide 7-day forecasting products is less than 2 h.

1 2 8 2 5 6 5 1 2 1 0 2 4

5 , 0 0 0

1 0 , 0 0 0

1 5 , 0 0 0

2 0 , 0 0 0

2 5 , 0 0 0

3 0 , 0 0 0

3 5 , 0 0 0

4 0 , 0 0 0

4 5 , 0 0 0

T i m e
(S e c o n d)

N u m b e r o f c o m p u t i n g p r o c e s s e s

 B e f o r e o p t i m i z a t i o n
 A f t e r o p t i m i z a t i o n

Figure 14. Runtime of the MaCOM model with different I/O methods.

6. Conclusions and Future Work

In this work, we presented a highly efficient asynchronous parallel I/O framework
that supports both PnetCDF and NetCDF. This framework can significantly reduce I/O time
in computing processes by overlapping I/O with computation in the case study of MaCOM.
Moreover, we improved parallel output bandwidth through reordering the output data for
data continuity and reducing the I/O file accessing operations by combining them. The test
results showed that data continuity is a key factor for improving output performance.

In the future, we plan to conduct further evaluations on different machines with
varying file systems. We also plan to improve communication performance among I/O pro-
cesses with non-blocking communication and investigate output bandwidth optimization
with other methods.

Appl. Sci. 2023, 13, 13230 15 of 16

Author Contributions: Conceptualization, F.Y. and Y.Y.; methodology, R.P. and Y.Z.; software, R.P.
and Y.Z.; resources, F.Y.; writing—original draft preparation, R.P.; writing—review and editing, F.Y.,
Y.Z. and Y.Y.; supervision, F.Y.; project administration, F.Y.; funding acquisition, Y.Z. and Y.Y. All
authors have read and agreed to the published version of the manuscript.

Funding: This research was supported by the National Natural Science Foundation of China under
contract No. 41506031 and the National Key Research and Development Program of China under
contract No. 2023YFC3107800.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author. The data are not publicly available due to privacy.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Rew, R.; Davis, G. NetCDF: An interface for scientific data access. IEEE Comput. Graph. Appl. 1990, 10, 76–82. [CrossRef]
2. Xie, J.; Zhang, J.; Yu, J.; Xu, L. An adaptive scale sea surface temperature predicting method based on deep learning with attention

mechanism. IEEE Geosci. Remote Sens. Lett. 2019, 17, 740–744. [CrossRef]
3. Zhang, X.; Zhao, N.; Han, Z. A Modified U-Net Model for Predicting the Sea Surface Salinity over the Western Pacific Ocean.

Remote Sens. 2023, 15, 1684. [CrossRef]
4. Chen, G.; Huang, B.; Chen, X.; Ge, L.; Radenkovic, M.; Ma, Y. Deep blue AI: A new bridge from data to knowledge for the ocean

science. Deep Sea Res. Part I Oceanogr. Res. 2022, 190, 103886. [CrossRef]
5. Gao, K.; Jin, C.; Choudhary, A.; Liao, W.K. Supporting computational data model representation with high-performance I/O in

parallel netCDF. In Proceedings of the 2011 18th International Conference on High Performance Computing, Bengaluru, India,
18–21 December 2011; pp. 1–10.

6. Galiano, V.; Migallón, H.; Migallón, V.; Penadés, J. PyPnetCDF: A high level framework for parallel access to netCDF files. Adv.
Eng. Softw. 2010, 41, 92–98. [CrossRef]

7. Jones, P.W.; Worley, P.H.; Yoshida, Y.; White, J.B., III; Levesque, J. Practical performance portability in the Parallel Ocean Program
(POP). Concurr. Comput. Pract. Exp. 2005, 17, 1317–1327. [CrossRef]

8. Hoffman, F.M.; Vertenstein, M.; Kitabata, H.; White, J.B., III. Vectorizing the community land model. Int. J. High Perform. Comput.
Appl. 2005, 19, 247–260. [CrossRef]

9. Rae, J.; Hewitt, H.; Keen, A.; Ridley, J.; West, A.; Harris, C.; Hunke, E.; Walters, D. Development of the global sea ice 6.0 CICE
configuration for the met office global coupled model. Geosci. Model Dev. 2015, 8, 2221–2230. [CrossRef]

10. Shantharam, M.; Tatineni, M.; Choi, D.; Majumdar, A. Understanding I/O bottlenecks and tuning for high performance I/O on
large HPC Systems: A case study. In Proceedings of the Practice and Experience on Advanced Research Computing, Pittsburgh,
PA, USA, 22–26 July 2018; pp. 1–6.

11. Li, J.; Liao, W.K.; Choudhary, A.; Ross, R.; Thakur, R.; Gropp, W.; Latham, R.; Siegel, A.; Gallagher, B.; Zingale, M. Parallel netCDF:
A high-performance scientific I/O interface. In Proceedings of the 2003 ACM/IEEE Conference on Supercomputing, Phoenix,
AZ, USA, 15–21 November 2003; p. 39.

12. Zou, Y.; Xue, W.; Liu, S. A case study of large-scale parallel I/O analysis and optimization for numerical weather prediction
system. Future Gener. Comput. Syst. 2014, 37, 378–389. [CrossRef]

13. Tseng, Y.H.; Ding, C. Efficient parallel I/O in Community Atmosphere Model (CAM). Int. J. High Perform. Comput. Appl. 2008,
22, 206–218. [CrossRef]

14. Liu, Z.; Wang, B.; Wang, T.; Tian, Y.; Xu, C.; Wang, Y.; Yu, W.; Cruz, C.A.; Zhou, S.; Clune, T.; et al. Profiling and improving
I/O performance of a large-scale climate scientific application. In Proceedings of the 2013 22nd International Conference on
Computer Communication and Networks (ICCCN), Nassau, Bahamas, 30 July–2 August 2013; pp. 1–7.

15. Gao, K.; Liao, W.K.; Choudhary, A.; Ross, R.; Latham, R. Combining I/O operations for multiple array variables in parallel
netCDF. In Proceedings of the 2009 IEEE International Conference on Cluster Computing and Workshops, New Orleans, LA,
USA, 31 August–4 September 2009; pp. 1–10.

16. Dennis, J.M.; Edwards, J.; Loy, R.; Jacob, R.; Mirin, A.A.; Craig, A.P.; Vertenstein, M. An application-level parallel I/O library for
Earth system models. Int. J. High Perform. Comput. Appl. 2012, 26, 43–53. [CrossRef]

17. Woodring, J.; Petersen, M.; Schmeißer, A.; Patchett, J.; Ahrens, J.; Hagen, H. In Situ eddy analysis in a high-resolution ocean
climate model. IEEE Trans. Vis. Comput. Graph. 2015, 22, 857–866. [CrossRef] [PubMed]

18. Wang, W.; Huang, X.; Fu, H.; Hu, Y.; Xu, S.; Yang, G. CFIO: A fast I/O library for climate models. In Proceedings of the 2013 12th
IEEE International Conference on Trust, Security and Privacy in Computing and Communications, Melbourne, Australia, 16–18
July 2013; pp. 911–918.

http://doi.org/10.1109/38.56302
http://dx.doi.org/10.1109/LGRS.2019.2931728
http://dx.doi.org/10.3390/rs15061684
http://dx.doi.org/10.1016/j.dsr.2022.103886
http://dx.doi.org/10.1016/j.advengsoft.2009.06.005
http://dx.doi.org/10.1002/cpe.894
http://dx.doi.org/10.1177/1094342005056113
http://dx.doi.org/10.5194/gmd-8-2221-2015
http://dx.doi.org/10.1016/j.future.2013.12.039
http://dx.doi.org/10.1177/1094342008090914
http://dx.doi.org/10.1177/1094342011428143
http://dx.doi.org/10.1109/TVCG.2015.2467411
http://www.ncbi.nlm.nih.gov/pubmed/26353372

Appl. Sci. 2023, 13, 13230 16 of 16

19. Hartnett, E.; Edwards, J. The parallelio (PIO) C/FORTRAN libraries for scalable HPC performance. In Proceedings of the 37th
Conference on Environmental Information Processing Technologies, American Meteorological Society Annual Meeting, Virtual,
12–15 January 2021; pp. 10–15.

20. Yepes-Arbos, X.; Acosta, M.; van den Oord, G.; Carver, G. I/O scalability boost for the next generation of Earth system models:
IFS-XIOS integration as a case study. In Proceedings of the AGU Fall Meeting 2018, Washington, DC, USA, 10–14 December 2018.

21. Boussetta, S.; Simarro, C.; Lucas, D. Exploring EC-Earth 3.2-Beta Performance on the New ECMWF Cray-Broadwell; European Centre
for Medium Range Weather Forecasts: Reading, UK, 2016.

22. Yang, R.; Ward, M.; Evans, B. Parallel I/O in Flexible Modelling System (FMS) and Modular Ocean Model 5 (MOM5). Geosci.
Model Dev. 2020, 13, 1885–1902. [CrossRef]

23. Jordi, A.; Wang, D.P. sbPOM: A parallel implementation of Princenton Ocean Model. Environ. Model. Softw. 2012, 38, 59–61.
[CrossRef]

24. Balle, T.; Johnsen, P. Improving I/O Performance of the Weather Research and Forecast (WRF) Model; Cray User Group: Bloomington,
IN, USA, 2016; p. 123.

25. Kougkas, A.; Devarajan, H.; Sun, X.H. Bridging Storage Semantics Using Data Labels and Asynchronous I/O. ACM Trans. Storage
2020, 16, 1–34. [CrossRef]

26. Byna, S.; Breitenfeld, M.S.; Dong, B.; Koziol, Q.; Pourmal, E.; Robinson, D.; Soumagne, J.; Tang, H.; Vishwanath, V.; Warren, R.
ExaHDF5: Delivering efficient parallel I/O on exascale computing systems. J. Comput. Sci. Technol. 2020, 35, 145–160. [CrossRef]

27. Al-Tawil, K.; Moritz, C.A. Performance modeling and evaluation of MPI. J. Parallel Distrib. Comput. 2001, 61, 202–223. [CrossRef]
28. Hatanaka, M.; Hori, A.; Ishikawa, Y. Optimization of MPI persistent communication. In Proceedings of the 20th European MPI

Users’ Group Meeting, Madrid, Spain, 15–18 September 2013; pp. 79–84.
29. Zheng, Y.; Marguinaud, P. Simulation of the performance and scalability of message passing interface (MPI) communications of

atmospheric models running on exascale supercomputers. Geosci. Model Dev. 2018, 11, 3409–3426. [CrossRef]
30. Karypis, G.; Kumar, V. METIS: A Software Package for Partitioning Unstructured Graphs, Partitioning Meshes, and Computing

Fill-Reducing Orderings of Sparse Matrices; Computer Science & Engineering Technical Reports: Minneapolis, MN, USA, 1997.
31. Christidis, Z. Performance and scaling of WRF on three different parallel supercomputers. In High Performance Computing,

Proceedings of the 30th International Conference, ISC High Performance 2015, Frankfurt, Germany, 12–16 July 2015; Proceedings 30;
Springer: Cham, Switzerland, 2015; pp. 514–528.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://dx.doi.org/10.5194/gmd-13-1885-2020
http://dx.doi.org/10.1016/j.envsoft.2012.05.013
http://dx.doi.org/10.1145/3415579
http://dx.doi.org/10.1007/s11390-020-9822-9
http://dx.doi.org/10.1006/jpdc.2000.1677
http://dx.doi.org/10.5194/gmd-11-3409-2018

	Introduction
	Related Work
	Motivation
	Design and Algorithm
	Workflow of the Asynchronous Parallel Output Framework
	Data Communication and Protection in Computing Processes
	Reordering and Parallel Outputting Data in I/O Processes
	Data Optimization

	Experiment
	Experiment Environment and Configuration
	Asynchronous Parallel Output Performance
	Parallel Output Performance
	Output Evaluation in MaCOM Model

	Conclusions and Future Work
	References

