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Abstract: Along with increasingly serious water pollution, water environmental problems have
become major factors that hinder the sustainable development of our economy and society. Reliable
evaluation of water quality and accurate prediction of water pollution indicators are the key links
in water resource management and water pollution control. In this paper, the water quality data
of Lanzhou Xincheng Bridge section in the Yellow River Basin and Sichuan Panzhihua Longdong
section in the Yangtze River Basin were used to establish a water quality evaluation model and
a prediction model. For the water quality evaluation model, we constructed the research samples
by means of equal intervals and uniform distribution of interpolated water quality index data
according to Environmental Quality Standards for Surface Water. The training samples were determined
by a stratified sampling method, and the water quality evaluation model was established using
a T-S fuzzy neural network. The experimental results show that the highest accuracy achieved by
the evaluation model in water quality classification was 94.12%. With respect to the water quality
prediction model, we propose ARIMA-WNN, which combines the autoregressive integrated moving
average model (ARIMA) and a wavelet neural network (WNN) with the bat algorithm (BA) to
determine the optimal weight of each individual model. The experimental results show that the
highest prediction accuracy of ARIMA-WNN is 68.06% higher than that of the original model.

Keywords: water quality evaluation; water quality forecasting; T-S fuzzy neural network;
combined model

1. Introduction

Water is the foundation of human existence and the driving force for social stability
and a nation’s prosperity. However, water resource management has been ignored and
forgotten for a long time. It was not until the mid-19th century that, due to the rapid
development of industry, water pollution became increasingly serious and water resource
management became increasingly prominent. [1]. Since then, the declining water quality
of rivers, lakes and groundwater has become a global problem. Although an increasing
number of countries has begun to attach importance to water resources and implement
a series of protection measures for the sustainable development of water resources, the
water resources environment is still deteriorating, with increasing pollution and waste
caused by economic development, the acceleration of urbanization and population growth.

The river pollution situation is serious. The water quality level has fallen to IV or
worse in 31.4% of the more than 208,000 km of managed river sections in China and below
class V in 14.9% of managed sections, indicating that water resources have completely lost
their potential for daily use [2]. Of the ten major river basins in China, only some in the
southwest and northwest have moderate water quality (categories I to III), and the major
river systems in the north, such as the Yellow River, Liao River and Huai River, are rated IV
or V. The declining self-purification ability of rivers and deteriorating industrial wastewater
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management have further worsened the water quality of small tributaries flowing into the
major rivers of our country.

Lakes are also heavily polluted. The water quality of nearly half of the 62 key lakes
in the country is of grades IV and V or inferior. The three major lakes in China, Taihu
Lake, Chaohu Lake and Dianchi Lake, are polluted to varying degrees, in states of mild,
moderate and severe pollution, respectively, with total phosphorus and chemical oxygen
demand representing the main pollutants.

The groundwater quality situation is also worrying. In China’s major cities,
27 percent of centralized drinking water sources do not meet official standards. Among the
5118 groundwater monitoring points in various provinces and cities across the country,
the proportion of poor and extremely poor water quality is more than half, threatening
people’s daily water use [3,4].

Water environmental problems have become a major factor hindering the sustainable
development of China’s economy and society, and the effective treatment of water pollu-
tion and the rational management of water resources are urgent problems to be solved.
The accurate prediction of water quality indicators and the reliable evaluation of water
quality grades are the basis for understanding the current water quality status and taking
corresponding protection measures, so water quality prediction and evaluation have great
practical significance.

In this paper, we take the water quality of Lanzhou Xincheng Bridge section in Yellow
River Basin and Longdong section in Yangtze River Basin as the research object, establish
a water quality evaluation model and propose a new water quality prediction model.

A T-S fuzzy neural network was used to establish the evaluation model combined
with the relevant water quality information of the two basins. In the process of model train-
ing, an innovative method of interpolating water quality index data with equal intervals
and uniform distribution was adopted to construct research samples, and the method of
stratified sampling was used to construct training samples. The trained model was applied
to water quality evaluation of Lanzhou Xincheng Bridge section in the Yellow River Basin
and Longdong section in the Yangtze River Basin. A total of 52 groups were randomly
selected from the real water quality index data from 2004 to 2015, and the results of water
quality status were output and compared with the real water quality grade to prove the
effectiveness and generalizability of the evaluation model.

Furthermore, a new model is proposed for water quality prediction, which combines
the autoregressive integrated moving average (ARIMA) model and the wavelet neural
network (WNN) mode with the bat algorithm to determine the optimal weight of each
individual model. The combined model was used to predict the water quality indices of
Lanzhou Xincheng Bridge section in the Yellow River Basin and Longdong section in the
Yangtze River Basin. First, 624 weekly monitoring data points of each indicator from 2004 to
2015 were used as the training set, and 52 data points from 2016 were used as the validation
set. ARIMA and WNN were used for prediction. The empirical mode decomposition
(EMD) algorithm was used to denoise the data before WNN prediction [5]. Secondly, the
bat algorithm was used to determine the optimal weight; the final prediction result was
the weighted sum of the prediction results of ARIMA and WNN. Then, the prediction
results of the combined model were compared and analyzed relative to the prediction
results of three individual models (backpropagation (BP), neural network and least squares
support vector machine (LSSVM)) to prove the ability of the proposed combined model
for water quality prediction [6,7]. Finally, the prediction results of each index in 2016 were
substituted into the previously established water quality evaluation model, and the output
results had a high coincidence rate with the real water quality grade, which further verified
the effectiveness of the evaluation model.
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2. Literature Review
2.1. Research Status of Water Quality Evaluation

At present, multivariate statistical methods are widely used in water quality evalua-
tion and analysis abroad. Singh K P et al. (2005) applied multivariate statistical methods
to the water quality evaluation of eight monitoring sites of the Gomti River in India from
1999 to 2001, demonstrating the advantages of multivariate statistical methods in pro-
cessing and evaluating a large number of complex water quality datasets and obtaining
effective water quality evaluation results [8]. Shrestha S et al. (2007) collected a total of
14,976 data points measuring 12 water quality indicators at 13 different monitoring points
from 1995 to 2002 using multivariate statistical tools for spatiotemporal variable analysis
of a large set of complex water quality data of the Fuji River. The water quality status of
the 13 observation points was divided into three categories by stratified cluster analysis:
mild, moderate and severe pollution [9]. Zhang X et al. (2011) used the monthly data of
23 indicators from 16 different monitoring points in southwest Kowloon, Hong Kong, from
2000 to 2007, employing hierarchical cluster analysis to divide the 12 months into two
periods and the 16 monitoring points into three categories. Discriminant analysis provides
analysis results from both spatial and temporal aspects. Among the 23 indicators, 4 are
the main factors affecting the temporal distribution, and 8 indicators are the main factors
affecting the spatial distribution [10]. Ogwueleka T C (2015) used principal component
analysis, cluster analysis and factor analysis to study the water quality of the Kaduna River
and analyze the potential pollution factors of the river [11]. The multivariate statistical
method is a classical method for water quality assessment and management, but it cannot
provide comprehensive information about water quality. On this basis, in this study, the
selected neural network constantly updates and iterates the model parameters, adjusts
the weights and thresholds to the state that can output the optimal results and applies the
trained model to the evaluation task.

2.2. Research Status of Water Quality Prediction

Previously proposed water quality prediction models are based on qualitative analysis.
Water quality prediction was first studied in 1925, when Phelps and Streeter proposed the
S-P model to track BOD-DO changes in water quality. Since then, with the worsening global
water pollution and drinking water crises, an increasing number of water quality prediction
models have been proposed. However, due to the complexity of water environments, it
is difficult to obtain accurate prediction results with traditional mathematical models, so
scholars began to use neural networks to predict water quality. Singh KP et al. (2009)
used the monthly data of 11 water quality indicators from 8 different monitoring points
over 10 years to establish two BP neural network models, 11-23-1 and 11-11-1, to calculate
the levels of dissolved oxygen and biochemical oxygen demand of Gomti River in India
and indirectly judge the water quality [12]. Seo IW et al. (2016) used an artificial neural
network model to predict eight water quality indicators downstream of Cheongpyeong
Dam [13]. Zhang ran et al. (2013) established a GM(1,1) model to predict the water quality
of the Yellow River estuary from 2012 to 2015 [14]. Zhang Ying et al. (2015) took the section
of Shanghai Qingpu Urgent Water Port in Taihu Lake Basin as an example and applied
the gray model after residual correction of an extreme learning machine regression model
for the prediction of water quality indicators. They used the data of the first 100 days of
2013 of six water quality indicators, including dissolved oxygen and chemical oxygen de-
mand, to predict the data of the 101st to 110th days [15]. Xu Hongmin et al. (2007) proposed
a weighted support vector regression model to predict the concentration of permanganate
in Taihu Lake Basin using the same method; the results showed that the prediction accuracy
of this algorithm was higher than that of SVM and RBF neural network alone [16]. Accord-
ing to the idea of neural network weighting introduced in the abovementioned literature,
in this study, we designed and implemented a mixed model to predict water quality.
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3. Materials and Methods
3.1. T-S Fuzzy Neural Network

T-S fuzzy neural network is a new fuzzy neural network proposed by Takagi and
Sugeno in 1985 [17]. Fuzzy reasoning rules are adopted in ‘i f then′ form:

Ri : I f x1 is Ai
1, x2 is Ai

2, . . . , xk is Ai
k then yi = pi

0 + pi
1x1 + . . . + pi

kxk (1)

where ‘i f then′ are the front part and back part of fuzzy rules, respectively (the former is
the input part of fuzzy rules, and the latter is the determined output); Ai

j is a fuzzy set of

fuzzy models; pi
j(j = 1, 2, . . . , k) is a fuzzy model parameter; and yi is the output of the

fuzzy rules. The process shows that the output is a linear combination of inputs, as shown
in Figure 1.
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3.2. ARIMA

The autoregressive integrated moving average (ARIMA) model was proposed by Box
and Jenkins in the 1970s [18]. It is based on the autoregressive model (AR) proposed by
Yule in 1927 and the combination of the moving average model (MA) and autoregressive
moving average model (ARMA) with AR and MA proposed by Walker in 1931 [19–21]. In
this model, the future value of a variable is considered a linear combination of past values
and past errors:

yt = θ0 + ϕ1yt−1 + ϕ2yt−2 + . . . + ϕpyt−p + εt − θ1εt−1 − θ2εt−2 − . . .− θqεt−q (2)

ϕ(B)∇dyt = θ(B)εt (3)

where yt is the actual value; εt is the random error at time t; ϕi and θj are the coefficients;
p and q are the orders of autoregressive and sliding average polynomials, respectively;
B represents the lag operator, where ∆d = (1− B)d; d is the number of differences; and
ϕ(B) and θ(B) are defined as:

ϕ(B) = 1− ϕ1B− ϕ2B2 − . . .− ϕpBp (4)

θ(B) = 1− θ1B− θ2B2 − . . .− θqBq (5)

3.3. Wavelet Neural Network

Wavelet neural network (WNN) is a neural network model that combines wavelet
transform and artificial neural network, which replaces the excitation function of the
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traditional neural network with the wavelet basis function. It was first proposed in 1992 by
Zhang Q and Benveniste A of LRISA, a famous French information science institute [22].
The combination of wavelet transform and neural network provides unique advantages.
In recent years, it has been widely used in nonlinear function approximation, dynamic
modeling and non-stationary time series prediction. X1, X2, . . . , Xk are input parameters,
ωij and ωjk are connection weights and Y1, Y2, . . . , Ym are predicted outputs. The formula
for calculating the output of the hidden layer is:

h(j) = hj

[
∑k

i=1 ωijxi−bj
aj

]
, j = 1, 2, . . . , l (6)

where hj is the wavelet basis function; aj and bj are the scale factor and translation factor
of the wavelet basis function, respectively; ωij is the connection weight between the input
layer and the hidden layer; and h(j) is the output value of the node of the seventh hidden
layer. The calculation formula of the output layer is:

y(k) =
l

∑
j=1

ωjkh(j) k = 1, 2, . . . , m (7)

where ωjk is the connection weight between the hidden layer and the output layer, and y(k)
is the output value.

3.4. ARIMA-WNN

Actual time series data often have both linear and nonlinear characteristics, and
ARIMA or WNN alone cannot reflect the dual linear and nonlinear characteristics of time
series. In order to simultaneously utilize the good linear fitting ability of the differential
autoregressive moving average model and the powerful nonlinear relationship mapping
ability of the wavelet neural network model, we combine ARIMA and WNN methods.

Assuming yt(t = 1, 2, . . . , L) is the actual value of the time series, L is the number of
sample points, and ŷt and ŷit(i = 1, 2, . . . , N, t = 1, 2, . . . , L) is the predicted value of the
combined model and the first single method, respectively; then:

ŷt =
N
∑

i=1
λi ŷit (8)

where λi is the weight of the prediction method, and ∑N
i=1 λi = 1. The weight coefficients

of each of the component models in the combined model are determined by solving the
following optimization problems:

Min
L
∑

t=1
(yt − ŷt)

2, s.t.
N
∑

i=1
λi = 1, 0 ≤ λi ≤ 1 (9)

On this basis, we propose a new combination model composed of the ARIMA model
and WNN [23]. The optimal weight of a single model is obtained by the bat algorithm, and
the predicted value of the combination model is expressed as follows:

PΣ = λ1PWNN + λ2PARIMA (10)

where PΣ is the final predicted value; λ1, λ2, PWNN , PARIMA are the weight coefficients and
predicted values of WNN and ARIMA models, respectively; and λ1 + λ2 = 1, as shown
in Figure 2.
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Figure 2. ARIMA—WNN structure.

3.5. Bat Algorithm

The bat algorithm (BA) is a swarm intelligence optimization algorithm that simulates
the behavior of bats to hunt down prey, which was proposed by Yang X S in 2010 [24]. Let
the bat search for prey in the n dimensional space at the moment of t− 1; the flight speed
and position of bat i are vt−1

i , xt−1
i , respectively; then, the update rules of the bat’s flight

speed (vt
i ) and location at time t are:

fi = fmin + ( fmax − fmin) ∗ β (11)

vt
i = vt−1

i +
(

xt−1
i − x∗

)
∗ fi (12)

xt
i = xt−1

i + vt
i (13)

Among them, β ∈ [0, 1] is a uniformly distributed random number; fmax and fmin
are the maximum and minimum search frequency, respectively; the bat’s pulse search
frequency is fi; and fi ∈ [ fmin, fmax]. The bat algorithm controls the prey hunting range of
bats by adjusting fi and controls the global search in the whole updating process, which is
the optimal solution for the current bat population.

For a local search, the bat algorithm is completed by random disturbance. Each
bat randomly selects one solution from the current optimal solution set as the current
optimal solution (xold); then, we use the following formula to update the position to obtain
a new solution:

xnew = xold + εAt (14)

where ε ∈ [−1, 1] is a random number, and At is the average loudness of all bats at time t.

3.6. Materials

(1) ADF

The ADF test determines whether the series is stationary by checking whether the
sum of the autoregressive coefficients is 1 [25]. Compared with the DF test, which can only
be used to determine whether the AR(1) model is stationary, the ADF test can be used to
determine the stationarity of the AR(P) model. The hypothesis test is established as:

H0 : ρ = 0

H1 : ρ < 0

The test statistic is:
τ = ρ̂

S(ρ̂) (15)

where ρ = ϕ1 + Λ + ϕp − 1, and S(ρ̂) is the sample standard deviation of parameter ρ.
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(2) AF

The autocorrelation function describes the correlation between the random sequence
at time t and the value at time t − k [26].

ρk =
Cov(yt ,yt−k)√

Var(yt)
√

Var(yt−k)
=

E[(yt−µ)(yt−k−µ)]√
Var(yt)

√
Var(yt−k)

= γk
σ2 (16)

where E(yt) = µ, σ2 = E(yt − µ)2, and γk denotes the covariance of yt and yt−k.

(3) PAF

The partial autocorrelation function shows that for sequence yt in determining yt−1,
yt−2, . . . , yt−k+1, the correlation between yt and yt−k is denoted by ϕkk [26]:

ϕkk =


γ1 k = 1

γk−∑k−1
j=1 ϕk−1,jγk−j

1−∑k−1
j=1 ϕk−1,jγj

k = 2, 3, . . .
(17)

(4) The AIC criterion

The AIC criterion was proposed by Japanese statistician Hiroji Akike as a measure of
model fit excellence [27].

AIC = n log σ2 + 2(p + q) (18)

where n is the number of samples; σ2 is the sum of squares of the fitted residuals; and
p and q are the orders of the AR and MA models, respectively. Models are established
from low-order to high-order according to the ARIMA values, and the AIC value of each
model is calculated. According to the criterion, the model with the lowest AIC value is the
optimal model.

(5) MAE

Mean absolute error (MAE) is a measure of accuracy for regression [28]. It sums up
absolute values of errors and divides them by the total number of values. It gives equal
weight to each error value. The formula for calculating MAE is shown in Equation (19).

MAE = ∑ (|ŷi−yi |)
n (19)

(6) MAPE

The reason why mean absolute percentage error can describe accuracy is that it is
often used as a statistical index to measure the accuracy of prediction [29].

MAPE = 1
n ∑

(∣∣∣ ŷi−yi
yi

∣∣∣) ∗ 100% (20)

(7) RMSE

Root mean squared error (RMSE) is the square root of MSE and scales the values of
MSE to the ranges of observed values [28]. It is estimated according to Equation (21).

RMSE =

√
∑ (|ŷi−yi |)2

n
(21)

(8) AI

In this paper, a new index (AI, accuracy improvement) is introduced to show the im-
provement of prediction ability of the combined model compared with the single model [30].
Si and Sc are the MAPE of the single model and combined model, respectively.

RI = |Si−Sc |
Si
× 100% (22)
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4. Results and Discussion
4.1. Water Quality Evaluation Model
4.1.1. Data Preprocessing

The three water quality monitoring indicators used in this paper are from the data
center of the Ministry of Environmental Protection (http://datacenter.mep.gov.cn/index
(accessed on 1 September 2021)): dissolved oxygen (DO), chemical oxygen demand per-
manganate (CODMn) and ammonia nitrogen (NH3-N). The corresponding water quality
grades of each index value are shown in Table 1:

Table 1. Environmental quality standards for surface water (GB3838-2002).

Classification Class I Class II Class III Class IV Class V Class Inferior V

DO/(mg · L−1) ≥ 7.5 6.0 5.0 3.0 2.0 rest
CODMn/(mg · L−1) ≤ 2.0 4.0 6.0 10 15 rest
NH3-N/(mg · L−1) ≤ 0.15 0.50 1.0 1.5 2.0 rest

In order to solve the problem of inadequate sample size due to only taking the water
quality evaluation grading standard as the research sample, the water quality index data
are interpolated by the method of equal interval and uniform distribution [31]. For the
convenience of modeling, the output value is continuous, and its value range is (0.5,6.5).
The relationship between output value and water quality grade is shown in Table 2.

Table 2. Corresponding water quality grade of output values.

Output Value Water Quality Grade

0.5 < y ≤ 1.5 Class I
1.5 < y ≤ 2.5 Class II
2.5 < y ≤ 3.5 Class III
3.5 < y ≤ 4.5 Class IV
4.5 < y ≤ 5.5 Class V
5.5 < y ≤ 6.5 Class inferior V

4.1.2. Model Building Process

In this study, T-S fuzzy neural network is used to evaluate water quality. The number
of input and output nodes of the model is determined by the input and output dimensions
of training samples. According to the index data considered in this paper, the input and
output dimensions are determined to be three and one, respectively, so the number of
input and output nodes is three and one, respectively. Through trial-and-error method, the
number of hidden layer nodes is determined to be six, so the structure of water quality
evaluation model is as follows: 3–6–1 [32]. The four coefficients (P0, P1, P2 and P3), the
width (b) and center (c) of the membership function were randomly initialized.

After normalizing the input data, training of each parameter in the model was
started [33]. After 100 iterations, the network finally converged, and the training error
was 3.46 * 10−4.

4.1.3. Water Quality Evaluation of Lanzhou Xincheng Bridge Section

The process of water quality evaluation is realized in MATLAB, and the confusion
matrix and water quality evaluation chart are output, as shown in Figure 3 [34]:
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In classification models, confusion matrices are often used to observe and judge the
number of correct and incorrect classifications. As shown in Figure 3, among the 52 weeks
of random sampling, correct in water quality evaluation was achieved for 47 weeks, and
the total correct judgment rate reached 90.38%. The correct prediction rate of class II and
class III water quality was 91.11% and 85.71%, respectively. Class II water quality was
misjudged as class I for one week, class II water quality was misjudged class as III for three
weeks, and class III water quality was misjudged class II for one week.

The total number of correct and incorrect judgments and the corresponding water
quality grade can be determined according to the above analysis, but it is not clear in which
week the incorrect judgment occurred. This information can be obtained from the water
quality evaluation chart presented below.

In Figure 4, the x-axis indicates the number of weeks; the y-axis indicates the water
quality evaluation; and the green dot and the red dots represent the real water quality
grade and the water quality grade determined by the model, respectively. Overlapping
of the red and green dots indicates that the water quality level is correctly judged for that
week, whereas divergence indicates an incorrect judgment. As shown in Figure 4, the water
quality grade is concentrated in class II and class III, which is not accidental because during
the whole time period from 2004 to 2015, the water quality grade is mainly class II and class
III. Five of the fifty-two water quality grades were incorrectly judged; details are shown
in Table 3.
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Table 3. Water quality grade misjudgment of Lanzhou Xincheng Bridge section.

Week True Water Quality Misjudged Quality

1 II I
4 II III
9 II III
37 II III
38 III II

4.1.4. Water Quality Evaluation of Longdong Section

Similarly, the trained T-S fuzzy neural network is applied to the water quality evaluation
of Longdong section in Panzhihua, Sichuan, in the Yangtze River Basin, with a confusion
matrix and water quality evaluation map as output, as shown in Figures 5 and 6, respectively.
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Figure 6. Water quality evaluation of Longdong section.

According to the confusion matrix, the water quality grade was correctly judged
for 46 weeks and incorrectly judged for 6 weeks; the total correct judgment rate reached
88.46%. The correct judgment rates of class I and II water quality were 94.12% and 82.35%,
respectively. Class I water quality was misjudged as class II for two weeks, class II was
misjudged as class I for three weeks and class III was misjudged as class II for one week.

As shown in Figure 6, the water quality was mainly classified as class I and class II for
the 52-week investigation period. In the 12th and 17th weeks, water quality in class I was
incorrectly classified as class II; in the 21st, 42nd and 48th weeks, the water quality in class
II was incorrectly classified as class I; and in the 14th week, the water quality in class III
was incorrectly classified as class II. Results are shown in Table 4:

Table 4. Misjudgment of water quality grade in Longdong section.

Week True Water Quality Misjudged Quality

12 I II
14 III II
17 I II
21 II I
42 II I
48 II I

The water quality evaluation results presented above indicate that an ideal state was
achieved in all investigated river basins. In the Yellow River in Lanzhou Xincheng Bridge
section and Panzhihua, Sichuan province, in the Yangtze River Basin Longdong section, the
water levels were correctly classified at rates of 90.38% and 88.46%, respectively, indicating
that the trained T-S fuzzy neural network achieved satisfactory quality evaluation with
good generalization ability.
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4.2. Water Quality Prediction Model
4.2.1. Water Quality Prediction of Lanzhou Xincheng Bridge Section

For prediction with the ARIMA model, we used E-views10 software, which is created
by IHS Global Inc in the State of California, United States. An original sequence dia-
gram was generated to intuitively judge whether the data sequence was stable, as shown
in Figure 7.
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Figure 7. Original dissolved oxygen values.

In Figure 7, the x-axis shows the time in months, and the y-axis shows dissolved
oxygen in milligrams per liter. The series in the figure does not indicate an obvious trend
or seasonality, so it was preliminarily judged to be stationary series [35]. For further confir-
mation, an ADF unit root test was performed. The results show that the ADF test statistic
is less than the critical value at levels of 1%, 5% and 10%, so the dissolved oxygen series is
stationary and does not require differential processing [36]. An autocorrelation diagram
and partial autocorrelation diagram were generated for model order determination, as
shown in Figure 8.

As shown in Figure 8, the trailing and censoring characteristics of the autocorrelation
function and partial autocorrelation function are very obvious in the dissolved oxygen
data series. The decay of the autocorrelation function is very slow, which is a typical
characteristic of trailing. However, the partial autocorrelation function rapidly decays to
within two times the standard deviation after two steps, so the AR(2) model is determined.
The estimation results of the model are shown in Table 5.

The R2 of the model reached 79.34%, and an adaptability test was conducted on
the AR(2) model was conducted, i.e., a white noise test of the residuals, as shown in
Figure 9 [37]:

As shown in Figure 9, the autocorrelation and partial autocorrelation functions of
the residual sequence both fall within two standard deviations, and the P value is signifi-
cantly greater than 0.05. Therefore, it is a white noise sequence, indicating that the useful
information in the original sequence has been extracted and the model has passed the
adaptability test. Then, the AR(2) model established in this paper is used to predict the test
data. A comparison between the predicted value and the real value is shown in Figure 10.
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Table 5. Parameter estimation of the AR(2) model.

Variable Coefficient Standard Error T Statistic p Value

C 8.16 0.20 40.13 <0.001
AR(1) 0.78 0.04 20.46 <0.001
AR(2) 0.11 0.04 2.99 <0.001
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Figure 10. ARIMA Prediction Diagram.

In Figure 10, the x-axis represents time, the y-axis represents the concentration of
DO, the blue line represents the predicted value of the ARIMA model and the orange line
represents the real value. We can intuitively observe that the coincidence degree of the two
lines is relatively high, which indicates that the prediction effect of the ARIMA model is
strong. Before using wavelet neural network for prediction, the irrelevant noise in the data
is removed. The empirical mode decomposition (EMD) of the dissolved oxygen sequence
was carried out by MATLAB, as shown in Figure 11:

Appl. Sci. 2023, 13, x FOR PEER REVIEW 14 of 24 
 

 
Figure 11. EMD diagram of dissolved oxygen. 

The original data series were decomposed into eight intrinsic mode functions (IMFs) 
and a residual sequence. The frequency decreases from IMF1 to IMF8, and each IMF has 
its own unique frequency and cycle [38]. Due to the high-frequency property of IMF1 and 
its chaotic fluctuation trend, it was removed on the basis of the original data sequence too 
obtain a new sequence after denoising. The original sequence was denoised as shown in 
Figure 12: 

 
Figure 12. Comparison of dissolved oxygen sequence before and after denoising. 

The denoised sequence is smoother than the original sequence, showing its original 
fluctuation trend more clearly. Therefore, the denoised sequence can be used for subse-
quent experimental demonstration and analysis. 

First, a three-layer forward neural network is created, the parameters of each network 
are initialized and a training set is constructed to train the wavelet neural network. The 
data for weeks T-1, T-2, T-3 and T-4 are used to predict the number of neurons in week T. 
Therefore, the number of neurons in the input layer and output layer is four and one, 
respectively, and the number of neurons in the hidden layer is nine, as determined by the 
trial-and-error method; therefore, the structure of the wavelet neural network proposed 
in this paper is 4–9–1. The Morlet wavelet function is selected as the wavelet basis func-
tion, the number of iterations is set as 100, the learning probability is 0.001 and the training 

6
8

10
12

D
O

-2

0

2

IM
F 

1

-1

0

1

IM
F 

2

-1

0

1

IM
F 

3

-5

0

5

IM
F 

4

-1

0

1

IM
F 

5

-2

0

2

IM
F 

6

-0.5

0

0.5

IM
F 

7

-0.5

0

0.5

1

IM
F 

8

100 200 300 400 500 600
7.5

8

8.5

9

R
e

0 100 200 300 400 500 600 700
5

10

15

0 100 200 300 400 500 600 700
5

10

15

0 100 200 300 400 500 600 700
-2

0

2

Figure 11. EMD diagram of dissolved oxygen.

The original data series were decomposed into eight intrinsic mode functions (IMFs)
and a residual sequence. The frequency decreases from IMF1 to IMF8, and each IMF has
its own unique frequency and cycle [38]. Due to the high-frequency property of IMF1 and
its chaotic fluctuation trend, it was removed on the basis of the original data sequence
too obtain a new sequence after denoising. The original sequence was denoised as shown
in Figure 12:
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Figure 12. Comparison of dissolved oxygen sequence before and after denoising.

The denoised sequence is smoother than the original sequence, showing its original
fluctuation trend more clearly. Therefore, the denoised sequence can be used for subsequent
experimental demonstration and analysis.

First, a three-layer forward neural network is created, the parameters of each network
are initialized and a training set is constructed to train the wavelet neural network. The
data for weeks T-1, T-2, T-3 and T-4 are used to predict the number of neurons in week
T. Therefore, the number of neurons in the input layer and output layer is four and one,
respectively, and the number of neurons in the hidden layer is nine, as determined by the
trial-and-error method; therefore, the structure of the wavelet neural network proposed in
this paper is 4–9–1. The Morlet wavelet function is selected as the wavelet basis function,
the number of iterations is set as 100, the learning probability is 0.001 and the training target
is 10−6. The weight and parameters of the network are modified by gradient correction
method so that the predicted output is close to the desired output [39]. The predicted result
is output and compared with the real value, as shown in Figure 13.
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Figure 13. WNN prediction diagram.

The bat algorithm is used to determine the coefficients of each model, and the process
of determining the optimal weight is transformed into the process of hunting prey by bats;
therefore, the combined prediction model of dissolved oxygen in Lanzhou Xincheng Bridge
section of the Yellow River Basin is as follows:

PDO = 0.1495PWNN + 0.8505PARIMA
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The combined prediction model of permanganate and ammonia nitrogen was obtained
according to the same steps:

PCODMn = 0.7852PWNN + 0.2148PARIMA

PNH3−N = 0.3274PWNN + 0.6726PARIMA

4.2.2. Forecast Results and Analysis

The MAPE, MAE, RMSE of DO, CODMn and NH3-N in 2016 under the single model
and combined model prediction, as well as the degree of improvement of the combined
model compared with the single model prediction ability were obtained according to the
modeling process described above, as shown in Tables 6 and 7, respectively.

Table 6. Comparison of water quality index predictions.

Water Quality Index Prediction Accuracy Index ARIMA WNN Combined Model

DO
MAPE 2.73% 5.57% 2.58%
MAE 0.2395 0.4716 0.2248
RMSE 0.2867 0.5587 0.2758

CODMn

MAPE 19.64% 12.97% 11.96%
MAE 0.4885 0.3517 0.3160
RMSE 0.6853 0.4611 0.4079

NH3-N
MAPE 16.18% 17.40% 13.85%
MAE 0.0320 0.0307 0.0268
RMSE 0.0427 0.0324 0.0324

Table 7. Improvement in the predictive ability of the combined model relative to the single model.

DO CODMn NH3-N

AIARIMA 5.49% 39.10% 14.40%
AIWNN 53.68% 7.79% 20.40%

For the three water quality indicators, the MAPE, MAE and RMSE values of the
combined model are lower than those of the single model, and the prediction effect is better.
In the prediction of DO, CODMn and NH3-N, the prediction accuracy of the combined
model is improved by 5.49% and 53.68%, 39.10% and 7.79%, and 14.40% and 20.40%
compared with the ARIMA model and WNN, respectively.

For a particular set of data, a higher weight is assigned to a single model of the
combined model, which indicates that the method has a better predictive ability. Taking DO
as an example, the prediction accuracy of the ARIMA model is higher than that of WNN,
and it has a better prediction ability. In the ARIMA-WNN model, the bat algorithm was
used to calculate the weights of the two individual models as 0.8505 and 0.1495, respectively,
meaning that the individual model with better prediction ability had more weight and
proving the reliability of to the bat algorithm to determine the weight coefficient in the
combined model. The combined model of water quality prediction proposed in this paper
was compared with the prediction results of each individual model, the BP neural network
and LSSVM. The results are shown in Figures 14–17:

As shown in the figures presented above, the MAPE, MAE and RMSE of the combined
model are significantly lower than those of the comparison models. The fitting figures of
the real and predicted values also show that the water quality prediction model proposed
in this paper has a higher fitting degree to the real data.
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4.2.3. Water Quality Prediction of Longdong Section

In order to verify the predictive ability of the combined model proposed in this
paper for different water systems, the water quality index data of the Longdong section of
Panzhihua in Sichuan Province of the Yangtze River Basin are selected for prediction and
analysis. The modeling results are as follows:

PDO = 0.1044PWNN + 0.8956PARIMA

PCODMn = 0.0432PWNN + 0.9568PARIMA

PNH3−N = 0.8646PWNN + 0.1354PARIMA

The improvement in the prediction accuracy and combined model prediction ability
of the single and combined models for each indicator are compared in Tables 8 and 9.
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As shown in Table 8, the prediction effect of the combined model is better than that
of each single model. For DO, CODMn and NH3-N, the combinatorial model outper-
formed the ARIMA model by 2.99%, 6.73% and 68.06%, respectively, in terms of predic-
tion ability and outperformed the prediction of the WNN model by, 58.33%, 66.17% and
11.67%, respectively.

In the prediction of various indicators of the Longdong section of Panzhihua in Sichuan
in the Yangtze River Basin, the bat algorithm still assigns more weight to the single model
with better prediction ability and less weight to the single model with poor prediction
ability. With respect to DO, the MAPE value predicted by the wavelet neural network
is 4.68%, compared with 2.01% for the ARIMA model, which suggests that the ARIMA
model achieves better predictive performed; therefore, in the combinatorial model, the
bat algorithm assigns it a weight of 0.8956, whereas the WNN only assigns it a weight of
0.1044. In comparison with a BP neural network and LSSVM, the prediction accuracy of
the combined model proposed in this paper is higher; the comparison results are shown
in Figures 18–21.

In the prediction of various water quality indices in the Longdong section of Panzhihua,
Sichuan, in the Yangtze River Basin, the prediction effect of the combined model is better
and the accuracy is higher than that of the single model, the BP neural network and the
LSSVM, indicating that the combined model proposed in this paper is suitable for water quality
prediction in different river basins, with satisfactory generalization performance [40].
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Table 8. Comparison of single and combined model prediction accuracy of each indicator.

Water Quality Indicator Prediction Accuracy Indicator ARIMA WNN Combined Model

DO
MAPE 2.01% 4.68% 1.95%
MAE 0.1860 0.4116 0.1815
RMSE 0.2481 0.5201 0.2446

CODMn

MAPE 6.39% 17.62% 5.96%
MAE 0.1169 0.3220 0.1045
RMSE 0.1578 0.5055 0.1498

NH3-N
MAPE 27.02% 9.77% 8.63%
MAE 0.0236 0.0092 0.0088
RMSE 0.0315 0.0144 0.0148

Table 9. Improvement in the predictive power of the combined model compared to a single model.

DO CODMn NH3-N

AIARIMA 2.99% 6.73% 68.06%
AIWNN 58.33% 66.17% 11.67%
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4.2.4. Water Quality Evaluation in 2016

The results in presented in Section 4.1.3 prove that the trained T-S fuzzy neural network
described in this paper has excellent ability in the determination of water quality grade. On
this basis, the water quality index data of two sections predicted for 2016 were substituted for
water quality evaluation. The results are shown in Tables 10 and 11 and Figures 22 and 23.
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Table 10. Water quality evaluation of Lanzhou Xincheng Bridge Section in 2016.

Week Evaluation
Results

True Water
Quality Rating Week Evaluation

Results
True Water

Quality Rating Week Evaluation
Results

True Water
Quality Rating Week Evaluation

Results
True Water

Quality Rating

1 II II 14 II II 27 II II 40 II III
2 II II 15 II II 28 II II 41 II II
3 II II 16 II II 29 III III 42 II II
4 III II 17 II II 30 II II 43 I II
5 II II 18 II II 31 III III 44 II II
6 II II 19 II II 32 I I 45 II II
7 II II 20 II II 33 II II 46 II II
8 II II 21 II II 34 III III 47 II II
9 II II 22 III II 35 II III 48 II II
10 II II 23 II II 36 II II 49 III II
11 II II 24 II II 37 II II 50 II II
12 II II 25 II II 38 II II 51 II II
13 I II 26 II II 39 II II 52 II II

Table 11. Water quality evaluation of Longdong section in 2016.

Week Evaluation
Results

True Water
Quality Rating Week Evaluation

Results
True Water

Quality Rating Week Evaluation
Results

True Water
Quality Rating Week Evaluation

Results
True Water

Quality Rating

1 I I 14 I I 27 I I 40 II II
2 I I 15 I I 28 I I 41 II II
3 I I 16 I I 29 I I 42 II II
4 II I 17 I I 30 I I 43 II II
5 I I 18 II I 31 II I 44 II II
6 I I 19 I I 32 II II 45 II II
7 I I 20 I II 33 II II 46 I II
8 I I 21 I I 34 III III 47 II II
9 I I 22 I I 35 II II 48 II II
10 I I 23 I I 36 II II 49 I II
11 I I 24 I I 37 II II 50 II II
12 I II 25 I I 38 II II 51 I II
13 I I 26 II I 39 I II 52 II II
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Water quality evaluation using the T-S fuzzy neural network trained as described in
this paper revealed that among the 52 weeks of 2016, water quality was misjudged in the
Lanzhou Xincheng Bridge section of the Yellow River Basin and the Longdong section of
Panzhihua, Sichuan, the Yangtze River Basin for 7 and 10 weeks, respectively, with total
correct judgment rates of 86.54% and 80.77%, respectively. Because the input data contain
errors, this result is acceptable, verifying the reliability of the water quality evaluation
model trained as described in this paper.

5. Conclusions

Water quality evaluation and prediction are not two completely independent proce-
dures. On the contrary, they form a mutually dependent system and complement each
other. Accordingly, in this study, we established a water quality evaluation–prediction
system, established a water quality evaluation model using a T-S fuzzy neural network and
constructed research samples by interpolating water quality index data evenly distributed
on the basis of each index grading standard stipulated in the Environmental Quality Stan-
dards for Surface Water. A stratified sampling method is used to construct training samples.
The trained T-S fuzzy neural network was applied to the water quality evaluation of the
Lanzhou Xincheng Bridge section in the Yellow River Basin and the Longdong section in
the Sichuan Panzhihua section in the Yangtze River Basin, with total positive water quality
grade evaluation rates of 90.38% and 88.46%, respectively, indicating the positive water
quality evaluation effect and generalizability of the model.
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For the prediction of water quality, in this paper, we proposed a new combined model,
ARIMA-WNN, which establishes the combined prediction model for each water quality
index of the two basins and compares the prediction results with the combined model.
The results show that compared with the single model, the combined model (ARIMA-
WNN) has a higher prediction accuracy, and the prediction ability can be improved by up
to 68.06%. Compared with commonly used water quality prediction models (BP neural
network and LSSVM), we found that the MAPE, MAE and RMSE of the combined model
are significantly lower, which demonstrates the excellent water quality prediction ability of
the combined model.

Determining reasonable weight coefficients for each single model in the combined
model is the basis for obtaining accurate prediction results, and in this study, we used
the bat algorithm to achieve this process. Swarm intelligence optimization algorithms
have developed rapidly in recent years, and a variety of new methods have emerged in
succession [41]. Determining the optimal weight is a subject that can be studied in depth,
and additional methods should be proposed and tested in subsequent work [42].
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