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Abstract: Hammer testing, a nondestructive testing method, has been demonstrated to provide
information on structural damage. One of the biggest challenges with this testing method is the
simultaneous identification of surface, internal, and composite damage (consisting of both surface
and internal damage) in a complex environment, such as post-disaster. A method of identification
based on variable-frequency hammering is proposed to solve this problem. The importance and
feasibility of using variable-frequency impact hammers and the generated acoustic data to identify
multiple types of damage in concrete structures are presented. First, a type of variable-frequency
hammering acoustic feature was generated using acoustic feature extraction and selection based
on the acoustic data obtained from variable-frequency hammering. Second, a damage recognition
model was established using a support vector machine to identify four types of damage occurring
simultaneously in the same concrete member specimens, including a type of composite damage with
two types of damage occurring simultaneously within 20 mm. Finally, the feasibility of this variable-
frequency hammering method was verified experimentally. This method exhibited good performance,
with an accuracy of 97.8%; moreover, the method ensures that the feature dimensionality remains
unchanged while increasing the effective information of the data.

Keywords: hammering test; nondestructive testing; acoustic data; machine learning; feature selection

1. Introduction

The detection of concrete, particularly with high precision, is essential for social infras-
tructures such as bridges and tunnels that are easily affected by disasters and ageing [1]. In
recent years, many studies have been conducted on the detection of aging infrastructure,
and new technologies, such as sensors and ultrasound, have been used to process complex
information, save labor, and reduce costs [2,3]. However, some problems remain, such as
high cost and heavy weight. The hammering test is a traditional method of inspection that
is very effective and is widely used for the maintenance of bridges and tunnels. However,
with the current shortage of skilled professionals, it is becoming increasingly difficult to
rely solely on human sensory inspection methods for the prevention of bridge and tunnel
deterioration accidents and the performance of large-scale, mobile and rapid detection of
post-disaster infrastructure damage.

To date, a tremendous amount of research has been conducted on damage detection
and hammering tests. In the past, time series methods of damage detection based on
Autoregressive Parameters, Intrinsic Mode Function and Hilbert Spectrum, and Signal
Components were widely used [4]. Gillich et al. performed modal identification and
damage detection in time–frequency analysis using an algorithm based on time–frequency
analysis and power spectrum [5]. Avci et al. reviewed the application of traditional
methods of machine and deep learning in damage detection, demonstrating that ML-based
models can be applied in damage detection [6]. In the past, hammering test applications

Appl. Sci. 2023, 13, 1329. https://doi.org/10.3390/app13031329 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031329
https://doi.org/10.3390/app13031329
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://doi.org/10.3390/app13031329
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031329?type=check_update&version=2


Appl. Sci. 2023, 13, 1329 2 of 15

have included the diagnosis of concrete structures [7–11], such as diagnosis systems for
spalling tiles on the facades of high-rise buildings [12] and the construction of cavity and
crack detection algorithms [13]. However, these applications typically limit the number
of instances of damage within the detection area to a specific number. Furthermore,
they consider only a single type of damage within the target detection area for each
hammering point.

However, under the influence of disasters and aging, the inspection environment
becomes complex. Moreover, there are typically different types of damage in the target area,
and detection is made difficult by the varying extent of their damage; for example, internal
and surface cracks may be located in the target detection area of a hammering point. In this
case, the simultaneous identification of the type, size, and depth of the damage means that
the used qualitative and quantitative information is in the same dimension, which leads to
an increased possibility that this will be misjudged.

To obtain damage information, most existing studies have focused on acoustic data
obtained from single-frequency hammering, lacking the means to increase the damage
information obtained from the hammering test method. This study proposes a method
of acoustic concrete damage detection based on variable-frequency hammering, which is
different from the usual single-frequency hammering method, to achieve the classification
of multiple categories of damage occurring in the same concrete member. The acoustic
data obtained from variable-frequency hammering are combined with feature selection
and feature extraction to enhance the effective usage of the data without increasing its
dimensionality. Finally, a detection model is established using a support vector machine
(SVM), and complex multi-class damage is successfully identified. This research focuses
on the innovation of the hammering method. In fact, the ML model is used as the carrier
to improve the hammering detection method itself. This provides a new and promising
method for hammering detection.

2. Principle of Variable-Frequency Hammering

Acoustic investigations of hammering tests have often concentrated on the analysis of
single-frequency hammering’s acoustic features [14], determining damage on the basis of
variations in the excitation effect obtained by hammering the detection area. The excitation
effect obtained by hammering the detection area is reflected acoustically using the power
spectral density (PSD) [15], as depicted in Figure 1, which is a PSD schematic diagram of
single-frequency and variable-frequency hammering to determine the excitation effect of
the detection area.

During the study of hammering detection, we discovered that the excitation effect
of the damage area differs for different hammering frequencies when the detection area
contains just one type of damage, as observed on the left side of Figure 1. Furthermore,
the highest power, which corresponds to the hammering frequency at which the shaded
portion is the largest, is also the optimal excitation frequency. The effective informa-
tion gleaned from a single-frequency hammering; however, is insufficient to discern be-
tween the various types of damage when more than one type of damage is present in a
hammering area.

Unlike with the traditional hammering method, the proposed variable-frequency
hammering method does not start with acoustic processing, which improves the useful
information that can be used to identify the damage by activating the detection area
with various hammering frequencies. On the right-hand side of Figure 1, a schematic
representation of the acoustic data obtained using the variable frequency hammering
method is illustrated. To identify more intricate damages, the excitation effect produced
by altering the hammering frequency allows the highest number of shaded sections to be
obtained. This provides the biggest informational contrast with other detection areas.

Therefore, an identification method based on variable-frequency hammering is pro-
posed in this study. As shown in Figure 2, for the existing single-frequency hammering
method, the acoustic data obtained from the single-frequency hammering and extracted
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acoustic features were used for machine learning. In this study, the acoustic data of multiple
hammer frequencies obtained with variable-frequency hammering were used to increase
the effective information in the vertical direction, as shown in Figure 2. The acoustic fea-
tures were obtained by acoustic feature extraction, and the dimension was then reduced to
the same dimension as that of the single-frequency hammering through feature selection;
finally, the selected features were used for machine learning. This study aims to increase
the valid acoustic information for concrete damage classification without increasing the
acoustic feature dimensionality or causing a dimensional disaster.
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The flowchart of the proposed method is shown in Figure 3. After recording the
acoustic signal using a microphone, it was divided into two processes: training and testing.
The first process is the training process, including the use of Mel-frequency cepstrum
coefficients (MFCCs) were used for feature extraction of acoustic signals obtained from
single-frequency and variable-frequency hammering and feature selection of MFCCs for
variable-frequency hammering. Subsequently, SVMs were used to model the MFCCs
for single-frequency and variable-frequency hammering. During the testing process, the
MFCCs of single-frequency and variable-frequency hammering after feature selection were
matched with those of the established model. In this study, two different models were
established and compared based on single-frequency and variable-frequency hammering.
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3. Theoretical Background
3.1. Relief Algorithm

Kira et al. proposed Relief in 1992 [16]. This method borrows the idea of the nearest
neighbor learning algorithm. Its theoretical basis is that a good feature should make
the eigenvalues of the same type of samples in the nearest neighbor the same or similar.
However, the values of different samples of the nearest neighbor are different or very
different. Accordingly, each feature is assigned a corresponding weight to sort it. The
greater the weight of the feature, the stronger its classification ability. In contrast, lower
weight indicates that the classification ability of the features is weaker. The corresponding
feature selection can be performed by setting the threshold of the feature weight or the
number of feature subsets.

However, Relief is effective only when the training samples are divided into two
categories. Kononenko extended the Relief algorithm to the ReliefF algorithm, which can
be applied to multi-class sample cases [17,18]. When dealing with multi-class problems, the
algorithm selects the nearest neighbor sample from each different class sample instead of
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selecting from all different samples. We select k nearest neighbor samples, take the average
value to obtain each feature weight, and then obtain the correlation of each feature in each
sample instance with the class. We can then set a threshold to determine whether the
features are valid or invalid or select the features with the largest m’ weights and remove
other features.

The ReliefF algorithm is described in Algorithm 1 ReliefF.

Algorithm 1 ReliefF

Input: Dataset D
Number of examples to be selected by the algorithm m
Number of nearest neighbors k

Output: Vector of feature importance values W

1: Initialize: set all weight W[Al ] = 0, l = 1, 2, . . . , L–1, L
2: for i = 1 to m do
3: randomly select an instance Ri from D
4: find k nearest hits Hj of Ri
5: for each class C 6= class (Ri) do
6: from class C find k nearest misses Mj(c) of Ri
7: end for
8: for l = 1 to L do

9:
W(Al) = W(Al)−

k
∑

j=1
di f f

(
Al , Ri, Hj

)
/(m · k)

+ ∑
C 6=class(Ri)

[
p(c)

1−p(class(Ri))

k
∑

j=1
di f f

(
Al , Ri, Mj(C)

)]
/(m · k)

10: end for
11: end for

In the algorithm, H represents the nearest neighbor sample of the same type as R,
M represents the nearest neighbor sample of the same type as R, p(c) represents the
distribution probability of the class, and the function di f f is used to calculate the difference
between the features of two different samples Instance1 and Instance2 as follows.

For discrete features:

di f f
(

Al , Ri, Hj
)
=

{
0; value(A, I1) = value(A, I2)
1; otherwise

(1)

For continuous features:

di f f
(

Al , Ri, Hj
)
=

value(A, I1)− value(A, I2)

max(A)−min(A)
(2)

Here, I1 and I2 are two samples, and value(A, I1) refers to the value of the Ath feature
of sample I1. After finding the relevance weights W of each feature and class, they are
sorted; the features whose relevance is greater than a certain threshold value constitute the
final feature subset such that invalid features are eliminated.

3.2. Support Vector Machine Method

Vapnik et al. (2013) proposed an SVM based on the structural risk-minimization
principle in statistical learning theory [19]. The SVM can maximize the generalization
ability of the learning machine by obtaining small errors in the discriminant function
obtained from limited datasets, even for independent test sets. Furthermore, SVM is a
convex quadratic optimization problem that guarantees that the extreme solution found
is the global optimal solution. Research on SVMs can be traced to the end of the 1970s,
and SVMs have been successfully applied to classification and regression problems in
nondestructive testing and structural health monitoring, including structural damage
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detection [20–22], dam safety prediction [23], eddy vibration response prediction [24], and
impact detection and localization [25].

As shown in Figure 4, assume two types of linearly separable training sample sets{(
κj, yi

)
, i = 1, 2, 3, . . . , n

}
, where xi ∈ Rm, m is the ith training sample, and yi ∈ {−1, 1}

is the label of the sample category. The general form of the linear discriminant function is

f (x) = w · x + b, (3)

where w is the normal vector of the optimal classification hyperplane, b is a constant, and
the corresponding classification surface equation is w · x + b = 0. The discriminant function
is normalized such that all samples of the two categories satisfy f (x) ≥ 1. At this time, the
sample closest to the classification surface is f (x) = 1, which requires that all samples of
the classification surface be classified correctly, that is, satisfy

yi = [(w · xi) + b]− 1 ≥ 0, i = 1, . . . , n. (4)
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Thus, the classification interval is equal to 2/ ||w || , and the largest interval is equiv-
alent to the smallest value of ||w2 ||. A classification surface that satisfies Equation (3)
and minimizes ||w2 || is the optimal classification line B shown in Figure 4, where ||· ||
represents the Euclidean distance. Between the two types of data samples, the samples
closest to the classification surface and the data samples on hyperplanes B1 and B2 parallel
to the classification surface B are the data samples that cause the sign in Equation (3) to be
equal; these samples are support vectors.

When the two types of samples are linearly indistinguishable, the idea of the non-
linear discrimination problem is to first map the input vector into a high-dimensional
space by a non-linear transformation, and then perform classification operations in this
high-dimensional feature space to obtain the optimal classification surface.

3.3. Mel-Frequency Cepstrum Coefficients Method

As valid acoustic features, MFCCs are widely used in civil engineering [26–31]. The
MFCCs represent the cosine transformation result of the real logarithm of the short-term
energy spectrum on a frequency scale. The relationship between the frequencies on the Mel
frequency and Hertzian scales is as follows:

Mel( f ) = 2595 · lg(1 + f
700

) (5)

Figure 5 shows the general process for determining MFCCs. There are four steps:
preprocessing, fast Fourier transform (FFT), Meier frequency filtering, and discrete cosine
transform (DCT).



Appl. Sci. 2023, 13, 1329 7 of 15Appl. Sci. 2023, 13, x FOR PEER REVIEW 7 of 15 
 

 
Figure 5. Flowchart of MFCCs. 

Step 1: The preprocessing step is divided into two parts: frame splitting and window-
ing. Frame splitting can be completed by continuous segmentation; however, the overlap-
ping segmentation method is generally used to make the transition between frames 
smooth and consistent; that is, the end of each frame overlaps with the head of the next 
frame. We need to multiply the speech frame by the window function to reduce the trun-
cation effect of the speech frame and reduce the slope of the two ends of the frame so that 
the two ends of the speech frame do not cause sharp changes and smooth transition to 0. 
Let the frame signal be 𝑥(𝑛) and the window function be 𝑤(𝑛). Then, signal 𝑦(𝑛) after 
adding the window is 𝑦(𝑛) = 𝑥(𝑛) ⋅ 𝑤(𝑛), (6) 

where 0 ൑ 𝑛 ൑ 𝑁 − 1; 𝑁 is the number of sampling points for each frame. The most com-
monly used window function is the Hamming window. 𝑤(𝑛) = 0.54 − 0.46𝑐𝑜𝑠 2𝜋𝑛𝑁 − 1      0 ൑ 𝑛 ൑ 𝑁 − 1 (7)

Step 2: Because discrete Fourier transform involves a large amount of calculation, an 
efficient FFT can be used to transform the speech frame from the time domain to the fre-
quency domain. 

Step 3: The discrete spectrum obtained from the FFT is filtered using a sequential 
triangular filter to obtain a set of coefficients 𝑚ଵ, 𝑚ଶ, …. The center frequency 𝑓(𝑖) of each 
triangular filter in this filter set is equally spaced on the Mel frequency axis, and its span 
is also equal on the Mel frequency scale. The number of filters 𝑝 is determined by the 
cutoff frequency of the signal, and all filters cover, in general, from 0 Hz to the Nyquist 
frequency, that is, one-half of the sampling rate. 

The equation for calculating 𝑚௜ is as follows: 

𝑚௜ = ln ቌ෍|𝑥(𝑘)|ேିଵ
௞ୀ଴ ⋅ 𝐻௜(𝑘)ቍ       𝑖 = 1, 2, … , 𝑝 (8) 

The calculation of Hi(k) is carried out as follows. 

𝐻௜(𝑘) = ⎩⎪⎨
⎪⎧0                                                                                   𝑘 ൏ 𝑓ሾ𝑖 − 1ሿ 𝑜𝑟 𝑘 ൐ 𝑓ሾ𝑖 + 1ሿ

2(𝑘 − 𝑓ሾ𝑖 − 1ሿ)(𝑓ሾ𝑖 + 1ሿ − 𝑓ሾ𝑖 − 1ሿ) ⋅ (𝑓ሾ𝑖ሿ − 𝑓ሾ𝑖 − 1ሿ)          𝑓ሾ𝑖 − 1ሿ ൑ 𝑘 ൑ 𝑓ሾ𝑖ሿ  
2(𝑓ሾ𝑖 + 1ሿ − 𝑘)(𝑓ሾ𝑖 + 1ሿ − 𝑓ሾ𝑖 − 1ሿ) ⋅ (𝑓ሾ𝑖 + 1ሿ − 𝑓ሾ𝑖ሿ)          𝑓ሾ𝑖ሿ ൑ 𝑘 ൑ 𝑓ሾ𝑖 + 1ሿ  (9) 

Here, 𝑦ሾ𝑖ሿ is the center frequency of the triangular filter, which satisfies the follow-
ing equation: 𝑀𝑒𝑙(𝑓ሾ𝑖 + 1ሿ) − 𝑀𝑒𝑙(𝑓ሾ𝑖ሿ) = 𝑀𝑒𝑙(𝑓ሾ𝑖ሿ) − 𝑀𝑒𝑙(𝑓ሾ𝑖 − 1ሿ). (10)

Step 4: The Mel spectrum obtained in the previous step is transformed into the time 
domain, and the result is the MFCCs. Because MFCCs are real numbers, they can be trans-
formed into the time domain using a DCT. The MFCC equation is as follows. 

𝑐௜ = ඨ2𝑁 ෍ 𝑚௝𝑐𝑜𝑠 ൤𝜋𝑖𝑃 (𝑗 − 0.5)൨௉
௝ୀଵ  (11) 

The normalized energy was calculated as the 13th dimensional component of the fea-
ture vector for all scoring frames in the speech signal or speech signal file. In this study, 

Figure 5. Flowchart of MFCCs.

Step 1: The preprocessing step is divided into two parts: frame splitting and win-
dowing. Frame splitting can be completed by continuous segmentation; however, the
overlapping segmentation method is generally used to make the transition between frames
smooth and consistent; that is, the end of each frame overlaps with the head of the next
frame. We need to multiply the speech frame by the window function to reduce the trunca-
tion effect of the speech frame and reduce the slope of the two ends of the frame so that the
two ends of the speech frame do not cause sharp changes and smooth transition to 0. Let
the frame signal be x(n) and the window function be w(n). Then, signal y(n) after adding
the window is

y(n) = x(n) · w(n), (6)

where 0 ≤ n ≤ N − 1; N is the number of sampling points for each frame. The most
commonly used window function is the Hamming window.

w(n) = 0.54− 0.46cos
2πn

N − 1
0 ≤ n ≤ N − 1 (7)

Step 2: Because discrete Fourier transform involves a large amount of calculation,
an efficient FFT can be used to transform the speech frame from the time domain to the
frequency domain.

Step 3: The discrete spectrum obtained from the FFT is filtered using a sequential
triangular filter to obtain a set of coefficients m1, m2, . . .. The center frequency f (i) of each
triangular filter in this filter set is equally spaced on the Mel frequency axis, and its span is
also equal on the Mel frequency scale. The number of filters p is determined by the cutoff
frequency of the signal, and all filters cover, in general, from 0 Hz to the Nyquist frequency,
that is, one-half of the sampling rate.

The equation for calculating mi is as follows:

mi = ln

(
N−1

∑
k=0
|x(k)| · Hi(k)

)
i = 1, 2, . . . , p (8)

The calculation of Hi(k) is carried out as follows.

Hi(k) =


0 k < f [i− 1] or k > f [i + 1]

2(k− f [i−1])
( f [i+1]− f [i−1])·( f [i]− f [i−1]) f [i− 1] ≤ k ≤ f [i]

2( f [i+1]−k)
( f [i+1]− f [i−1])·( f [i+1]− f [i]) f [i] ≤ k ≤ f [i + 1]

(9)

Here, y[i] is the center frequency of the triangular filter, which satisfies the follow-
ing equation:

Mel( f [i + 1])−Mel( f [i]) = Mel( f [i])−Mel( f [i− 1]). (10)

Step 4: The Mel spectrum obtained in the previous step is transformed into the time
domain, and the result is the MFCCs. Because MFCCs are real numbers, they can be
transformed into the time domain using a DCT. The MFCC equation is as follows.

ci =

√
2
N

P

∑
j=1

mjcos
[

πi
P
(j− 0.5)

]
(11)
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The normalized energy was calculated as the 13th dimensional component of the
feature vector for all scoring frames in the speech signal or speech signal file. In this study,
13 dimensions were considered, and the average value of all frames in each dimension was
considered as the acoustic feature.

4. Experimental Setup and Procedure

The main automated hammering device used in this study included a voltage-controlled
solenoid hammerhead that can automatically hammer at different frequencies, six-degree-
of-freedom robotic arm to guide the hammerhead, and radio device consisting of a direc-
tional microphone, microphone power module, wireless transmission, and computer [32].
The automatic hammering device ensures that the hammering position and hammering
acoustic data obtained are sufficiently standardized, and that the hammering acoustic data
obtained by hammering at different frequencies can be used for machine learning, as shown
in Figure 6.
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Figure 6. Schematic of the experimental setup.

Concrete specimens with a length of 420 mm, width of 60 mm, and height of 60 mm
were used in this experiment. The concrete specimen was bent through a four-point bending
system, as shown in Figure 7, producing damage distributed over the entire specimen as
in Figures 8 and 9. In this study, the formation of damage classification is divided into
two types: two-category, as shown in Figure 8, and four-category, as shown in Figure 9.
The entire sample was divided into 21 groups. In the two-category classification, the
concrete samples were divided into healthy and damaged areas. The healthy area was not
damaged within 20 mm, and the damaged area included surface and internal damages.
In the four-category classification, the samples were divided into healthy areas with no
damage within 20 mm, surface damage areas with only surface cracks within 20 mm,
internal damage areas with only internal cracks within 20 mm, and compound damage
areas with both surface and internal cracks within 20 mm. Acoustic data were obtained by
hammering the concrete from above at a hammering frequency of two times per second
(2 Hz), five times per second (5 Hz), and 10 times per second (10 Hz). In the two-category
and four-category classification, the concrete was subjected to 1260 hammer blows at 2 Hz,
3150 hammer blows at 5 Hz, and 6300 hammer blows at 10 Hz. The sound acquisition
device is directional, pointing vertically in the hammering direction and moving with the
hammering to ensure that the sound propagation distance does not need to be corrected.
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In this study, ReliefF was used for feature selection, and SVM was used to classify the
damage types of concrete. Linear, quadratic, and Gaussian functions were used as kernel
functions to build the model. In this study, acoustic features extracted from the selected
signals based on two different hammering methods (single-frequency hammering and
variable-frequency hammering) were used for classification and comparison.

5. Experimental Results and Discussion
5.1. Power Spectral Density Analysis

The sound signals recorded during the experiment were used for the PSD analysis.
In this study, an automatic hammering device was used to hammer the area at three
preset hammering frequencies under four different conditions for a total of 12 datasets. A
typical acoustic wave was selected for each dataset. It was used to observe changes in the
distribution and magnitude of the acoustic wave power at different hammering frequencies.
The acoustic differences between variable-frequency hammering and single-frequency
hammering were compared.

The PSD of the selected signal under different conditions was obtained for the
frequency-domain analysis. As shown in Figure 10, the power was concentrated at
0–2000 Hz for the healthy category shown in Condition 1. Under different hammer-
ing frequencies, the power distribution did not change significantly with the hammering
frequencies. In Condition 2, the shallow cracks (surface damage) were concentrated in
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the range of 0–4000 Hz. Under different hammering frequencies, the distribution of the
power size with hammering frequency change was not obvious. At the crack extension of
Condition 3 (internal damage), the power was concentrated at 0–3000 Hz and 4000–5000 Hz,
and the variation in power magnitude was evident under different hammering frequencies.
At the compound damage of Condition 4 (internal damage + surface damage), the power
was concentrated at 0–3000 Hz, and the variation in power magnitude was evident under
different hammering frequencies. Four different types of damage with different power
distributions in the same component can be easily distinguished by vertical observation.
However, for Condition 3 at crack propagation and Condition 4 at composite damage, the
power of these two adjacent damages under the same fixed hammering is concentrated
in the same frequency distribution. As a result of using variable-frequency hammering,
the power change in Condition 3 in the frequency distribution was significantly different
from that of Condition 4. The change in Condition 3 was significant at 0–1000 Hz, and
that of Condition 4 was significant at 2000–4000 Hz. The frequency distribution of the
power changes in Condition 3 was significantly different from that of those in Condition 4.
Condition 3 showed a significant change at 0–1000 Hz, while Condition 4 showed a sig-
nificant change at 2000–4000 Hz. With single-frequency hammering, the difference was
more pronounced for the two categories of health and damage. However, acoustic signals
obtained by hammering at different frequencies can differentiate between two or more
similar damage classifications.
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The experimental results demonstrated that variable-frequency hammering contains
more information than single-frequency hammering, particularly for compound dam-
age with two types of damage within 20 mm, which is challenging to identify using
single-frequency hammering alone. In actual detection, the hammering frequency is not
guaranteed to correspond to the hammering frequency that can be effectively identified;
therefore, variable-frequency hammering is required.

5.2. ReliefF-Based Feature Selection

According to the ReliefF evaluation, a sequence of features sorted by correlation from
largest to smallest can be obtained. It is only necessary to decide how many of the features
with the lowest ranking can be deleted to perform feature selection. In this study, two types
of classification were used for damage; thus, the selection of acoustic features obtained
from frequency hammering was also divided into two types: feature selection based on
two classifications (Table 1) and feature selection based on four classifications (Table 2).
These were added together with the MFCCs of single-frequency hammering using SVM
for comparison.
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Table 1. First 13 dimensional features in two-category classification.

Features ReliefF

The 3rd dimension of 5 Hz 0.0659
The 1st dimension of 5 Hz 0.0574
The 6th dimension of 5 Hz 0.0567

The 12th dimension of 5 Hz 0.0530
The 5th dimension of 2 Hz 0.0527

The 10th dimension of 5 Hz 0.0519
The 2nd dimension of 5 Hz 0.0478
The 11th dimension of 5 Hz 0.0477
The 9th dimension of 5 Hz 0.0477
The 4th dimension of 5 Hz 0.0476

The 13th dimension of 5 Hz 0.0471
The 7th dimension of 5 Hz 0.0463

The 11th dimension of 10 Hz 0.0446

Table 2. First 13 dimensional features in four-category classification.

Features ReliefF

The 3rd dimension of 5 Hz 0.0813
The 4th dimension of 5 Hz 0.0795
The 5th dimension of 2 Hz 0.0772
The 1st dimension of 5 Hz 0.0669

The 12th dimension of 5 Hz 0.0645
The 7th dimension of 5 Hz 0.0623
The 6th dimension of 5 Hz 0.0601
The 9th dimension of 5 Hz 0.0587

The 3rd dimension of 10 Hz 0.0586
The 11th dimension of 5 Hz 0.0569
The 8th dimension of 5 Hz 0.0557

The 13th dimension of 5 Hz 0.0548
The 11th dimension of 10 Hz 0.0527

In addition, the experimental results of feature selection showed that for the damage
selected in this study, feature selection was more inclined toward a specific hammering
frequency. In addition, based on the number of classifications, the required hammer-
ing frequency changed after the addition of the surface, internal, and combined surface-
internal damage classifications, except for the offset single hammering frequency. Differ-
ent instances of damage have different degrees of sensitivity corresponding to different
hammering frequencies. Exploring this degree of sensitivity can help to further classify
concrete damage.

5.3. Comparison between Single-Frequency Hammering and Variable-Frequency Hammering

In this study, the vector data of the single-frequency hammer MFCCs and variable-
frequency hammer MFCCs obtained from two and four categories were imported into the
SVM model, which used linear, quadratic, and Gaussian kernel functions and a one-to-one
multi-class classification strategy. For accuracy testing, the six-fold cross-validation method
was used to divide the dataset into six parts, five of which were used for training and one
for testing, and the mean of the results of the six times was used as an estimate of the
accuracy of the algorithm.

5.3.1. Classification Using Single-Frequency Hammering MFCCs

Tables 3 and 4 show the SVM classification results of the single-frequency hammering
MFCCs in the two- and four-classification cases under the three kernel functions. In the case
of two classes, the accuracy of each single-frequency hammering can exceed 90%. In the
case of the four-category classification, the accuracy of the three single-hammer frequencies
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decreased slightly compared with that of the two-level classification. As observed, the
accuracy at 2 Hz is lower than that at 5 Hz and 10 Hz; this indicates that MFCCs are
effective as an acoustic feature for classification, whereas the sensitivity of the hammering
frequency varies for different forms of damage classification.

Table 3. Accuracy of each single-frequency hammering in the two-category classification.

Kernel Type 2 Hz 5 Hz 10 Hz

Linear 84.1% 82.% 83.1%
Quadratic 91.7% 94.0% 90.8%
Gaussian 86.3% 96.8% 86.3%

Table 4. Accuracy of each single-frequency hammering in the four-category classification.

Kernel Type 2 Hz 5 Hz 10 Hz

Linear 77.1% 82.2% 79.4%
Quadratic 88.9% 93.0% 91.1%
Gaussian 85.7% 96.5% 85.7%

5.3.2. Classification Using Variable-Frequency Hammering MFCCs

Table 5 shows the SVM classification results for two classification forms of the variable-
frequency hammering MFCCs under three kernel functions, with the highest accuracy
of over 97% for both classification forms, which is higher than that of the three single-
frequency hammering cases. This demonstrates that the frequency conversion of MFCCs is
effective at classifying concrete damage and better than the single-frequency MFCC, that is,
compared with single-frequency hammering, the acoustic characteristics obtained from
the acoustic signals of variable-frequency hammering are more effective at classifying the
damage above the second category in Section 5.3.1.

Table 5. Accuracy of each variable-frequency hammering in the two-category and four-category classifications.

Kernel Type Two Categories Four Categories

Linear 84.1% 89.2%
Quadratic 94.0% 96.2%
Gaussian 97.5% 97.8%

The experimental results showed that the classification prediction accuracy of the
method based on variable-frequency hammering for concrete is high, reaching 97.5% for
the two categories and 97.8% for the four categories. Compared with single-frequency
hammering, it is able to distinguish multiple types of damage, surface, internal, and
combined surface–internal, more effectively.

6. Conclusions and Future Work

In this study, valid information was obtained without increasing dimensionality to
accurately classify multiple types of damage occurring in the same concrete component.
A detection method based on the acoustic features of variable-frequency hammering
was proposed. Variable-frequency hammering MFCCs are generated from acoustic data
obtained by variable-frequency hammering through feature selection and extraction; they
are used as the main feature of SVM classification for multi-category damage classification.

The acoustic features obtained by single-frequency hammering were used as classi-
fication features and compared with those generated by variable-frequency hammering.
The results showed that the SVM models based on both single-frequency hammering and
variable-frequency hammering can accurately detect both two- and four-category concrete
damage occurring in the same specimen. However, the classification model based on
variable-frequency hammering showed a higher accuracy of 97.8% than that based on
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single-frequency hammering, which indicates that variable-frequency hammering is more
suitable as a feature for multi-category damage classification than single-frequency hammer-
ing. In addition, the experimental results of PSD analysis and feature selection showed that
variable-frequency hammering contains more effective information than single-frequency
hammering. Furthermore, variable-frequency hammering can compensate for the lack of
information of single hammering from common single-frequency hammering methods.
Variable-frequency hammering can be combined with machine learning to detect concrete
damage more accurately without causing a dimensional disaster. Simultaneously, the exper-
imental results proved that different types of damage have different sensitivities to different
hammering frequencies. However, the tests are still at the research laboratory stage and
may not solve existing engineering problems in the field, such as detecting damage in noisy
and topographically complex environments. In the future, we will improve the detection
method such that hammering and signal processing can be performed automatically using
hammering equipment and micro-phones, and the hammering frequency can be adjusted
intelligently for different dam-ages to develop an intelligent frequency-hammering robot
with great potential in the field of inspection.
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