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Abstract: In recent years, Artificial Intelligence (AI) provided essential tools to enhance the produc-
tivity of activities related to civil engineering, particularly in design, construction, and maintenance.
In this framework, the present work proposes a novel AI computer vision methodology for automati-
cally identifying the corrosion phenomenon on roofing systems of large-scale industrial buildings.
The proposed method can be incorporated into computational packages for easier integration by
the industry to enhance the inspection activities’ performance. For this purpose, a dedicated image
database with more than 8k high-resolution aerial images was developed for supervised training.
An Unmanned Aerial Vehicle (UAV) was used to acquire remote georeferenced images safely and
efficiently. The corrosion anomalies were manually annotated using a segmentation strategy sum-
ming up 18,381 instances. These anomalies were identified through instance segmentation using
the Mask based Region-Convolution Neural Network (Mask R-CNN) framework adjusted to the
created dataset. Some adjustments were performed to enhance the performance of the classification
model, particularly defining an adequate input image size, data augmentation strategy, Intersection
over a Union (IoU) threshold during training, and type of backbone network. The inferences show
promising results, with correct detections even under complex backgrounds, poor illumination
conditions, and instances of significantly reduced dimensions. Furthermore, in scenarios without a
roofing system, the model proved reliable, not producing any false positive occurrences. The best
model achieved metrics’ values equal to 65.1% for the bounding box detection Average Precision
(AP) and 59.2% for the mask AP, considering an IoU of 50%. Regarding classification metrics, the
precision and recall were equal to 85.8% and 84.0%, respectively. The developed methodology proved
to be extremely valuable for guiding infrastructure managers in taking physically informed decisions
based on the real assets condition.

Keywords: corrosion; industrial buildings; deep-learning; Mask R-CNN; instance segmentation;
Unmanned Aerial Vehicles (UAVs)

1. Introduction

The best strategies for the visual inspection of large-scale industrial buildings are still a
challenge to be addressed by civil infrastructure engineers. Typically, it is a time-consuming
activity, with high human risks and financial costs, that increases in complexity with the
surveyed area. In recent years, Unmanned Aerial Vehicles (UAVs) have been incorporated
into this task, enabling a remote and enhanced procedure.

Metallic sandwich panels are a versatile solution with properties that ensure a simple
on-site installation and durability. In these elements, corrosion represents an early damaged
state that can be directly or indirectly responsible for critical failure mechanisms (e.g.,
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delamination, debonding, and perforation, etc.), as well as serviceability constraints of the
interior spaces of the assets related to loss of impermeability and water leakage.

In recent years, essential developments in software and hardware have led to undeni-
able advances in Artificial Intelligence (AI) techniques, allowing several novel applications
of the image pattern recognition [1], which decisively contribute to the solution of prob-
lems such the one of the automatic detection of corrosion on metallic sandwich panels.
Furthermore, the combination of these advances with a technology that allows the remote
survey of large areas and buildings in real-time [2], i.e., UAVs, could help to diminish the
occurrence of fall from height accidents, which was the most critical risk factor associated
with construction activities in Great Britain in 2022 [3] and also represents an important
concern in the rest of the world [4].

Computer vision has made progress with incorporating deep learning techniques for
pattern recognition, in this case, anomaly identification. The landmark of this success was
the remarkable performance of the Convolutional Neural Network (CNN) architecture
developed in 2012 by Krizhevsky et al. [5], widely known as AlexNet, which won the
ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [6].

Nowadays, the most advanced deep learning techniques for image analysis allow
performing one or several of the following image recognition tasks, depending on the
framework used and the level of information required [7–9]: (i) classification, for iden-
tification of the existence (or not) of anomalies, based on the classical CNN algorithm;
(ii) detection, which additionally localizes the anomaly and specifies the type of anomaly,
based on the so-called Region-CNN (R-CNN) algorithm, and (iii) segmentation, which
additionally specifies which pixels belong to each of the identified anomalies, based on the
Mask R-CNN algorithm. The Mask R-CNN allows instance segmentation, which consists
of the consecutive application of the classification, detection, and segmentation.

In the construction sector, the application of these algorithms can be performed in three
distinct areas [10]: (i) health and safety, (ii) management and tracking, and (iii) damage
assessment. In the first area, the development of technology to automatically detect
the absence of the use of personal protective equipment is a concern. Shen et al. [11]
developed a methodology for detecting the use of safety helmets on construction sites.
Based on transfer learning and the DenseNet network, these authors created a bounding-
box regressor capable of surpassing common challenges of complex backgrounds, like scale
variance and perspective distortion. The authors were the first to apply a deep learning
technique to this problem successfully. The study points out that the proposed solution is
competitive with other existing detection methodologies, like the YOLO’s families.

Applications involving asset management and construction progress are more com-
mon and broad. For example, Li et al. [12] created a methodology for rebar counting in
on-site construction, based on an improved version of the YOLOV3 network [13]. They
obtained an average precision for detection equal to 99.7% for an IoU of 50%. However, the
proposed methodology proved limited since the counting was only based on the transversal
section of the rebars. The high average precision achieved also draws attention, indicating
that the model’s generalization might be compromised when applied to distinct scenarios
in complex backgrounds. Nevertheless, this innovative idea inspired other studies, such as
the one developed by Kardovskyi and Moon [14], that proposed a complete methodology
to perform steel rebar assessment, resorting to high-performance hardware. In this study,
the Mask R-CNN algorithm, with the support of a stereo vision system, was upgraded
to measure not only the number of rebars but also the spacing, length, and diameter of
the rebars. However, the dataset, containing only 240 images, was the main drawback
of the work. Similarly, Xiao and Kang [15] developed a large-scale dataset for machinery
operating on the construction site, including a reliable labeling method that enhances
detection and classification. Despite this performance, further improvements can benefit
the work since it only includes segmentation annotations for particular cases. Furthermore,
all the images were taken from the ground level, which is less efficient and more timing
consuming when compared to aerial acquisition.
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The indoor tracking of the construction process was addressed by Wei et al. [16] with
the Mask-RCNN algorithm and a stereo camera to capture 738 images and monitor the
execution progress of a base floor including coatings, with the results being transferred
to a BIM digital model. This study had the challenge of extrapolating the learning to
other building construction stages. In the area of waste management and disposal, which
is a current topic of concern, Lu et al. [17] applied semantic segmentation to recognize
the composition of construction waste (e.g., rock, stone, packaging, fabric, and wood,
etc.), based on a DeepLabv3+ network [18], and achieved a Mean Intersection Over Union
(mIoU) of 56%. Chen et al. [19] proposed the application of the Mask R-CNN to estimate the
overall built area in rural regions, using open-source satellite images and a transfer learning
strategy for the training stage, as well as UAV-acquired images for the test/inference
stage. However, this study did not take full advantage of the UAV images, missing the
opportunity to use detailed high-resolution images in the training stage.

Damage assessment is currently a significant concern for infrastructure managers and
is where most studies involving advanced image processing are performed. Karaaslan
et al. [20] proposed a semi-supervised methodology to detect spalling in real-time, pro-
viding a 30% improvement in precision compared to a human inspector. Moreover, San-
tos et al. [21] classified exposed steel rebar images from an industrial building using a
CNN, innovatively using the support of a UAV to obtain orthomosaic maps with the
identified anomalies.

Instance segmentation was also performed for the damage assessment, but this tech-
nique is still underused when compared to other AI algorithms [10]. Zhan et al. [22] used
the Mask R-CNN framework and aerial images to precisely identify damaged buildings
after the Kumamoto earthquake in 2016, reaching 88% of accuracy but lacking the re-
port of the segmentation metrics. In addition, Hou et al. [23] applied the Mask R-CNN
using ground penetrating radar images to automatically detect and segment abnormal
instances that might indicate corrosion on concrete bridges, reaching an average accuracy
for detection and segmentation of 58.6% and 47.6%, respectively.

Corrosion defects were also identified with machine learning in several applications
involving bridges and buildings [24–26]. It is worth noticing other potential applications
within the automatic detection of defects in welded joints [27]. However, none of these
authors explored the potential of the Mask R-CNN to detect corrosion in metallic structures,
with the exception of Forkan et al. [28], who developed a platform based on the Mask
R-CNN, called CorrDectector, to segment corrosion in telecommunication towers.

The present work shifts the contributions of AI in the field of civil infrastructure remote
inspection, addressing both the lack of applications of instance segmentation algorithms
to the area, as well as developing a methodology capable of identifying corrosion on
sandwich panels belonging to large-scale industrial buildings. It also creates a novel
dataset containing more than 8k high-resolution images acquired with a modern UAV.
The labeled dataset contains about 18k segmented instances to overcome the presence
of complex backgrounds, typically derived from the use of aerial images and due to the
particularities of the location where these industrial buildings are usually situated.

The innovative nondestructive methodology combines data analytics capabilities
derived from deep learning through the yet underexplored Mask R-CNN framework, with
some proposed adjustments, and the UAV versatility to help management and maintenance
planning assess the condition of their buildings. As far as the authors know, this is the first
fully dedicated methodology to identify corrosion on metallic sandwich panels efficiently.

2. Methodology for Automatic Detection of Corrosion
2.1. Overview

The methodology for the automatic identification of corrosion in industrial buildings
comprises two stages (Figure 1): (i) the image acquisition based on a computer vision
system integrated into a UAV platform, and (ii) the image processing by the application of
a dedicated AI algorithm. Typically, the pre-programmed flights take a height of 12 m to
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15 m alongside the buildings, capturing images from the roofing and façades. The UAV
positioning is adjusted using a correction system of the Real Time Kinematic (RTK) type.
Finally, the images are processed by a trained Mask R-CNN algorithm that provides each
corrosion anomaly’s mask, label, and exact location.
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2.2. Equipment

The image acquisition is performed by a drone DJI Mavic 2 Enterprise Advanced
(M2EA) (Figure 2). This drone has a maximum recommended take-off weight of 1100 g,
reaches a maximum speed of 20 m/s, and a flight autonomy of 30 min. The UAV is
equipped with a dual gimbal camera that captures images in visible and infrared (IR)
spectra. The first camera comprises a CMOS sensor with a resolution of 48 MPx. It also
contains an RTK module that achieves centimeter-level positioning accuracy and supports
internet protocol (NTRIP). The processing of images was performed by a PC station running
the Windows 11 operative system, equipped with an NVIDIA GTX3090 graphic card with
24 GB of memory, processor i7 11700, 32 GB of RAM, and 1 TB of SSD storage.
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3. Mask R-CNN Framework

Figure 3 presents the main steps for implementing the Mask R-CNN algorithm. The
proposed framework involves (i) the creation of the dataset, including the collection of im-
ages and the insertion of masks (labeling); (ii) the training process, involving the application
of a data augmentation technique, the transfer learning from a predefined dataset, and the
hyperparameter tunning; and (iii) the test of the final model based on appropriate metrics.
The singularity of the solution consists in performing instance segmentation based on
high-resolution aerial images of metallic roofing systems of large-scale industrial buildings
within a competitive processing time. The programming language used was Python 3.7. In
the following sections, the steps of the proposed framework are discussed in detail.
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3.1. Image Dataset

The image dataset is a vital aspect of the success of AI-based computer vision algo-
rithms. A sufficient and consistent number of images should exist to comprehend as many
situations as possible in the real environment. In a supervised learning approach, the
definition of ground truths, i.e., the precise annotation of the anomalies based on direct
observation, is also crucial since they constitute the targeting for the learning of the Mask
R-CNN algorithm, being also considered the most time-consuming task.

3.1.1. Image Acquisition

The database contains 8400 images, with a resolution of 2000 × 2000 pixels, totalizing
18,381 corrosion instances. The images were collected under good meteorological condi-
tions, particularly at high sunlight exposure, from several buildings located in industrial
zones on the north of Portugal. Figure 4 presents some industrial facilities used for the
image database collection, where the roofing systems are marked in purple. The aerial
missions totalize more than 18,000 m2 of roofing systems under complex backgrounds,
including vegetation, people, cars, and roads, etc.
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3.1.2. Ground Truth Labelling

Ground truth annotations were performed with the Visual Image Annotator (VIA)
software, an open-source solution from the Oxford Visual Geometry Group [29]. It is a
very user-friendly software that runs directly in the internet browser. The segmentation
annotations were manually defined, circumscribing the corrosion instances, and posteriorly
exported in a JSON (JavaScript Object Notation) format.

3.2. Algorithm

The Mask R-CNN framework was developed from a family of CNN-based solutions
that started with the R-CNN. Currently, the Mask R-CNN model has the best benchmark
scores regarding instance segmentation [9]. This model combines multiple algorithms from
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computer vision and artificial intelligence fields. Therefore its architecture, is formed by
several regions associated with different operators, as presented in Figure 5.
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This work adopted the Mask R-CNN implementation denominated Detectron2 [31], a
Python library developed by the Facebook AI research team. It was adapted with minimal
modification, simply through training, finding the best parameters of image size, data
augmentation, backbone network, and Region of Interest Intersection Over Union, as will
be discussed in Section 4. In the following subsections, the primary operations performed
by this framework are detailed, particularly the backbone network, the Region Proposal
Network (RPN), the Feature Pyramid Network (FPN), the RoI Align, and RoI Heads.

3.2.1. Backbone Network

The backbone network is the CNN responsible for taking the image as input and
performing the feature extraction. The models of the Resnet series are the most widely
adopted within CNNs architecture. As depicted in Figure 6, the model is composed of resid-
ual connections between different convolutional layers. This approach allows one input
image (x) to have multiple output features from different convolutional operations stages,
denominated Res2, Res3, Res4, and Res5. It is assumed that a series of stacked nonlinear
layers can map residual functions such as H(x)− x. However, in the Resnet series, shortcut
connections are defined, setting F(x): = H(x)− x and yielding to H(x): = F(x) + x [32],
where F(x) represents the target task to be learned and H(x) the mapped function. This
solution tackles two common problems in regular CNNs: (i) degradation of accuracy and
(ii) elimination of vanishing gradient since the outputs of the convolutional blocks are
always non-zero values.
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3.2.2. Region Proposal Network

The Region Proposal Network (RPN) consists of a sliding window algorithm based on
a small convolutional network. This operator inputs the features map from the backbone
and outputs object detection probability, as well as a series of rectangular region proposals,
the so-called object bounding boxes. Considering the variety of object sizes in a dataset,
each sliding window takes multiple scales and aspect ratios centered at an anchor (Figure 7).
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Figure 7. Region Proposal Network (adapted from [8]).

Typically, a feature map of dimension W × H will produce W × H × k anchors, with
W and H as the width and height of the feature map, respectively, and k as the number
of aspect ratios times the number of scales. After being mapped to a lower dimensional
feature, the sliding windows will feed two fully connected layers, one for regression and
another for classification, being trained according to [8]:

L({pi}, {ti}) =
1

Ncls
∑

i
Lcls(pi, p∗i ) + λ

1
Nreg

∑
i

p∗i Lreg(ti, t∗i ) (1)
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where pi and p∗i are the probabilities of a predicted anchor i and corresponding ground
truth, respectively. Ncls and Nreg are regularization terms represented by the batch size and
anchor locations, Lcls is the binary log-loss, and λ is a balancing parameter whose default
value is 10. The rectangular coordinates (ti, t∗i ) are parametrized accordingly to [8] and Lreg
is the smooth L1 function, defined in [33].

3.2.3. Feature Pyramid Network

The Feature Pyramid Network (FPN) comprehends the lateral connections that are
linked to the backbone network stages (res2, res3, res4, and res5) in a top-down and bottom-
up approach (see Figure 5). Its primary purpose is to sample feature maps from the different
stages, detecting objects in as many scales as possible and without loss of efficiency [34].
Then, it feeds the RPN, which will decide the best scale to extract the feature maps based
on the following equation:

k =
[
k0 + log2

(√
wh/224

)]
(2)

where k0 is a constant equal to 4, and w and h are the feature maps dimensions.
Parameter k is a value between 2 and 5, corresponding to feature maps of multiple

scales in the backbone network (Res2 to Res5 in Figure 5).

3.2.4. RoI Align

The Region of Interest (RoI) Align extracts the features from the maps indicated by
the RPN, performing a bilinear interpolation to pool the information, preserving the pixel
spatial correlation, accordingly to [9].

3.2.5. RoI Heads

The RoI Heads region of the mask R-CNN is responsible for performing the final pre-
diction of the object specifying its class, rectangular bounding boxes, and masks (Figure 5).
The first two tasks are performed by the Fast-R-CNN head [33] with a softmax function
for multiclass classification and, again, the smooth L1 function for bonding box regression
(Equation (2)). The mask is predicted in its own branch, formed by a Fully Convolutional
Network (FCN) with seven convolutional layers. A per-pixel average binary cross entropy
loss is used for training:

Lmask =
−1
N
{p∗ · logp + (1− p∗) · log(1− p)} (3)

where N is the total number of samples. This loss function does not compete with the
classification one, since it is only binary, which was pointed out as the most important factor
for the success of the framework [9]. For each sampled RoI, a multi-task loss is defined as:

Ltotal = Lclass + Lbox + Lmask (4)

with Lclass and Lbox defined as in Equation (2).

3.3. Training and Validation

The images were divided into three datasets: train, validation, and test, in a proportion
of 70:15:15, respectively. In the training stage, the influence of the primary hyperparameters
of the Mask R-CNN algorithm is tuned to optimize the model’s performance. Moreover,
data augmentation techniques and transfer learning strategies are used to enhance the
efficiency and robustness of the proposed model. Finally, the validation and test stages
perform inferences to evaluate the performance of the algorithm using dedicated metrics.
Figure 8 summarizes the sequential steps of the procedure.
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3.3.1. Data Augmentation

Morphological data augmentation operations in AI have been considered good prac-
tice since the early applications of CNNs to enhance model generalization [35]. It usually
refers to transformations such as flipping, rotating, lighting, and distortion. The adopted
data-augmentation technique, denominated as on-the-fly, guarantees that the generated
data is not stored in memory but randomly created at each training attempt and then
discarded. Attending to the nature of each application, the datasets will have different
optimum data augmentation strategies [36].

The random data augmentation techniques used in this study are illustrated in Figure 9
and for the case of brightness, saturation, and contrast operations is performed by:

Mout = Mori(1− α) + Mtrans f × α (5)

where Mout and Mori represent the processed and original images, respectively, Mtrans f
is the transformation matrix according to the type of operation (see Table 1) and α is the
intensity factor.
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Table 1. Data augmentation operations of brightness, saturation, and contrast.

Operation α Mtransf

Brightness 1.1 & 1.3 Black version of the original image (0 for all pixels in the RGB channels).

Saturation 1.2 & 1.4 Gray scale version of the original image transforming each pixel according to:
0.299R + 0.587G + 0.144B

Contrast 1.2 & 1.4 Mean of pixels of the gray scale version of the original image, transformed
with the same equation of saturation

For the specific case of rotation operation, only a simple image rotation of 180◦ was
considered. All procedures were performed using the Python library denominated Pil-
low [37], and the probability of the operation applied to each dataset image varies between
0.10 and 0.50.

3.3.2. Transfer Learning

Transfer learning is a common strategy used in machine learning to enhance the
model’s convergence to the optimal solution [38]. It is usually performed by taking the
hyperparameters from an already trained model in a large dataset and applying them
to a new model considering the same architectures. In this work, transfer learning was
adopted from the Microsoft Common Objects in Context (MS COCO) dataset [39], one
of the largest already produced, containing 330k images with more than 91 categories.
Figure 10 illustrates the transfer learning strategy adopted in this study.
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3.3.3. Metrics

The quality of the model was basically evaluated in terms of precision. For the
detection and segmentation, the precision metrics are the Recall (R), Precision (P), and F1
score, which are defined as:

R =
TP

TP + FN
(6)

P =
TP

TP + FP
(7)
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F1 = 2× R× P
R + P

(8)

where TP are the true positives, FN the false negatives, and FP the false positive samples.
The Precision × Recall curve (PR curve) captures the inverse proportional relationship
between these metrics, and the Area Under the Curve (AUC) defines the so-called average
precision (AP):

APIoU =
N

∑
i=0

[wiP(ri)] = AUC (9)

It is computed numerically with a given weight (wi) and a precision that decreases
monotonically with the recall rate (ri) at a fixed Intersection Over Union (IoU) [39].

The IoU attest to the quality of the location of objects and their masks in the images.
Specifically, the IoU is the percentage of overlapping between a ground truth and its
prediction:

IoU =
Area

(
Bp ∩ Bp∗

)
Area

(
Bp ∪ Bp∗

) (10)

where Bp and Bp∗ stand for the areas of the predicted instance and ground truth, respectively.
Furthermore, the APIoU is a relevant metric to understand the percentage of instances

being detected at a given superposition with the annotated data.

3.3.4. Dataset Registration, Training, and Validation

Dataset registration involves extracting the information from the ground truth to
an input format compatible with Detectron2 to initialize the training stage. The training
dataset contains 5880 images and 12,236 instances of corrosion. Then, the hyperparameters
are set in a key-value configuration system with YAML (Ain’t Markup LanguageTM), a
human-friendly data serialization language.

To enhance the performance of the ML an adequate selection of the values of the
hyperparameters must be made. The hyperparameter values were manually defined
based on recommendations from the literature and previous experience resorting to a
trial-and-error approach. The definition of each hyperparameter can be consulted in
references [9,10]. Parameter optimization was made with Adam [39], using learning rate
warm-up and decay. Batch normalization was also adopted. Table 2 shows the most relevant
hyperparameters modified within this work, with the remaining settings defined according
to [9]. Data augmentation is performed after the serialization of the hyperparameters
according to Section 3.3.1.

Table 2. Hyperparameters and adopted values for training of Mask R-CNN.

Hyperparameter Adopted Value

Learning rate 0.0001
Momentum 0.9
Region of Interest Head batch size 512
Images per batch 2
Number of iterations 40,000
Validation period 500
Region of Interest Head IoU 0.53, 0.55 and 0.60
Backbone network Resnet-50 and Resnet-101

The validation dataset contains 1260 images with 3186 segmented instances. The
model validation occurred at every 500 iterations based on the metrics of average precision
with IoU of 50% and 75%, for both detection and segmentation, using the COCO API [39].
Additionally, the total loss was estimated to verify the occurrence of overfitting.
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3.4. Test

The test dataset contains 1260 images with 2959 instances. The metrics used for its
evaluation were the same applied for the validation test. Additionally, the precision and
recall, for the classification of each instance was computed, to give a measure of the quality
of the application at this level.

4. Model Evaluation

In this section, the evaluation of the model performance is presented for the train-
ing and validation stages. For this purpose, a sensitivity analysis was performed with
the following parameters: (i) size of the images used in the training stage (Section 4.1);
(ii) strategy adopted for Data Augmentation (Section 4.2); (iii) influence of the ROI Heads
IoU hyperparameter (Section 4.3); and (iv) influence of the Backbone network (Section 4.4).
In this sensitivity analysis, detection and segmentation metrics were used, denoted by the
acronyms detec and segm, respectively. This parametric study was performed with the aim
of defining the best strategy to reduce the computational cost without compromising the
efficiency and robustness of the methodology.

4.1. Image Size

The processing of the original images, with the size of 8000 × 6000 pixels, is not
feasible due to hardware limitations. Thus, two different approaches were evaluated:
(i) resize the images for 1333 × 800 pixels, which are the Detectron2 default dimensions;
and (ii) cropping the images with dimensions of 2000 × 2000 pixels.

The first approach has the advantage of keeping the original contours of the anomalies,
but it loses information due to the small size that usually has the corrosion instances. The
second approach maintains the image’s resolution but takes more training time and the
contours of some cases might change because of the cropping edges.

Table 3 shows the maximum percentage values for the precision metrics for models
based on resized and cropped images for the validation dataset and, also, the iteration of
occurrence, which represents other states of the model presented. It is possible to notice
satisfactory metric values for the cropped images in terms of precision with IoU 50% for the
detection and segmentation. These values are about 10% higher than those obtained from
the resized images. The iteration number where these maximum values occur indicates the
importance of running the algorithm with 40k training cycles.

Table 3. Metrics values for models based on resized and cropped images for the validation dataset.

Resized Images Cropped Images

Maximum
Value (%) Iteration Maximum

Value (%) Iteration

AP50
Detect 43.5 26,999 55.8 18,499

AP50
Segm 37.4 25,999 50.5 17,499

APL
Detect 47.9 26,999 43.6 20,499

APL
Segm 32.5 25,999 31.0 13,499

Figure 11 shows the examples of three inferences (EX1 to EX3) performed by models
trained with resized and cropped images in the validation dataset. Example 1 demonstrates
close results between the two models but with one more instance detected by the model
using cropped images. In Example 2, the model with resized images detected an instance
close to one edge, showing that the shape of the corrosion is a determinant factor since,
in this specific case, the cropping/separation of the image changed a larger dimension
instance. Example 3 illustrates the substantial improvement that the cropped images can
provide in small dimension instances, with 9 out of 12 (75%) annotates detected, while in
the resized model, no annotation was detected. This is because the small instances become
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imperceptible to the algorithm, resembling only noise since the resized model reduces the
image by approximately eight. These results motivated the selection of the strategy where
images are cropped before entering the training process.
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4.2. Data Augmentation

Data augmentation operation increases the data variability and the generalization
of the model; however, the intensity of its application can also affect the precision of the
model, especially for small-scale datasets [36]. Table 4 illustrates the three analyzed data
augmentation (DA) strategies, particularly, no DA, moderate DA, and intense DA, as well
as their corresponding intensities (α) and application probabilities (p).

Table 5 shows the results for the precision metrics for each of the analyzed models. It
is a visible improvement from the model without DA to the model with moderate DA. The
model with intense DA demonstrates the degradation of the precision metrics when more
intense transformations are applied.

Figure 12 shows the training and validation curves of the three models based on the
total loss function values. These graphs allow the verification of the overfitting phenomena
precisely on the iteration when the training and validation curves are convergent. This
occurs due to the increasing adjustment of the model to the characteristics of the training
dataset and therefore, the classification becomes more and more efficient. However, under
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these circumstances, the model tends to fail more in the prediction of new situations since
they lose their ability to generalize. This phenomenon is evident from iteration number
15k and seems more visibly in the model without DA (Figure 12a), while in models with
moderate and intense DA it is almost imperceptible. This result was somehow expected,
due to lack of variability in the training data when no DA is applied.

Table 4. Implemented data augmentation strategies.

Transformation Saturation Contrast Brightness Rotation

No DA
α No application
p

Moderate DA
α 1.2 1.2 1.1 180◦

p 0.1 0.1 0.1 0.1

Intense DA
α 1.4 1.4 1.3 180◦

p 0.5 0.5 0.5 0.5

Table 5. Metrics values for models without DA, moderate DA, and intense DA.

No DA Moderate DA Intense DA

Maximum
Value (%) Iteration Maximum

Value (%) Iteration Maximum
Value (%) Iteration

AP50
Detect 55.8 18,499 57.1 35,999 53.8 36,499

AP50
Segm 50.5 17,499 51.9 35,999 48.9 22,999

APL
Detect 43.6 20,499 46.3 38,999 46.1 27,999

APL
Segm 31.0 13,499 33.4 29,499 32.8 25,499
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In addition, it is observed in all graphs of Figure 12 that the validation loss error is
smaller than the one correspondent to the training. This is because the validation dataset
was run without DA and it was adopted a warm-up range of 500 iterations for starting the
validation. This period reduces the relevance of the early training avoiding extra iterations
to obtain the convergence. It was not observed the leakage phenomenon due to training
images wrongly allocated to the validation stage.

Finally, as conclusion, the results indicate that the most suitable strategy is the moder-
ate DA, because is able to create variability in the data and leading to an improvement of
the model reflected in an enhanced generalization.

4.3. Region of Interest Intersection over Union

The ROI IoU hyperparameter defines the minimum percentage of overlap between
the predicted instance and the ground truth to an inference to be classified as positive. This
hyperparameter is applied in the ROI Heads region of Mask R-CNN (Section 3.2.5) and its
adjustment can lead to a more optimized training process, depending on the similarity that
the classified instances have among themselves.

Table 6 presents the results of the three evaluated models, with RoI IoU values equal
to 0.55, 0.57, and 0.60, chosen according to the default value of 0.50 [9]. The results show
that the RoI 0.55 and RoI 0.57 models present very similar metrics with a slight superiority
of the model with RoI 0.57. The RoI 0.60 model presents a very evident degradation of all
metrics, which may lead to a strong bias in the results of some dataset samples.

Table 6. Metrics values for models RoI IoU 0.55, 0.57, and 0.60.

RoI IoU 0.55 RoI IoU 0.57 RoI IoU 0.60

Maximum
Value (%) Iteration Maximum

Value (%) Iteration Maximum
Value (%) Iteration

AP50
Detect 56.4 24,499 57.1 35,999 25.5 16,999

AP50
Segm 51.8 26,499 51.9 35,999 21.1 9999

APL
Detect 46.2 24,999 46.3 38,999 26.0 18,499

APL
Segm 33.3 24,999 33.4 29,499 15.7 16,999

Figure 13 shows the loss function curves for models with ROI Heads IoU equal to 0.55,
0.57, and 0.60. Figure 13c shows that high values for the IoU ROI cause the model overfitting
with an increase in the validation loss function, approximately after 20 k iterations, and
consequent loss of generalization of the algorithm.

These results points toward a RoI IoU Head parameter of 0.57 as the one with the
best performance, showing that a medium overlapping between the ground truth and the
predictions are adequate to optimize the performance of the algorithm.

4.4. Backbone Network

The backbone network is responsible for extracting features that will be processed and
classified along the convolution layers of the algorithm. A higher number of convolution
layers represents a greater classification capacity; however, it may lead to premature
overfitting and consequently less favorable metrics. Deeper networks also tend to overload
computational resources in such a way that make their use unfeasible.

Table 7 shows the values of the main metrics obtained for the Resnet-50 as well as
Resnet-101, both including FPN (see Section 3.2) and considering the best hyperparameters
identified in the previous sections. The results show the superiority of the Resnet-101
network in all the precision metrics, especially for AP50

Detect and AP50
Segm that increased

more than 10%. The Resnet-50 network presents better results for larger instances. In turn,
Resnet-101 detects a greater amount of small and medium instances and in large instances
is less efficient.
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Figure 13. Training and validation curves for the loss function considering RoI IoU Head value equal
to: (a) 0.55, (b) 0.57, and (c) 0.60.

Table 7. Metrics values for backbone networks Resnet-50 and Resnet-101.

Resnet-50 Resnet-101

Maximum
Value (%) Iteration Maximum

Value (%) Iteration

AP50
Detect 57.1 35,999 69.2 29,999

AP50
Segm 51.9 35,999 64.9 20,999

APL
Detect 46.3 38,999 39.6 31,999

APL
Segm 33.4 29,499 33.4 24,999

Figure 14 shows the training and validation curves for the loss function for the Resnet-
50 and Resnet-101 networks. It is possible to notice an enhanced tendency of overfitting for
Resnet-101 in comparison to Resnet-50, as stated by the greater end values of the validation
loss function (0.31 against 0.24). This behavior was expected due to the increased number
of parameters handled by the Resnet-101 network.

Figure 15 shows three examples of classification (EX1 to EX3) performed by both net-
works based on images from the inference dataset. It is possible to notice the improvement
provided by Resnet-101 network, particularly in the classification of minor corrosions, as
stated by Example 1, although not all instances were identified as revealed by the com-
parison with the ground truth. Example 2 shows that Resnet-50 and Resnet-101 detected
several corrosions not identified in the ground truth, demonstrating some extrapolation
capacity of this type of algorithms. In this situation, Resnet-101 performed a better classifi-
cation by not interpreting a dark spot as an anomaly. This capacity comes from the higher
number of convolutional channels of this network, which allows the information to be
acquired in a more granular level as the depth is increased [34]. Example 3 shows a case in
which the poor lighting imposed limitations in the identification of small corrosions on the
image labelling, but when viewing the image in detail, particularly in the extremities of the
panels, it is possible to confirm that the pathology exists, and therefore, the algorithm again
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performed an extrapolation according to learning. Classifications of this type penalize
precision metrics; however, they are very common in supervised algorithms.
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5. Model Application

This section shows the results of the test stage, both in terms of metrics and inference,
aiming to evaluate the performance of the model in new real-world situations. The test
stage was carried out considering a new set of images and considering the learnings derived
from the model evaluation (Section 4), particularly the use of: (i) cropped images with
dimensions of 2000 × 2000 pixels; (ii) moderate data augmentation strategy; (iii) ROI IoU
hyperparameter equal to 0.57, and (iv) Resnet-101 network.

5.1. Metrics Evaluation

Table 8 presents the results of the main detection and segmentation metrics for the
test dataset. It is possible to notice a similarity with the values obtained for the validation
dataset which proves the robustness of the model. Additionally, Table 9 presents the results
for each classified instance of the test dataset, most of them are true positives, showing
the assertiveness of the model. From these numbers were obtained a recall and precision
equal to 85.8% and 84.0%, respectively. The inference total time per image, for CPU and
GPU, where 7.64 s and 0.49 s, respectively, which are competitive values envisaging real
time applications.

Table 8. Precision metrics values for the test dataset.

Precision Metric (%)

AP50
Detect 65.1

AP50
Segm 59.2

APL
Detect 35.6

APL
Segm 28.2

Table 9. Results of each classified instance of the dataset.

Parameter Number of Samples

True positives 2514
False negatives 445
False positives 515

5.2. Results

Figure 16 shows three inference results (EX1 to EX3) where the classified instances are
similar to the ground truth. Example 1 demonstrates the detection of small instances under
normal lighting conditions, showing a successful inference given the similarity between
the prediction and the ground truth. Example 2 shows a situation where a small dark spot
was mistaken for corrosion, but all other instances, also of reduced size, were correctly
detected. The several identified corrosion points are located at the ends/contours of the
plates (in the intersection between panels), which illustrates that the difficult conditions in
which the algorithm demonstrated assertiveness. It should also be noted that the roofing
shape used in the prediction image is slightly different from the geometries used in training.
Finally, Example 3 shows situations in which the model detected small instances at the
edges of the roofing system and in poor lighting conditions (shadow zones). The algorithm
successfully identified all the marked instances and even detected unlabelled corrosion
by extrapolation.

Figure 17 shows three examples of inferences (EX1 to EX3) in the presence of complex
backgrounds. In Example 1, the instances were successfully predicted, even with two
similar roofing systems and some shading. The fiber cement roofing system has a texture
that seems like a corrosion anomaly. However, no false positives were produced. Exam-
ple 2 successfully identifies small and large instances under complex backgrounds. This
identification is challenging because it is an interface region with a fiber cement roofing
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system, with some visible dirt over the metallic plates and under different lighting condi-
tions. Finally, example 3 illustrates the detection capability of the algorithm in a complex
background with several debris and under quite distinct lighting conditions.

Figure 18 shows two examples (EX1 and EX2) where corrosion instances occur in
areas outside the roofing system. In both situations, the model did not produce any false
positives in not labeled elements with corrosion since they were not part of the roofing
system. This is the case of the protection grid of a rainwater culvert located in an adjacent
street, in the case of Example 1, and on roofing elements that are not metallic plates but are
located close to them (e.g., metallic inclined hangers and other types of roofing system), in
the case of Example 2.
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6. Conclusions

This article proposes a methodology to automatically detect corrosion in the roofing
systems of large-scale industrial buildings. First, the procedure relies on setting up an
image database composed of more than 8k high-resolution images with the support of
a UAV vision system. Second, the procedure entails the application of advanced image
processing techniques based on the Mask R-CNN deep learning framework. The UAV
used was the DJI MAVIC Enterprise Advanced, equipped with an RTK system that can
provide the estimated position in real-time and, therefore, the ability to register high-
accuracy georeferenced images. Finally, the images dataset, containing about 18k instances
of corrosion, was annotated with the VIA software and processed in a JSON file compatible
with the AI framework.

The training of the Mask R-CNN model involved tuning some hyperparameters
from the advanced library made available by the Facebook AI research team, known as
Detectron2. The adjusted hyperparameters were the size of the input images, the data
augmentation strategy, the value of the RoI IoU Head hyperparameter, and the backbone
network. The results are consistent for the training, validation, and test datasets. In
terms of metrics, it is highlighted the average precision for detection and segmentation,
considering an IoU of 50%, achieved values of 65.1% and 59.2%, respectively. Furthermore,
the precision and recall computed reached 85.8% and 84.0% for all instances identified in
the labeling process. Visually, the inferences show that the model can be trusted, identifying
the anomalies even in the most complex backgrounds and lighting conditions. Indeed,
the results of this research suggest a reliable and effective method for detecting corrosion
on sandwich metallic panels, allowing for a long-distance, non-contact, low-cost, and
automated inspection, culminating in cost savings within the facility management strategies
of large-scale industrial buildings.

As future improvements, the authors are developing an application to integrate a new
type of anomaly in the instance segmentation model, such as mechanical damages and
water puddle accumulation. Furthermore, a semi-supervised technique to be applied in the
already-made database is also being studied, which will support the automatic annotation
of the corrosion instances in similar contexts. Finally, the integration of the georeferenced
anomalies derived from the AI model within 3D photogrammetric reconstructions of the
roofing systems are also planned, as well as the real-time inference of the images with
embedded UAV hardware (e.g., NVIDIA JETSON Orin).

Author Contributions: Conceptualization, R.L., R.C., D.R., R.S., V.A. and A.D.; methodology, R.L.,
R.C., D.R. and R.S.; software, R.L., R.C. and R.S.; validation, R.L., R.C. and R.S.; investigation, R.L.,
R.C., D.R. and R.S.; resources, R.L., R.C., D.R. and R.S.; writing—original draft preparation, R.L.;
writing—review and editing, R.C., D.R., V.A. and A.D.; visualization, R.L. and R.C.; supervision, D.R.,
R.S., V.A. and A.D.; project administration, D.R.; funding acquisition, D.R. All authors have read and
agreed to the published version of the manuscript.

Funding: This work was financially supported by: Base Funding—UIDB/04708/2020 and Pro-
grammatic Funding—UIDP/04708/2020 of the CONSTRUCT—Instituto de I&D em Estruturas e
Construções funded by national funds through the FCT/MCTES (PIDDAC), as well as the R&D
project INSPECDRONE—Identification of anomalies in the external envelope of industrial buildings
based on AI techniques and supported by UAVs, financed by the company Multiprojectus/Garcia
Garcia. Additionally, the author Rafael Lemos acknowledges the Universidade Federal de Ouro
Preto (UFOP) and the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
and the second author, Rafael Cabral, the doctoral grant UI/BD/150970/2021—Portuguese Science
Foundation, FCT/MCTES.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Data is unavailable due to privacy restrictions.

Conflicts of Interest: The authors declare no conflict of interest.



Appl. Sci. 2023, 13, 1386 23 of 24

References
1. LeCun, Y.; Bengio, Y.; Hinton, G. Deep learning. Nature 2015, 521, 436–444. [CrossRef]
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