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Abstract: Soil depth is a crucial parameter in slope stability analysis in mountainous areas. The
drilling survey is the most reliable method for determining soil depth, but it requires a high cost for
the vast geographical area. Therefore, this study proposes a soil depth prediction model for moun-
tainous areas that uses Terrain Attributes (TAs) from digital maps. Gangwon-Do, a predominantly
mountainous region in South Korea, is selected as the study target area. The study area is classified
by parent rock type into igneous rocks, metamorphic rocks, and sedimentary rocks. The correlation
with TAs is analyzed through multi-collinearity using drilling data published in the Korea drilling
information database. In addition, the most suitable combination of variables is selected through
multi-collinearity analysis, and the regression model using STI, TWI, and SLOPE is found to be the
most appropriate model (VIF < 10). The proposed model for soil depth shows significance at p < 0.001,
and the correlation coefficient (R2) is figured out for igneous rock (0.702), metamorphic rock (0.686),
and sedimentary rock (0.693). In addition, the reliability of the proposed model was verified by
using data from regions not included in the model development, and the correlation coefficients were
igneous rock (0.867), metamorphic rock (0.801), and sedimentary rock (0.814). The model proposed is
more suitable for Korean topography than the existing statistical models; it can help to increase the
accuracy of slope stability analysis.

Keywords: soil depth; terrain attributes; prediction model; multi-collinearity; multi-linear regression
analysis

1. Introduction

Soil depth is defined as the vertical distance from the ground surface to bedrock [1–4].
The soil depth can be changed by erosion and weathering, and it is determined by various
environmental variables, including slope, land use, curvature, parent material, weathering
rate, climate, vegetation cover, upslope contributing area, and lithology [5,6]. In addition,
the weathering depth varies depending on the rock type [7], and the distribution of soil
depth will be different accordingly.

Soil depth plays an important role in landslide disaster prevention and management.
The increasingly complex shallow landslide generation process integrates with physically
based models such as SHALSTAB [8], SHETRAN [9], GEOtop FS+ [10], TRIGRS [11], and
H-slider [12] to predict spatial patterns of landslide occurrences [12–15]. However, most of
the analysis methods using landslide analysis models are carried out under the assumption
that the soil depth is constant without consideration of the spatial distribution for soil
depth [8,12,13,16–18]. Additionally, the flow of groundwater and the formation of wetting
front, which have a significant effect on the stability of the slope, are also significantly
affected by the soil depth and its spatial distribution [19,20].

Many researchers have conducted studies on how to predict soil depth, and these
studies can be classified broadly into three groups: (1) physically based, (2) interpolation-
based, and (3) regression methods.
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The physically based model for soil depth prediction was developed as a landscape
evolution model to solve the soil mass-balance equation over time [5]. Most landscape
evolution models use linear sediment transport laws, which assume that the terrain slope
and the sediment amount are equal. Although it develops into a simple analytical so-
lution for mass balance, observational results report that landslides contribute to soil
transport [5,21–24]. Recently, non-linear transport laws have been used to predict slope
failure [23,25,26] and to describe the planar topography of steep slopes [27].

Interpolation-based soil depth prediction methods include IDW [28], Kriging [29,30],
Co-Kriging [31], regression-kriging, and so on [3,32]. These days, many researchers have
suggested the interpolation method to predict the spatial distribution of the soil depth,
and this method often shows high accuracy compared to other methods. Penížek and
Borůvka [33] reported that the co-kriging method showed higher accuracy than the ordinary
kriging (OK), regression kriging (RK), and linear regression methods. However, although
the interpolation method is convenient to use, it requires a large amount of data [5,34,35],
and it cannot be said to show high accuracy in all cases because the deviation is significant
due to the various environmental variables [36].

Regression methods correlate soil depth with TAs from digital elevation maps
(DEMs) [33,37–39]. Goodman [40] reported that the coefficient of determination (R2) of
the slope angle, absolute height, and relative height with soil depth were 0.46, 0.36, and
0.37, respectively. Gessler et al. [41] also analyzed the statistical correlation between soil
depth and plan curvature, compound topographic index, and upslope mean plan curva-
ture. Additionally, Qiyoung et al. [4] suggested that the correlation coefficient between
the regression model using slope and TWI as variables and soil depth was 64.1%, and
Mehnatkesh et al. [2] reported that the correlation coefficient between slope, wetting index,
catchment area, and STI with soil depth was 76%.

In this paper, the study area was classified into igneous rock, metamorphic rock, and
sedimentary rock, which are representative rock type in Korea. The correlation between
TAs and soil depth in the study area is analyzed. Additionally, Using the multiple linear
regression method, we propose a soil depth prediction model for each rock type that is
suitable for the geological condition in Korea.

2. Methodology
2.1. Study Area and Terrain Attributes

The study area is selected as Gangwon-do in South Korea (Figure 1), with a total area
of 16,827.93 km2 and a population of 1,539,521 (population density of 90 people/km2).
Gangwon-do has the most mountainous region and the lowest population density in
Korea [42]. To estimate the terrain attributes of the study area, a digital map (scale 1:25,000)
of data from the National Geographic Information Institute [43] is used. Terrain attributes
are derived using ESRI’s ArcGIS (ArcMap 10.1). Definitions and results of each derived
terrain attribute are shown in Table 1.

Table 1. Definition of Terrain Attributes in the study area and its derived results.

Terrain Attributes Define
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Topographic Wetness Index (TWI) is an index of the water content in the ground, and it
can determine the spatial pattern of water flow [45,46]. TWI was developed by Beven

and Kirkby [47] in TOPMODEL and is defined as a function of the upstream
contributing area per unit area orthogonal to the slope and the flow direction.

ln
(

α
tan β

)
Where α is the slope area of the unit grid length, β is the slope at a point on the surface.
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2.2. Statistics Analysis
2.2.1. Correlation Analysis

Public drilling data from the Geotechnical Information DB System is used to ac-
quire soil depth data of the study area. This database includes drilling information for
332,889 holes in Korea [51]. In order to secure the reliability of variables which are overly
sensitive to the streamline among TAs, data near the streamline were excluded. In addition,
too old data (produced before 2000) or data, in which location information of digital maps
and boring test data is inconsistent were excluded, since it can be considered an outlier.

Yoon [41] used the soil depth ratio (SR = soil depth/slope height) derived by the slope
height for representative rock types in Korea for a total of 373 slopes. It was evaluated
and reported that the average soil depth ratio (SR) was 0.09 for sedimentary rocks, 0.17
for metamorphic rocks, and 0.3 for igneous rocks. As such, the weathering depth will be
different depending on the rock types, and the soil depth will also be different for this
reason. Therefore, in this study, the Boring Test data in study area was classified into
igneous, metamorphic, and sedimentary rocks, which are representative rock types in
Korea, and the correlation between soil depth and TAs are analyzed. After the excluding
outliners, a total of 297 sites were obtained. They were classified into 101 sites for igneous
rock, 101sites for metamorphic rock, and 95 sites for sedimentary rock. Descriptive statistics
for soil depth by representative rock types are shown in Figure 2. The used soil depth data
range from 0.2 to 0.68 m, and the average depth ranges from 2.63 to 3.03 m. In particular,
the sedimentary rock data is distributed relatively wide compared to the data for the other
two types of rock.

Correlation analysis is performed between the soil depth of the study area and the
calculated TAs. The correlation analysis results for each of the representative rock types are
shown in Figures 3–5 in the form of a correlation matrix. It shows the histograms of each
parameter along the central diagonal, the scatter diagram for each pair of parameters in
the lower triangle, and each Pearson correlation coefficient and significance level (p-value)
is shown in the upper triangle. The results of the correlation analysis indicate that the
correlation between soil depth and SLOPE is the highest in all three rock types, and the
correlation between Curvature and SCA (Specific catchment area) is relatively low.
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2.2.2. Multi-Collinearity Analysis

When there is a high correlation between the independent variables in the multi-
regression calculation, the problems of multi-collinearity may occur, which may decrease re-
liability of the regression coefficient estimates. Multi-collinearity can be evaluated through
a variance inflation factor (VIF) such as that given in Equation (1).

Tolerance =
(

1− R2
)

, VIF = Tolerance−1 (1)

The larger the VIF, the smaller the tolerance, and the more likely it is multicollinear. If
the VIF is greater than 5, it is judged that the possibility of multi-collinearity is high. In gen-
eral, if the VIF is greater than 10, it is determined that multi-collinearity is problematic [52].

Multi-collinearity analysis is performed on six cases consisting of linear regression
expressions of six TAs, which are classified into three types of representative rock (Table 2).
Table 2 shows the results of the analysis by sequentially removing variables that cause
multi-collinearity problems. As a result of the analysis, there is a multi-collinearity problem
in Case No. 1 and 2, and Case No. 3–6 have a VIF of 4 or less. Thus, there is no multi-
collinearity problem.

Table 2. The result of multi-collinearity analysis.

Case No. Parameter
Igneous Rock Metamorphic Rock Sedimentary Rock

Tolerance VIF Tolerance VIF Tolerance VIF

1

SLOPE 0.012 82.070 0.010 96.059 0.270 3.706
TWI 0.002 591.425 0.002 523.360 0.021 46.671
STI * 0.001 1166.374 0.001 1089.255 0.027 37.516
SPI 0.001 1836.403 0.000 2307.441 0.061 16.270

CURV 0.731 1.368 0.700 1.429 0.937 1.068
SCA ** 0.015 66.595 0.013 76.471 0.032 30.870

2

SLOPE 0.121 8.287 0.142 7.048 0.270 3.699
TWI 0.016 63.426 0.018 56.247 0.027 37.110
STI * 0.062 16.075 0.068 14.708 0.055 18.134

CURV 0.738 1.355 0.740 1.352 0.941 1.063
SCA ** 0.015 66.008 0.014 72.581 0.032 30.814

3

SLOPE 0.141 7.075 0.167 5.975 0.271 3.695
TWI 0.266 3.763 0.230 4.351 0.538 1.859
STI * 0.239 4.181 0.221 4.516 0.384 2.604

CURV 0.779 1.284 0.749 1.335 0.961 1.040

4
SLOPE 0.141 7.074 0.172 5.809 0.272 3.678

TWI 0.282 3.545 0.254 3.939 0.545 1.833
STI * 0.244 4.107 0.221 4.515 0.389 2.573

5
SLOPE 0.577 1.733 0.639 1.566 0.556 1.798

TWI 0.577 1.733 0.639 1.566 0.556 1.798

6 SLOPE 1.000 1.000 1.000 1.000 1.000 1.000

* ln(STI), ** ln(SCA).

2.2.3. Multi-Linear Regression Analysis

Multiple regression analysis is one of the statistical methods used to establish and
model the relationship between two or more independent variables for one dependent
variable. If the data are linearly related, the multi-linear regression (MLR) of the observation
’y’ for ‘n’ independent variables ‘x’ is as follows:

y = x·β + ε = β0 + β1x1 · · · βnxn + ε (2)

where β0 represents the intercept, and β1 · · · βn represent the regression coefficients. ε is an
error that is not explained by the model and is assumed to follow a normal distribution with
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a mean of zero and a variance of σ2. Estimates of regression coefficients can be obtained by
β̂ =

(
xTx

)−1xTy.
The selection of appropriate independent variables for multi-regression analysis is

one of the critical issues. Generally, the methods of selecting independent variables include
forward selection, backward elimination, stepwise method, and so on. However, the
regression equation does not necessarily include the selected variables. If multi-collinearity
exists between the independent variables, another model can be selected without a separate
analysis.

Helsel and Hirsch [53] described the existing selection method and its shortcomings.
They stated that there are many advantages of choosing a suitable model by evaluating the
combination of statistics used in model selection and independent variables used in the
model.

In this study, the adjusted coefficient of determination (R2
adj) and RMSE are used to

determine the number of variables to be used in the soil depth prediction model.
The coefficient of determination is a statistic that indicates the model’s suitability for

a given dataset. Therefore, the large value of the coefficient of determination means that
the proportion of changes that the independent variable can explain is large. However,
the coefficient of determination may be increased by some independent variables having
high explanatory power, even if some of the independent variables in the model are not
very descriptive. There is a correction coefficient as a statistic that complements these
shortcomings of the adjusted coefficient of determination (R2

adj) and is defined as follows:

R2
adj = 1−

[(
1− R2

)
(n− 1)/(n− k− 1)

]
(3)

where n is the number of points in the data sample, k is the number of independent variables
included in the regression equation and is the number of variables in the model excluding
the constant. These R2

adj can be used to compare the suitability of the model [54].
Additionally, it is the most widely used method through RMSE (root mean squared

residual) for error analysis of regression models, and the definition is given as Equation (4).

RMSE =

√
n

∑
i=1

(
(Ym)i −

(
Yp
)

i

)2/n (4)

where Ym is the measurement value, Yp is the predicted value, n is the number of datapoints.
To determine a suitable model, R2, R2

adj, RMSE for each case are calculated as Table 3,
and the results are shown in Figure 6

(1) As the number of variables used in the model decreases, R2
adj decreases: Especially, a

large decrease in Cases No. 5 and 6.
(2) Since Cases No. 1 and 2 have multi-collinearity problems, suitable models are Cases

No. 3 and 4.
(3) Case No. 4, compared to Case No. 3, has a relatively large error.
(4) Applied Model in this study is Case No. 4, since it uses fewer variables than in Case

No. 3.
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Table 3. The results of the multi-collinearity analysis.

Case No.
Igneous Rock Metamorphic Rock Sedimentary Rock

R2 R2
adj RMSE R2 R2

adj RMSE R2 R2
adj RMSE

1 0.707 0.688 0.863 0.697 0.677 0.773 0.856 0.846 0.672

2 0.704 0.689 0.866 0.691 0.674 0.781 0.698 0.681 0.973

3 0.704 0.691 0.868 0.690 0.678 0.781 0.695 0.682 0.977

4 0.702 0.693 0.870 0.686 0.676 0.876 0.693 0.683 0.981

5 0.665 0.658 0.922 0.666 0.659 0.864 0.621 0.613 1.09

6 0.607 0.603 0.999 0.609 0.605 0.878 0.604 0.600 1.114

Case 1: SLOPE, TWI, STI*, SPI, CURV, SCA**, Case 2: SLOPE, TWI, STI*, CURV, SCA**, Case 3: SLOPE, TWI, STI*,
CURV, Case 4: SLOPE, TWI, STI*, Case 5: SLOPE, TWI, Case 6: SLOPE.

Appl. Sci. 2023, 13, 1453 9 of 14 
 

 
Figure 6. Comparison results of six regression models for selecting suitable models. 

3. Predicted Soil Depth Model 
Previous studies to predict soil depth using TAs have been attempted continuously, 

and as a result, statistical models for soil depth prediction have been proposed. Repre-
sentative statistical models for soil depth prediction are summarized in Table 4. 

Table 4. Previously proposed statistical soil depth prediction models. 

Proposer Model 
Range of Soil 
Thicknesses 

(cm) 

Number of 
Datapoints 

Penizek [33] 88.8 + 1.020AS + 0.057AL − 2.491S 40–160 553 
Gessler [41] −57.95 + 12.83CVPL + 21.46TWI 0–200 30 
Qiyong [4] 97.883 − 1.457S + 2.688TWI − 0.073AL 3.1–198.4 137 
Han [55] 17.918TWI + 0.550(Cell size = 10m) 30–150 79 

Mehnatkesh [2] 122.13 − 0.11S + 0.012TWI + 0.012CA
− 0.23STI 30–150 100 

AS: Aspect, AL: Altitude, S: Slope, CVPL: Plane Curvature. 

The soil depth prediction model derived in this study is shown in Table 5, and the 
soil depth prediction model results for the study area are shown in Figure 7a. In addition, 

Figure 6. Comparison results of six regression models for selecting suitable models.



Appl. Sci. 2023, 13, 1453 10 of 15

3. Predicted Soil Depth Model

Previous studies to predict soil depth using TAs have been attempted continuously,
and as a result, statistical models for soil depth prediction have been proposed. Representa-
tive statistical models for soil depth prediction are summarized in Table 4.

Table 4. Previously proposed statistical soil depth prediction models.

Proposer Model Range of Soil Thicknesses (cm) Number of
Datapoints

Penizek [33] 88.8 + 1.020AS + 0.057AL− 2.491S 40–160 553

Gessler [41] −57.95 + 12.83CVPL + 21.46TWI 0–200 30

Qiyong [4] 97.883− 1.457S + 2.688TWI− 0.073AL 3.1–198.4 137

Han [55] 17.918TWI + 0.550(Cell size = 10m) 30–150 79

Mehnatkesh [2] 122.13− 0.11S+ 0.012TWI+ 0.012CA− 0.23STI 30–150 100

AS: Aspect, AL: Altitude, S: Slope, CVPL: Plane Curvature.

The soil depth prediction model derived in this study is shown in Table 5, and the soil
depth prediction model results for the study area are shown in Figure 7a. In addition, the
scatter plot for each representative rock type is shown in Figure 7b–d. R2

adj for representative
rock types are 0.698 (Igneous rock), 0.676 (Metamorphic rock), 0.683 (Sedimentary rock),
and the RMSE for representative rock types are 0.870 (Igneous rock), 0.876 (Metamorphic
rock), and 0.981 (Sedimentary rock).

Table 5. The result of soil depth prediction models in this study.

Rock Type Model p-Value Number of Data

Igneous 0.626− 0.536STI + 0.509TWI− 0.021SLOPE <0.001 101

Metamorphic 4.442− 0.702STI + 0.228TWI− 0.034SLOPE <0.001 101

Sedimentary 4.289− 0.667STI + 0.242TWI− 0.041SLOPE <0.001 95

For the verification of the developed regression equation, the measurement data and
regression equation are compared with the data for the three regions not included in the
development of the regression model. The soil depth distribution of the target area is
prepared (Table 6). The numbers of data in igneous, metamorphic, and sedimentary rock
areas for verification are 18, 30, and 29 sites, respectively, and the determinants between
regression and instrumentation data are 0.867, 0.801, and 0.814, respectively. Additionally,
R2

adj for representative rock types are 0.859 (Igneous rock), 0.794 (Metamorphic rock), 0.807
(Sedimentary rock), and RMSE for representative rock types are 0.724 (Igneous rock), 1.104
(Metamorphic rock), 0.288 (Sedimentary rock).

Table 6. Results of soil depth prediction models at the verification site.

Rock Type R R2 R2
adj RMSE p-Value Number of Datapoints

Igneous 0.931 0.867 0.859 0.724 <0.001 18

Metamorphic 0.895 0.801 0.794 1.104 <0.001 30

Sedimentary 0.902 0.814 0.807 0.288 <0.001 29
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The distribution of soil depth for the entire area to be verified (Figure 8a,c,e) and the
model verification results for each rock distribution (Figure 8b,d,f) are shown in the below
figures. As a result of the verification, the R2

adj is from 0.794 to 0.859, which is judged to be
an appropriately predictable model. However, RMSE is relatively large in metamorphic
rock regions. It is considered that this is because the soil depth data of the metamorphic
rock verification in the target area are too concentrated near the valley, and a significant
amount of the data includes values measured inside the valley.



Appl. Sci. 2023, 13, 1453 12 of 15

Appl. Sci. 2023, 13, 1453 11 of 14 
 

Table 6. Results of soil depth prediction models at the verification site. 

Rock Type R 𝑅𝑅2 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  RMSE p-Value 
Number of 
Datapoints 

Igneous 0.931 0.867 0.859 0.724 <0.001 18 
Metamorphic 0.895 0.801 0.794 1.104 <0.001 30 
Sedimentary 0.902 0.814 0.807 0.288 <0.001 29 

The distribution of soil depth for the entire area to be verified (Figure 8a,c,e) and the 
model verification results for each rock distribution (Figure 8b,d,f) are shown in the below 
figures. As a result of the verification, the 𝑅𝑅𝑎𝑎𝑎𝑎𝑎𝑎2  is from 0.794 to 0.859, which is judged to 
be an appropriately predictable model. However, RMSE is relatively large in metamor-
phic rock regions. It is considered that this is because the soil depth data of the metamor-
phic rock verification in the target area are too concentrated near the valley, and a signif-
icant amount of the data includes values measured inside the valley. 

 
 

(a) (b) 

 
 

(c) (d) 

 

 
(e) (f) 

Figure 8. The proposed statistical prediction models result in the verification sites, The soil depth 
map for (a) Igneous rock, (c) Metamorphic rock (e) Sedimentary rock, and Scatterplots showing the 
relationship between predicted and measured soil depth for (b) Igneous rock (𝑅𝑅2 = 0.867), (d) Met-
amorphic rock (𝑅𝑅2= 0.801), (f) Sedimentary rock (𝑅𝑅2 = 0.814). 

4. Conclusions 
This paper proposes a statistical model that can predict soil depth, an essential factor 

in landslide disasters. Since erosion and weathering characteristics depend on the rock 
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the relationship between predicted and measured soil depth for (b) Igneous rock (R2 = 0.867),
(d) Metamorphic rock (R2 = 0.801), (f) Sedimentary rock (R2 = 0.814).

4. Conclusions

This paper proposes a statistical model that can predict soil depth, an essential factor in
landslide disasters. Since erosion and weathering characteristics depend on the rock type, a
soil depth prediction model for each rock type was developed: igneous rock, metamorphic
rock, and sedimentary rock.

- The regression model uses open data provided by the Geotechnical Information DB
System; a total of 297 sites were obtained. They were classified into 101 sites for
igneous rock, 101 for metamorphic rock, and 95 for sedimentary rock.
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- As a result of analyzing the correlation between the six TAs obtained from the numer-
ical map and soil depth, the variables with the highest correlation are SLOPE, and
curvature and SCA are found to have relatively low correlation. In addition, a model
using three variables (SLOPE, STI, TWI) is determined from R2

adj, and RMSE values
for multi-collinearity analysis and the combination of six cases for variables.

- For the models of igneous rock, metamorphic rock, and sedimentary rock, the R2
adj

values are 0.698, 0.676, and 0.683, respectively, and the RMSE values are 0.870, 0.876,
and 0.981. Additionally, Verification sites used data from 18 igneous rock sites,
37 metamorphic rock sites and 30 sedimentary rock sites. The R2

adj values are 0.859,
0.794, 0.807, and the RMSEs are 0.724, 1.104, 0.288 for igneous, metamorphic, and
sedimentary rocks, respectively.

Therefore, it is expected that the three types of soil depth prediction models proposed
will have better applicability and utilization for soil in Korea. However, the data used in
this paper are open data provided by the Geotechnical Information DB System and are
rather less in number to represent the wide study area. In addition, it should be noted that
the relationship between TAs and soil depth used for model development was developed,
assuming a linear correlation.
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