
Citation: Atacak, İ. An Ensemble

Approach Based on Fuzzy Logic

Using Machine Learning Classifiers

for Android Malware Detection. Appl.

Sci. 2023, 13, 1484. https://doi.org/

10.3390/app13031484

Academic Editors: Jerry Chun-Wei

Lin, Stefania Tomasiello and

Gautam Srivastava

Received: 25 December 2022

Revised: 14 January 2023

Accepted: 19 January 2023

Published: 23 January 2023

Copyright: © 2023 by the author.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

applied
sciences

Article

An Ensemble Approach Based on Fuzzy Logic Using Machine
Learning Classifiers for Android Malware Detection
İsmail Atacak

Department of Computer Engineering, Faculty of Technology, Gazi University, Ankara 06560, Turkey;
iatacak@hotmail.com

Abstract: In this study, a fuzzy logic-based dynamic ensemble (FL-BDE) model was proposed to
detect malware exposed to the Android operating system. The FL-BDE model contains a structure
that combines both the processing power of machine learning (ML)-based methods and the decision-
making power of the Mamdani-type fuzzy inference system (FIS). In this structure, six different
methods, namely, logistic regression (LR), Bayes point machine (BPM), boosted decision tree (BDT),
neural network (NN), decision forest (DF) and support vector machine (SVM) were used as ML-based
methods to benefit from their scores. However, through an approach involving the process of voting
and routing, the scores of only three ML-based methods which were more successful in classifying
either the negative instances or positive instances were sent to the FIS to be combined. During the
combining process, the FIS processed the incoming inputs and determined the malicious application
score. Experimental studies were performed by applying the FL-BDE model and ML-based methods
to the balanced dataset obtained from the APK files downloaded in the Drebin database and Google
Play Store. The obtained results showed us that the FL-BDE model had a much better performance
than the ML-based models did, with an accuracy of 0.9933, a recall of 1.00, a specificity of 0.9867, a
precision of 0.9868, and an F-measure of 0.9934. These results also proved that the proposed model
can be used as a more competitive and powerful malware detection model compared to those of
similar studies in the literature.

Keywords: mobile security; malware detection; machine learning; fuzzy logic; ensemble learning

1. Introduction

The impact of smartphones in our daily life is growing rapidly. It is obvious that
these devices’ popularity and usage rates have significantly risen because of the wide
range of functions they can provide us. As of 2022, Statista [1] estimates that there will be
6.56 million mobile phone users worldwide. In fact, UN statisticians have [2] predicted that
by October 2022, among a population of 8 billion, approximately 82% of the total population
in the world own a smartphone. Android is the most widely used smartphone operating
system, with a 71.85% market share as of July 2022, according to Statista statistics [3]. This
results from Android’s open-source nature and other characteristics.

Given its open-source nature, it is inevitable that an operating system with such
widespread use would attract malware [4]. Due to these circumstances, mobile malware
has emerged. The term “malware” describes software applications that have been installed
on a device with a variety of purposes, such as to annoy users, steal personal user data,
consume system resources without permission, or harm the device [5]. After being installed
on the target device, these programs operate to fulfill their intended functions, either visibly
or invisibly to the user, in the background [6]. During the first two quarters of 2021, more
than 2.2 million new instances of mobile malware were reported, according to Statista [7].
Given all of these facts, it is obvious that Android malware represents a significant threat
to mobile systems.

Appl. Sci. 2023, 13, 1484. https://doi.org/10.3390/app13031484 https://www.mdpi.com/journal/applsci

https://doi.org/10.3390/app13031484
https://doi.org/10.3390/app13031484
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0002-6357-0073
https://doi.org/10.3390/app13031484
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app13031484?type=check_update&version=2

Appl. Sci. 2023, 13, 1484 2 of 26

Today, it is widely known that smartphones contain personal data about users, in-
cluding their banking details, confidential information, and health data. Therefore, it is
evident that both the security and integrity of these sensitive data will be compromised if
these smartphones are exposed to a malware. When malware is planted on a smartphone,
it can acquire the user’s bank account if the user is using online banking apps, as well as
their health records and private, sensitive data such as personal information. Using the
Android smartphone, the malware can send emails and SMS messages without the user’s
consent to spread the malware to even more users. It is inevitable that malware developers
will target smartphones more frequently considering all of these capabilities. The fact that
the frequency of mobile malware rose by approximately 1800% in 2016 is among the most
obvious and concrete indicator of this problem [8].

These issues have led to a wide range of models being proposed for malware detection
on Android mobile devices. In the past, methods based on signatures have emerged. These
methods search the application code to detect known patterns of malicious code. Although
signature-based approaches are currently effective in terms of their performance and in
detecting malware that has already been identified, they cannot be used to detect new
types of malware, and as a result, more modern techniques and models have replaced them.
These models can be examined in three categories:

• Static malware detection methods.
• Dynamic malware detection methods.
• Hybrid malware detection methods.

All three of the aforementioned methods are frequently applied using machine-
learning-based techniques. The ability of machine-learning-based approaches to detect
previously unknown malware [9] makes them vital. Because static detection techniques
evaluate software codes without running suspicious applications, they are unable to detect
malicious programs that obfuscate the program code or employ encryption [10] to protect
the malware. On the other hand, approaches based on dynamic detection methods run the
application in a secure environment to search for any malicious behavior [11]. However,
since the performance cost of the application rises in dynamic detection-based methods, it
becomes challenging to perform a real-time analysis due to the extension of the execution
time [12]. Both strategies have advantages and disadvantages in comparison with each
other. Although static approaches offer a thorough analysis of the code, it can be challeng-
ing to detect changes in the application code that might take place while the application is
running. On the other hand, the time and performance costs for dynamic approaches are
quite high. Hybrid methods have been developed to overcome the disadvantages of both
of these methods.

The FL-BDE model was developed in this study as a strong and effective malware
detection tool to reduce the negative effects of malware on Android operating systems.
The proposed model provides us with a structure that interprets and combines the scores
of ML-based NN, SVM, DF, LR, BPM and BDT methods in two separate groups of three
according to whether the incoming data are voted as benign or malicious applications. The
contributions of this study to the literature are summarized as follows:

• To develop a strong and dynamic model, the results of ML-based approaches with
high classification performance are integrated over the FIS, which has an effective
inference capacity.

• Depending on whether the data obtained through the voting and routing process were
voted as benign or malicious, our model combines the results of only three ML-based
algorithms. While this allows us to increase the performance of our model by taking
advantage of the scoring power of the six methods, it also simplifies the design of the
FIS model by reducing the number of inputs.

• The model proposed in this study has outperformed comparable studies in the litera-
ture, and as a result, it has revealed that it has a strong and dynamic structure.

Appl. Sci. 2023, 13, 1484 3 of 26

The rest of the study is organized as follows. A brief overview of recent research
on the subject is provided in Section 2. The dataset, the proposed model and its features,
the ML-based methods and the performance metrics to be employed in the assessment of
experiments are described in Section 3. The outcomes of the experiments are discussed
along with the literature in the “Results and Discussion” section. The last section concludes,
along with suggestions for further research on the topic.

2. Literature Review

Malware is defined as software that was created with malicious intent and serves this
function. The widespread use of mobile devices and the increasing number of users have
caused malware developers to focus their attention on this area [11]. Malware can have a
variety of purposes. Some of these malicious purposes can be categorized as disrupting
the normal operation of the Android operating system it is working on, obtaining the
user’s personal and sensitive information illicitly and without the user’s consent, seizing
the user’s device, obtaining information for ransom, or displaying unwanted advertising
content to the user. To stop malware developers from achieving these goals, a lot of research
has been carried out in the field of malware detection. The three main categories of studies
conducted in this context are static analysis, dynamic analysis, and hybrid analysis.

Static analysis techniques examine an application’s source code without running it [13]
to detect malicious behavior in the suspicious software. Predominantly, these methods
use either permission-based [14] or signature-based [15] techniques. Malware detection
in signature-based approaches is carried out by comparing the application codes to the
codes in a database that contain previously known malicious code fragments. However, in
permission-based approaches, the permissions requested by the application are compared
with the permissions frequently requested by the malicious applications. Although static
analysis methods are faster than dynamic analysis methods are [16], they are inefficient at
providing information about the behavior of the application while they are running because
they are unable to detect the application code that the application will load dynamically
during execution [17].

On the other hand, dynamic analysis techniques involve running the program in a
secure, isolated environment and analyzing its behavior to determine if it is malicious or
not [18]. Dynamic analysis methods detect malware by examining features such as system
calls [19] and network traffic [20] that occur while the application is running.

Martín et al. [21] created a model utilizing a combination of static analysis and dynamic
analysis, employing both a Random Forest classifier and a Bagging classifier. With this
fusion model, researchers have achieved an accuracy of 89.7% and a precision of 89.7%.
Mat et al. [22] developed a Bayesian classifier and used system-based permission features
to detect malicious mobile applications. The proposed model achieved a precision of
91.1%, an F-measure of 91% and an accuracy of 94%. In the Machine Learning and Natural
Language Processing-based model created to detect malware, Nguyen et al. [23] examined
the behavioral characteristics of Android smartphone users and the anomalies in these
behaviors. They obtained 99.8% accuracy, 90% precision, 97.6% recall and a 93.6% F-
measure by incorporating SVM into their proposed model.

In the study of Lu and Wang [24], the network traffic generated by the application and
the network traffic matrix produced by the CNN deep learning model were both evaluated
using the model, which the researchers called F2DC. The proposed model achieved an
F-measure of 96.08%.

Using the hybrid model that Amer and El-Sappagh created [25], they analyzed API
and system calls utilizing dynamic analysis techniques and LSTM. In addition, they used
ensemble machine learning to examine the Android permissions and find malware by
combining Random Forest (RF), MLP, AdaBoost, SVM and Decision Tree (DT) classifiers.
This proposed model reached a 99.3% accuracy and 99% F-measure. Yang et al. [26]
analyzed the characteristics of the Android software, such as permission and activity, and
detected malware in accordance using the Contrastive Learning model. This model was

Appl. Sci. 2023, 13, 1484 4 of 26

created using Bi-LSTM, which is commonly referred to as “Double-Sided LSTM”, and
the feature extraction was carried out using a Text-CNN-based model. The researchers
reported that the proposed model achieved an accuracy of 97.53%, a precision of 96.66%, a
recall of 98.41% and an F1-Score of 97.53%, reflecting the result of the evaluations using the
AMGP and Drebin datasets.

Jerbi et al. [27] transformed the process of generating rules for malware detection
into a two-fold optimization problem. As a result, their proposed Two-Level Malicious
Application Detection (BMD) model had an F-measure of 97.79% and an accuracy of 98.18%.

With the method that they called DEEPSEL, Azad et al. [28] evaluated whether the
application was malicious or not by evaluating several features of the dataset. The name
of the model refers to the deep feature selection process they utilized in the process. In
this study, machine learning-based algorithms and deep learning (DL)-based models were
combined to perform the classification, and Particle Swarm Optimization was utilized for
the feature selection. As a result of the evaluation performed on the CICAndMal2017 [29]
dataset, the proposed model obtained 83.6% accuracy, 82.4% precision, 82.5% recall and an
82.5% F-measure.

D’Angelo et al. [17] detected malware by training two artificial neural networks,
which they built using two-dimensional API images. These images serve as a signature
of a program’s activities over time. Subsequently, the features with the biggest impact on
the findings were selected from the given features using an autoencoder and conventional
artificial neural networks. The accuracy, precision and F-measure metrics for this model,
which consists of two encoders and a SoftMax artificial neural network, were 94%, 98% and
97%, respectively.

Taha et al. [30] developed a novel fuzzy integral-based multi-classifiers ensemble
model for Android malware detection. They combined the results of the XGBoost, RF, DT,
AdaBoost and Light-GBM classifiers over the Choquet fuzzy integral. The experimental
results obtained through the dataset, consisting of 9476 benevolent and 5560 malicious
applications, showed that their proposed approach based on the Choquet fuzzy integral
technique achieved a higher performance, with an accuracy value of 95.08% compared
to those of the classifiers that were used individually. The risk-based fuzzy analytical
hierarchy process approach was applied by Mohamad Arif et al. [18] in their Multi-Criteria
Based Decision System and Mobile Malware Detection system. This methodology, which
involved a static analysis, evaluated the permission-based features with the purpose of
increasing the user’s awareness of high-risk permissions through a risk analysis. The
accuracy value for evaluations on the Drebin and AndroZoo datasets was 90.54%.

Mazaed Alotaibi and Fawad [31] built a Multifaceted Deep Generative Adversarial
Networks (MDGAN) model for effective malware detection. With the three-stage proposed
model, they converted the APK files into a binary image and an API sequence in the first
stage. Then, by sending the image files to GoogleNet and sending the API sequence to the
LSTM network, they obtained and determined the distinctive and stable features, respec-
tively. Then, they applied the data with the combined feature to the Generative Adversarial
Networks (GAN) and determined whether the data were a malicious application. They
used the AndroZoo and Drebin databases as the dataset. They proved that the proposed
model, with an accuracy value of 96.2% and an F-score value of 94.7%, which were obtained
from the experimental studies, outperforms the studies that have been conducted in this
context recently.

In a different study, Atacak et al. [32] used permission-based analysis and created a
hybrid model by fusing CNN with FL. In the study, they used two different datasets and
500 benign and malicious applications. They analyzed the APK file of the applications and
acquired a manifest.xml file. In the next stage, they obtained the permission information of
the applications from this file. They performed a feature extraction and a feature reduction
with two convolution layers and two pooling layers using the permission information.
In the last layer, they estimated that the features equated to five neurons with ANFIS

Appl. Sci. 2023, 13, 1484 5 of 26

architecture. With their model, they reached an accuracy of 92% in the first dataset and an
accuracy of 94.66% in the second dataset.

In this study, unlike prior ensemble learning (EL) methods in the literature, the FL-BDE
model combines the results of ML-based methods using a fuzzy logic (FL)-based inference
system (FIS), which is based on the intuitive view and inference philosophy of a human
solving a problem.

3. Materials and Methods

This section describes the materials and methods used in the study. The details of
the dataset are explained in the “Dataset” section. In the “Dynamic Model Proposed for
Android Malware Detection” section, the proposed method and used ML methods and
FL-based method are explained. The section “Evaluation Metrics” describes the metrics
used to evaluate the classification models.

3.1. Dataset

The applications installed on the Android operating system have the APK extension.
In this study, a static analysis is performed on the APK files. A total of 2000 applications—
1000 benign and 1000 malicious ones—are included in the dataset gathered for this study.
The malicious instances are obtained from the Drebin [33] dataset. Drebin is the most
widely used publicly available dataset for android malware detection. The Drebin dataset
contains a total of 5560 malicious instances from 179 different malware families.

The benign instances are collected from the APKPure website. The APKPure web
environment hosts applications in the Google Play Store environment, and they can be
downloaded. One thousand and thirty-one different applications are downloaded in
total via the APKPure online environment. All of the downloaded software applications
underwent the Virus Total analysis and are deemed to be safe [34]. In the virus total
application, the applications that are not considered to be harmless by at least one anti-
virus software are excluded from the dataset.

3.2. Dynamic Model Proposed for Android Malware Detection

In this paper, a dynamic ensemble model, which utilizes a fuzzy inference system to
interpret and combine the output scores of machine learning-based methods, is proposed as
an effective approach for Android malware detection. As it can be seen from the schematic
structure in Figure 1, the proposed model performs its task using six basic processes, namely,
a feature extraction one, a feature selection one, a data splitting one, a multi-classification
one, a voting and routing one and one that involves combining the scores. In the feature
extraction process of the model, the reverse engineering method is applied to the android
applications in the APK file format, and the permission information in the manifest.xml
file of these applications is accessed and tagged. Following that, the labeled data and
permission information are vectorized and saved in the database.

The feature selection process obtains a dataset with fewer features by eliminating the
features that have no or a little impact on the classification process. The data splitting
process makes it possible to produce the training and testing datasets needed for the
classification process. The multi-classification process generates the output scores of the
classifiers based on the testing dataset through 6 ML-based classifiers trained using a
training dataset. The voting and routing process, as the name implies, first votes the output
scores of the ML-based classifiers, and then, in accordance with the outcome of the vote,
assigns three of them as the inputs of the FIS, which is a part of the process of combining
the scores. In the last process of the model, namely, combining the scores, the scores of
three classifiers, which were sent to FIS as inputs in the previous step, are combined, and
then, the degree of malware (DOM) is determined for the data that are applied to the
model as an input from the database. The sections below provide more information about
these processes.

Appl. Sci. 2023, 13, 1484 6 of 26Appl. Sci. 2023, 13, 1484 6 of 26

Figure 1. The schematic structure of the dynamic model proposed for Android malware detection.

3.2.1. Feature Extraction
Android applications are distributed and installed using the APK (Android Packet

Kit) files. The APK file format contains files such as classes.dex and manifest.xml, from
which the features of the application can be obtained. In this study, malware is detected
by utilizing features that provide information about the behaviors, goals and permissions
of the application. The manifest.xml file contains this information. To access the Mani-
fest.xml file, the APK files need to be decompiled. The decompile process is conducted
using the Jadx module. However, not every application can be decompiled. Applications
that cannot be decompiled are, therefore, found and eliminated from the dataset. For the
APK files that can be decompiled and be used for malware detection, the permissions,
intentions and activities are identified by accessing the manifest.xml file. Feature vectors
were generated for each application by assigning values of “1” if it includes the relevant
property and “0” if it does not. As a result, the dataset that is to be used for the detection
procedure is generated by creating feature vectors for all of the applications and written
in an csv file. In order to prevent a class imbalance in the dataset, the feature vectors of
2000 applications in total, 1000 in each of the malicious and benign classes, are used.

Figure 1. The schematic structure of the dynamic model proposed for Android malware detection.

3.2.1. Feature Extraction

Android applications are distributed and installed using the APK (Android Packet
Kit) files. The APK file format contains files such as classes.dex and manifest.xml, from
which the features of the application can be obtained. In this study, malware is detected by
utilizing features that provide information about the behaviors, goals and permissions of
the application. The manifest.xml file contains this information. To access the Manifest.xml
file, the APK files need to be decompiled. The decompile process is conducted using the
Jadx module. However, not every application can be decompiled. Applications that cannot
be decompiled are, therefore, found and eliminated from the dataset. For the APK files
that can be decompiled and be used for malware detection, the permissions, intentions and
activities are identified by accessing the manifest.xml file. Feature vectors were generated
for each application by assigning values of “1” if it includes the relevant property and
“0” if it does not. As a result, the dataset that is to be used for the detection procedure is
generated by creating feature vectors for all of the applications and written in an csv file. In
order to prevent a class imbalance in the dataset, the feature vectors of 2000 applications in
total, 1000 in each of the malicious and benign classes, are used.

3.2.2. Feature Selection

In studies using ML-based classifiers, feature selection is a vital process step that
should be employed, as it can reduce the classifier training time and improve the classifica-
tion performance by removing the irrelevant features. Feature selection is widely used in

Appl. Sci. 2023, 13, 1484 7 of 26

permission-based android malware detection studies [35–39]. Although the applications’
permission requests are effective in malware classification, not every permission request
may affect the classification. For this reason, the feature selection process is generally ap-
plied in the studies. When the studies are examined, the most widely used method for the
selection of permission-based features in android malware detection is the information gain
one [18,36–38]. In [18,36–38], the information gain method was used, and the classification
accuracy was greatly increased. information gain and Fisher score methods are filter-based
methods which give us the effect value of the attributes in the classification. Filter-based
methods collect the intrinsic properties of the measured features through univariate statis-
tics. These methods are faster and less computationally costly than wrapper (Forward
Feature Selection, Exhaustive Feature Selection and Recursive Feature Elimination, etc.)
and embedded (LASSO Regularization (L1) and Random Forest Importance, etc.) methods
are. In a comparison study conducted to obtain the information gain and Fisher score, it
was seen that more successful results were obtained with the Fisher score method [40].
However, existing studies have used the information gain method, and their accuracy
values are lower. Therefore, in this study, the Fisher score method is implemented in the
feature selection process of the proposed model. This method uses a feature selection
strategy that calculates the gain score so that the distance between the data points within
the same class is as small as possible and the distance between the data points within
different classes is as great as possible [41]. The feature set was then selected in accordance
with this calculation. The Fisher score of a feature for the given classes a and b can be
obtained using Equation (1).

FS =
∑b

a=1 na(µi,a − µi)
2

∑b
a=1 naσ2

i,a

(1)

In this equation, na represents the number of instances in the dataset, µi corresponds
to the mean score of the features, µi,a stands for the mean score of the features in class a
and σi,a corresponds to the variance score of the features in class a. In the experimental
studies, Fisher scores of other features were obtained according to the actual class label
“CLASS”. The experiments were performed for 1000, 750, 500, 250, 100, 50 and 25 features
with the ensemble learning-based BDT classifier, and since 50 features gave the highest
accuracy value, the number of features that had to be selected by the Fisher score method
was determined as being 50. Therefore, at the end of the feature selection process, the
2000 × 1134-dimensional dataset obtained from the database is reduced to a 2000 × 50-
dimensional dataset.

3.2.3. Splitting Data

The data splitting process is used to produce the training and testing datasets needed
by the ML-based classifiers in the multi-classification process. Experimental studies are
performed on two different datasets that had been split into 60% training: 40% testing data
and 70% training: 30% testing data ratios. Therefore, the split ratios of 0.60 and 0.70 are
used, respectively. The data are randomly distributed to the training and testing datasets
based on these ratios, such that the numbers of benign and malicious instances are equal.
At the end of the process, 800 test instances containing 400 benign and 400 malicious data
and 1200 training instances containing 600 benign and 600 malicious data are obtained for
the split ratio of 0.60. For the split ratio of 0.70, these numbers consisted of 1400 training
data containing an equal number of benign and malicious instances and 600 testing data
containing an equal number of benign and malicious ones.

3.2.4. Multi-Classification

This process collectively generates performance scores at the end of the training
and testing phases of six different ML-based classifiers. The initial step of the multi-
classification process is training the classifiers using the data from the data splitting process.

Appl. Sci. 2023, 13, 1484 8 of 26

Subsequently, a performance score in the range of “0–1” is calculated for each classifier by
testing the trained models using the test data. Binary form classifiers are utilized in the
related process since the data are received in one out of two classes; they are either benign
or malicious. As for the classifiers, a two-class LR, a two-class BPM, a two-class BDT, a
two-class NN, a two-class DF and a two-class SVM, which are known to perform well in
binary classification problems, are used.

Classifier 1: The two-class NN is a binary classification algorithm that consists of a
series of layers containing nodes that transmit information to each other. It is typically
represented by a structure that combines an input layer, an output layer and one or more
hidden layers. The input layer is used to transmit input data to the network. The hidden
layer(s) processes the incoming data over the nodes using the weights between itself and
the input layer, and then it sends it to the output layer. The input layer’s weighted data are
processed in a node element by the output layer, which then produces the classified results.
Following the model training, the relationship between the inputs and the outputs can be
discovered by passing the transfer function [42], which computes the sum of the weighted
inputs from the network’s previous layers, through an evaluator, whose activation function
is given, as shown in Equation (2).

Output = f
(
∑n

i=1 xi ∗ wi + b
)

(2)

Here, x1, x2,xn represents the incoming inputs from the previous layer, w1,
w2wn represents the connection weights of the inputs, b represents the bias value
and f(.) represents the activation function. The step function, the sigmoid function and the
ReLU function are commonly used as activation functions.

Classifier 2: The two-class SVM is a supervised learning method widely used in solving
linear or nonlinear binary classification problems. This method, which was introduced
in [43] for the solution of pattern recognition and classification problems, is used to manage
both the linear and nonlinear classification processes. In the classification process of
nonlinear problems, it makes use of several kernel-based functions such as linear kernel,
polynomial kernel and radial basis ones, which are called kernel functions. Finding the
hyperplane that maximizes the decision boundary to two classes labeled from any point
in a vector space with training data forms the basis of the classification process in linear
SVMs [44]. The points closest to the decision boundary are referred to as “supports” in this
context, and the distance between the relevant supports is referred to as the “margin”. As
the margin increases, the discrimination between the classes will increase. The SVM for
each input with feature D in a space with n data points can be given by Equation (3).

{xi, yi}
∣∣∣i = 1 . . . n, yi∈{−1,+1} , x ∈ <D (3)

In this equation, the response variable is represented by yi, an element from one of the
classes −1 or +1, and xi, an element of the input vector (real vector). The hyperplane that
increases the distance between the classes −1 and +1 can be calculated using Equation (4).

w.x− b = 0 (4)

The hyperplane offset, or the difference in the distance between the two classes, is
represented by the value of b/||w||, where w is the normal vector perpendicular to
the hyperplane.

Classifier 3: The two-class DF is an ensemble learning model based on the principle
of combining the results of independent decision trees that perform as well as possible
individually. In ensemble models, the results are generally aggregated through several sta-
tistical techniques such as Bagging and voting. In this study, the Bagging technique is used
to combine the results obtained from the decision trees. This method’s first step involves
uniformly sampling the initial dataset to create a new dataset of the same size. Then, each
instance in the dataset is authorized to grow a set of decision trees. The probability of new

Appl. Sci. 2023, 13, 1484 9 of 26

data points is established in the following step using the class distributions, following the
independent training of each tree in the decision forest [45]. The class probability of the
decision forest is obtained by averaging the class probabilities of all of the trees, as shown
in Equation (5).

p(c|v) = 1
T ∑T

t pt(c|v) (5)

Here, c represents the class label, v represents the new input vector, T represents the
number of trees in the ensemble and pt(c|v) represents the class probability of each tree.

Classifier 4: The two-class LR method is a supervised learning algorithm widely used
in classification problems. When the variable to be estimated is categorical, it is preferable to
linear regression. The method for resolving two-class problems involves fitting the training
data for the binary event into a logistic function, and then estimating the probability of the
categorical dependent variable in accordance with that estimate [46,47]. Equation (6) can
be used to obtain the logistic regression model’s conditional probability.

π(xi) = P(Y = 1|xi) =
e(β0+β1x1)

1 + e(β0+β1x1)
=

1
1 + e−(β0+β1x1)

(6)

In this equation, β′ =
[
β0, β1,, βp

]
represents the vector of the unknown parame-

ters, xj represents the p× 1 dimensional vector of the arguments and π(xi) = P(Y = 1|xi)
represents the conditional probability of the model. The parameter estimates are obtained
by maximizing the log-likelihood function obtained from this equation. By maximizing
the log-likelihood function derived from this equation, the parameter estimations can
be obtained.

Classifier 5: Using the kernel approach, the two-class BPM method successfully
transforms a linear Bayesian classifier into a nonlinear classifier. The basic principle of the
BMP method in classification is based on finding the Bayesian point, which is the center of
this space, among the possible solutions in the version space created by a set of hypotheses
for a certain set of training data. Each hypothesis in the version space corresponds to a
classifier that assigns input vectors to the output vectors [47]. The BMP is trained with
m-dimensional training data, z = (x, y) = ({x1, y1}, , {xm, ym}), where h(x) is the
function representing the hypothesis for an input vector x. Equation (7) describes how the
version space V(z) of BMP is created.

V(z) := {h ∈ H|∀i ∈ {1, , m} : h(xi) = yi} (7)

Equation (8) illustrates the Bayesian method’s approach, which labels a test instance
provided to it throughout the classification process with the lowest loss in accordance with
the posterior probability PH\Zm=z(h).

Bayesz(x) := argmin
y∈YEE\Zm=z[l(H(X), y)] (8)

In this approach, the loss value is obtained through the function given in Equation (9).

l(y, y) =
{

0́ y = ý
1 y 6= ý

(9)

Classifier 6: The two-class BDT is a form of EL where each tree corrects the classification
mistakes of the one before it. It is implemented to solve both the classification and regression
problems. Predictions are made on the basis of the entire tree community. By iteratively
combining each weak learner, the BDT algorithm seeks to create a single strong learner. For
this purpose, the algorithm first creates an empty weak learner community. It then obtains
the available outputs for each training instance and calculates the gradient descents. Then,
decision trees are created according to these gradients, and the classification errors of the
trees are minimized. The algorithm iteratively repeats these steps until the loss function’s

Appl. Sci. 2023, 13, 1484 10 of 26

value is minimized [46]. This algorithm performs very well in solving problems related to
tabular data. Another advantage is that it can also work when some of the data are missing.

3.2.5. Voting and Routing

As the name suggests, this process performs a two functions: voting and routing. The
voting function produces a score of 0 or 1 according to the numerical status of the outputs
of the six classifiers included in the multi-classification process with a score of 0.5 or more.
Below is the equation for the function that produces the output for this process.

Vtout =

{
1 3 ≤ ncl f ≤ 6
0 0 ≤ ncl f < 3

(10)

Here, ncl f represents the number of classifiers that produce an output score of 0.5 or
more. If this number is 3 or more, the result of the voting function is 1, otherwise, this
result is equal to 0. According to experimental studies on the six classifiers, the NN, SVM
and DF methods successfully detected the true positive rate (TPR), while LR, BPM and
BDT effectively detected the true negative rate (TNR). The voting and routing processed
are used to take advantage of the good performances of various classifiers, as well as to
enable a simpler design by reducing the number of FIS entries that must be employed in
the process of combining the scores. Therefore, if the voting function produces a score of 1,
which means that the application is believed to be malicious according to the classifiers,
then the NN, SVM and DF algorithms are selected to combine the scores due to having a
high TPR ratio. Otherwise, classifiers LR, BPM and BDT with high TNR ratios are chosen,
and their outputs are used in the following process. The values that must be sent to the FIS
entries are obtained by multiplying the classifier scores selected over the routing function
by their weights. Equation (11) shows the formula for the routing process.

IFIS(i) = Vtout.Ocl f (i).w(i) + [1−Vtout].Ocl f (j).w(j),
i = 1, 2, 3
j = 4, 5, 6

(11)

In this equation, IFIS(i) represents the ith input that is used to the FIS, Vtout shows
the result of the voting function, Ocl f (i) represents the output of ith classifier and w(i)
shows the weight of the ith classifier on the input. The voting function (Vtout) result
determines which classifiers’ output will be used in the combining scores process (FIS)
based on its weight, as shown in the formula provided in Equation (11). The weights are
calculated using the false positive rate (FPR) and the false negative rate (FNR) obtained
from the experimental studies of the classifiers in the positive and negative sample classifier
groups. With the experimental studies involving classification errors, both the positive
and negative sample classifiers are determined, and the FNR and FPR error rates are
determined for each classifier, and the necessary parameters for calculating the weights
are obtained. The process of finding the weights for the positive sample classifiers is given
in Equation (12), and the process of finding weights for the negative sample classifiers is
given in Equation (13).

wi = (1− FNRi) i = 1, 2, 3 (12)

wj =
(
1− FPRj

)
j = 4, 5, 6 (13)

3.2.6. Combining Scores

The degree of malware (DOM) of the test data is calculated using the combined outputs
from three machine-learning-based methods from the previous process. Based on the DOM
value, it is determined whether the test data are malicious or benign. The malware of the
data is assessed using the FIS by combining the output scores of the classifiers. Although
there are numerous FIS structure types, the Mamdani and Sugeno types are the most
frequently employed ones. Because it is more similar to human perception and can produce
more generalizable results when it is combining classification output scores, the Mamdani-

Appl. Sci. 2023, 13, 1484 11 of 26

type FIS is chosen for this study. The block diagram of the proposed Mamdani-type FIS,
which combines the output scores of the classifiers chosen through the voting and routing
process, is shown in Figure 2.

Appl. Sci. 2023, 13, 1484 11 of 26

of the data is assessed using the FIS by combining the output scores of the classifiers. Alt-
hough there are numerous FIS structure types, the Mamdani and Sugeno types are the
most frequently employed ones. Because it is more similar to human perception and can
produce more generalizable results when it is combining classification output scores, the
Mamdani-type FIS is chosen for this study. The block diagram of the proposed Mamdani-
type FIS, which combines the output scores of the classifiers chosen through the voting
and routing process, is shown in Figure 2.

Figure 2. Block diagram of the FIS proposed to combine the scores of the specified classifiers.

In this structure, three weighted outputs of the voting and routing processes (𝐼 (1), 𝐼 (2) ve 𝐼 (3)) of the ML-based classifiers serve as the inputs that are applied to the
FIS, and the DOM calculated using these inputs serves as the FIS’ output. The boundary
values of the input and output fuzzy universes, the type of set and the number of sets that
need to be used in these universes are chosen in the first stage of the FIS’ design. The
voting and routing process generated ML-based classifier outputs as normalized values
of between 0 and 1. Each input fuzzy universe determined five fuzzy sets for the verbal
label very small (VS), small (S), medium (M), big (B) and very big (VB). Fuzzy sets were
created using generalized bell-shaped (Gbell) membership functions in the input uni-
verses because ML-based classifiers’ nonlinear structure caused them to produce a non-
linear output. In the FIS output universe, 13 Gbell fuzzy sets with the names D0, D1, D2,
..., D11 and D12 were used to define a more precise rule. The output fuzzy sets labeled
D0, D1, ..., D12 represent the degree of malware. We tested the output of FIS with 5, 7, 9,
11 and 13 fuzzy sets to determine its output set number. For the FIS inputs and outputs,
the defined membership functions are shown in Figure 3.

Figure 2. Block diagram of the FIS proposed to combine the scores of the specified classifiers.

In this structure, three weighted outputs of the voting and routing processes (IFIS(1),
IFIS(2) ve IFIS(3)) of the ML-based classifiers serve as the inputs that are applied to the
FIS, and the DOM calculated using these inputs serves as the FIS’ output. The boundary
values of the input and output fuzzy universes, the type of set and the number of sets
that need to be used in these universes are chosen in the first stage of the FIS’ design. The
voting and routing process generated ML-based classifier outputs as normalized values of
between 0 and 1. Each input fuzzy universe determined five fuzzy sets for the verbal label
very small (VS), small (S), medium (M), big (B) and very big (VB). Fuzzy sets were created
using generalized bell-shaped (Gbell) membership functions in the input universes because
ML-based classifiers’ nonlinear structure caused them to produce a nonlinear output. In the
FIS output universe, 13 Gbell fuzzy sets with the names D0, D1, D2, . . . , D11 and D12 were
used to define a more precise rule. The output fuzzy sets labeled D0, D1, . . . , D12 represent
the degree of malware. We tested the output of FIS with 5, 7, 9, 11 and 13 fuzzy sets to
determine its output set number. For the FIS inputs and outputs, the defined membership
functions are shown in Figure 3.

The rules that specify how the FIS’ inputs and outputs relate to each other are defined
in the second design stage. A total of 125 rules are defined in 3 input single output FIS,
with each input being represented by 5 fuzzy sets. In the creation of the rules, the effect of
each of the inputs on the output are considered to be equal. However, the performances
of the classifiers are not the same. This effect was generated by multiplying the oriented
classifier’s score by the weights calculated according to the true positive or true negative
ratio before the outputs of the ML-based classifiers from the voting and routing process
were applied to the FIS input. A section of the rules created to combine ML-based classifiers
are given in Table 1.

Table 1 shows that examples of rules are as follows:
If IFIS(1) is VS and IFIS(2) is VS and IFIS(3) is VS, then DOM is D0.
If IFIS(1) is S and IFIS(2) is S and IFIS(3) is S, then DOM is D3.
If IFIS(1) is VB and IFIS(2) is VB and IFIS(3) is VB, then DOM is D12.
The methods we employ in the inference process include two steps: inference and

aggregation, which are chosen in the third stage of design. The two steps are carried
out using the “min” and “max” operators, respectively. The defuzzification approach is
selected at the end of the process. The centroid approach, the formula of which is provided
in Equation (14), is applied in this procedure as the defuzzification method.

DOM =
∑n

i=1 µ(xi).xi

∑n
i=1 µ(xi)

(14)

Appl. Sci. 2023, 13, 1484 12 of 26

Appl. Sci. 2023, 13, 1484 12 of 26

(a)

(b)

Figure 3. The membership functions defined for the inputs and outputs of the FIS: (a) IFIS(1), IFIS(2)
and IFIS(3) inputs; (b) DOM output.

The rules that specify how the FIS’ inputs and outputs relate to each other are defined
in the second design stage. A total of 125 rules are defined in 3 input single output FIS,
with each input being represented by 5 fuzzy sets. In the creation of the rules, the effect of
each of the inputs on the output are considered to be equal. However, the performances
of the classifiers are not the same. This effect was generated by multiplying the oriented
classifier’s score by the weights calculated according to the true positive or true negative
ratio before the outputs of the ML-based classifiers from the voting and routing process
were applied to the FIS input. A section of the rules created to combine ML-based classi-
fiers are given in Table 1.

Table 1 shows that examples of rules are as follows:
If IFIS(1) is VS and IFIS(2) is VS and IFIS(3) is VS, then DOM is D0.
If IFIS(1) is S and IFIS(2) is S and IFIS(3) is S, then DOM is D3.

Figure 3. The membership functions defined for the inputs and outputs of the FIS: (a) IFIS(1), IFIS(2)
and IFIS(3) inputs; (b) DOM output.

Appl. Sci. 2023, 13, 1484 13 of 26

Table 1. A cross-section of the rules used to combine ML-based classifiers.

IFIS(1)

IFIS(2)

VS S M B VB

IFIS(3)

VS D0 D1 D2 D3 D4

VSS D1 D2 D3 D4 D5

• • • • • •
VB D5 D6 D7 D8 D9

VS D1 D2 D3 D4 D5

SS D2 D3 D4 D5 D6

• • • • • •
VB D6 D7 D8 D9 D10

• • • • • • •
VS D4 D5 D6 D7 D8

VBS D5 D6 D7 D8 D9

• • • • • •
VB D8 D9 D10 D11 D12

Here, n is the discrete universe’s total number of instance values for the output, xi
is the output value at the ith instance value and µ(xi) is the membership value for the x
output at the ith instance value.

3.3. Performance Assessment

Confusion matrix-based metrics are widely used to measure the performance of
the methods used in solving binary classification problems. The confusion matrix is an
indicator that numerically represents the accuracy or inaccuracy of the instance predictions
made using the classifiers that are proposed in the classification problems. This indicator
gives us the number of correctly predicted positive instances, “True Positive (TP)” ones,
the number of incorrectly predicted positive instances, “False Negative (FN)” ones, the
number of correctly predicted negative instances, “True Negative (TN)” ones, and the
number of incorrectly predicted negative instances, “False Positive (FP)” ones. Based on
this information, the evaluation metrics for the classifiers based on the confusion matrix
can be calculated. In this study, the accuracy (Acc), recall (Rec), precision (Prec), specificity
(Spec), F-measure (F-m) and area under the curve (AUC) metrics are used to measure the
performance of the proposed FL-BDE model and the ML-based models for comparison
purposes. The information about these metrics and their calculations is presented below.

Accuracy: This metric, which represents a heuristic performance measure, gives the
correct prediction ratio among all of the instances. As it can be understood from Equation
(15), its score can be found by dividing the number of correctly predicted instances by the
total number of instances.

Acc =
TP + TN

TP + TN + FP + FN
(15)

Recall: It is also known as sensitivity. This metric, which gives the correct prediction
ratio within positive instances, can be obtained using Equation (16).

Rec =
TP

TP + FN
(16)

Appl. Sci. 2023, 13, 1484 14 of 26

Precision: It is a ratio that shows the relationship between the total number of pos-
itively predicted instances and the number of correctly predicted positive instances. Its
score can be calculated by the formula given in Equation (17).

Prec =
TP

TP + FP
(17)

Specificity: It is simply a metric that gives the ratio of the number of correctly predicted
negative instances to the number of negative instances. The formula that gives its score is
Equation (18).

Spec =
TN

TN + FP
(18)

F-measure: It is a generally preferred useful metric in performance measurements,
especially in cases where there is an unbalanced class distribution. This metric determines
its own score based on the harmonic mean of precision and recall, as seen in Equation (19).

F−m = 2× Prec× Rec
Prec + Rec

(19)

Area under the curve: It is an important metric used to test whether the model
can work correctly to solve classification problems. Its score can be obtained using the
formula given in Equation (20), which gives the area of the receiver operating characteristic
(ROC) curve.

AUC =
∫

TPR.d(FPR) (20)

Here, TPR is the true positive rate, and FPR is the false positive rate. Since the ROC
curve is a graph showing the relationship between these two ratios, the AUC score is
calculated by integrating the TPR with respect to the FPR as the area under this curve.

4. Results and Discussion

In this section, the experimental results of the proposed FL-BDE model for detecting
Android malware and nine different ML- and EL-based methods used to verify the model’s
performance are presented. The success of the proposed model in malware detection
is proven by comparing the experimental results with the studies in the literature that
use similar models and techniques. The FL-BDE model’s experimental setup was built
in the Microsoft Azure ML environment using the components that are classified into
several categories in the Materials and Methods section (Chapter 3). In the first phase of
the setup, the data were read from the csv file containing 2000 applications, with a total
of 1134 features, which had been uploaded to the Azure ML platform through the “My
Datasets” component. The relevant data were therefore applied to the “Filter Based Feature
Selection” component and reduced to a 2000 × 50 dataset. The “Feature Selection Method”
and “Number of Desired Features” parameters in this component were set to the “Fisher
score” and “50”, respectively. To obtain the training and testing data for the ML-based
models, the dataset with the decreased feature set was then subject to the data splitting
procedure. The Azure ML environment’s “Split Data” component was used to carry out
this process. Depending on the two-stage splitting strategy that had to be employed in the
test phase, the “fraction of rows in the first output dataset” parameter, which displays the
split ratio within the component, was set to 0.60 or 0.70, respectively. Three components,
“Two Class Algorithm Name,” “Train Model” and “Score Model”, were used to produce the
malicious rating results in the 0–1 range of the models developed using the SVM, LR, BPM,
BDT, DF and NN approaches utilizing the training and test data for the multi-classification
process. The parameters adjusted for the mentioned classification algorithms and their
value changes are shown in Table 2.

Appl. Sci. 2023, 13, 1484 15 of 26

Table 2. The setting parameters and their values used in the Azure ML environment of the classifiers
used in the multi- classification process.

ML-Based Models Setting Parameters

SVM method Number of iterations: 15
Lambda: 0.02

LR method

Optimization tolerance: 1 × 10−8

L1 regularization weight: 1
L2 regularization weight: 20
Memory size for L-BFGS: 40

BPM method Number of training iterations: 20

BDT method

Maximum number of leaves per tree: 8
Minimum number of instances per leaf node: 2

Learning rate: 0.2
Number of trees constructed: 64

DF method

Resampling method: Bagging
Number of decision trees: 32

Maximum depth of the decision trees: 128
Number of random splits per node: 256

Minimum number of instances per leaf node: 1

NN method
Number of hidden nodes: 30

Learning rate: 0.125
Number of learning iterations: 100

The stages, including the voting and routing processes and the combining scores
process of the proposed model, with the execution of the single classifiers that are not part
of Azure machine learning, were implemented with a program written on the “Execute R
script” component in this environment.

Along with the proposed FL-BDE model in the experimental studies, the ML-based
single classifiers such as SVM, LR, BPM, NN and RF and the EL-based single classifiers such
as BDT, DF, AdaBoost and Bagging were also used to evaluate its performance in Android
malware detection. The performances of the model and classifiers were verified on the
training and testing data obtained by applying the random split and k-fold cross-validation
conditions to the dataset. Splits of 0.60 and 0.70 were used as the random split condition.
Data vectors of 1200 × 50 for the training process and 800 × 50 for the testing process were
obtained in the random split condition of 0.60. For the split ratio of 0.70, the sizes of these
vectors for the training and testing processes were 1400 × 50 and 600 × 50, respectively.
In the cross-validation approach, five-fold cross-validation was used. Firstly, the dataset
was divided into five equal parts, and five data groups were obtained, each consisting of
400 × 50 vectors. Then, after performing five iterative test processes, where there was
one group of testing data and four groups of training data, the performance results of the
classification models were obtained for each iteration step. After that, by averaging the
performance results obtained in these iteration steps, the overall performance of the model
and methods used for the Android malware detection was determined.

In Table 3, the classification errors and confusion matrix parameter values for the
FL-BDE, ML- and EL-based models are given for the split ratio of 0.60. The proposed
FL-BDE model, with a value of 1.88%, produced the best performance in terms of the
misclassification rate (MCR), which represents the classification error in all of the positive
and negative classes. When it is compared to the results produced by the ML- and EL-
based models, this result corresponds to an extremely low value. In fact, it had an MCR
of 1.87% less than the one (an MCR of 3.75%) of the model created using the RF method,
which produced the closest value to that of our model. Given that the MCR is inversely
correlated with the classification accuracy, it can be concluded that the proposed approach
shows an excellent performance in this regard. In terms of the false positive rate (FPR),
which indicates the proportion of negative instances that were predicted to be positive,

Appl. Sci. 2023, 13, 1484 16 of 26

and the false negative rate (FNR), which indicates the proportion of positive instances that
were predicted to be negative, the FL-BDE model also performed quite well. The results
in Table 3 also show us that the proposed model’s 2.75% FPR and 1% FNR values were
considerably lower than the FPR and FNR values of the other models. Despite it having
the same FNR value as the proposed model, the NN-based model performed the worst out
of all of the models, since it had the greatest MCR and FPR values. The NN-based model
achieved an MCR value of 10.63% and an FPR value of 20.25%.

Table 3. Confusion matrix parameters and error rates of FL-BDE, ML- and EL-based models at the
split ratio of 0.60.

Method
Confusion Matrix Parameters Error Rates

TP FP TN FN MCR% FPR% FNR%

SVM 374 25 375 26 6.38 6.25 6.50

LR 375 12 388 25 4.63 3.00 6.25

BPM 376 16 384 24 5.00 4.00 6.00

BDT 382 13 387 18 3.88 3.25 4.50

DF 386 17 383 14 3.88 4.25 3.50

NN 396 81 319 4 10.63 20.25 1.00

AdaBoost 381 20 380 19 4.88 5.00 4.75

Bagging 379 22 378 21 5.38 5.50 5.25

RF 387 17 383 13 3.75 4.25 3.25

FL-BDE 396 11 389 4 1.88 2.75 1.00

Figure 4 shows the performance results of the FL-BDE, ML- and EL-based models at
the split ratio of 0.60. According to the performance values shown in Figure 4, the FL-BDE
model offered the best performance among all of the models in terms of the accuracy, recall,
specificity, precision and F-measure metrics. The proposed model achieved results with
an accuracy of 0.9813, a recall of 0.9900, a specificity of 0.9725, a precision of 0.9730 and an
F-measure of 0.9814. While the RF-based model was the most similar one the proposed
model in terms of the accuracy and F-measure metrics, the LR-based model achieved a
similar result, with values of 0.9700 and 0.9690 for the specificity and precision metrics.
Of all of the models, the NN-based model exhibited the lowest performance in terms
of the other metrics, except for recall, with values of 0.8938 accuracy, 0.7975 specificity,
0.8302 precision, and 0.9031 for the F-measure. However, this model provided the best
performance in terms of the recall metric, along with the FL-BDE model, with a value
of 0.9900.

Figure 5 illustrates ROC curves that demonstrate the relationship between the false
positive rates and true positive rates for the FL-BDE, ML- and EL-based models at the split
ratio of 0.60. The value of the area under the ROC curve (AUC) gives a critical measure
of the model’s success in separating the classes. The closer the AUC values of the models
are to 1, then the more distinct their discriminatory power in distinguishing the classes is.
In this regard, when the AUC values derived from the ROC curves, which are presented
in Figure 5, were compared with each another, it was observed that all of the models,
except for the SVM-based model, display a very good performance. With an AUC value
of 0.997, the proposed model demonstrated an outstanding performance in terms of class
discrimination. The DF and BDT-based models, with AUC values of 0.990 and 0.992,
respectively, were the most similar to our model in terms of performance.

Appl. Sci. 2023, 13, 1484 17 of 26Appl. Sci. 2023, 13, 1484 17 of 26

Figure 4. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Figure 5. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Table 4 compares the confusion matrix parameters and error rates of the FL-BDE,
ML- and EL-based models at the split ratio of 0.70. As in the 0.60 split conditions, it can be

Figure 4. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Appl. Sci. 2023, 13, 1484 17 of 26

Figure 4. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Figure 5. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Table 4 compares the confusion matrix parameters and error rates of the FL-BDE,
ML- and EL-based models at the split ratio of 0.70. As in the 0.60 split conditions, it can be

Figure 5. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.60.

Appl. Sci. 2023, 13, 1484 18 of 26

Table 4 compares the confusion matrix parameters and error rates of the FL-BDE, ML-
and EL-based models at the split ratio of 0.70. As in the 0.60 split conditions, it can be
clearly seen from the data in Table 4 that the best performance is reflected in the lowest
MCR, FPR and FNR error rates under these split conditions for the proposed model. The
proposed model, with an MCR value of 0.67% and an FPR value of 1.33%, achieved error
rates that were 3% and 1% lower for both of the performance values, respectively, than
those of the BPM-based model, which produced the closest result to it. Furthermore, it
correctly classified all of the positive instances, resulting in an FNR of 0%. In terms of the
MCR and FPR error rates, the NN-based model had the worst performance, with values of
9.83% and 18.67%, respectively. However, this model was the model that provided the best
performance at this error rate, after the proposed model, with an FNR value of 1%. With
an error value of 6.67%, the Bagging-based model had the worst performance in terms of
the FNR.

Table 4. Confusion Matrix parameters and error rates of FL-BDE, ML- and EL-based models at the
split ratio of 0.70.

Method
Confusion Matrix Parameters Error Rates

TP FP TN FN MCR% FPR% FNR%

SVM 283 18 282 17 5.83 6.00 5.67

LR 281 10 290 19 4.83 3.33 6.33

BPM 285 7 293 15 3.67 2.33 5.00

BDT 290 12 288 10 3.67 4.00 3.33

DF 287 14 286 13 4.50 4.67 4.33

NN 297 56 244 3 9.83 18.67 1.00

AdaBoost 282 9 291 18 4.50 3.00 6.00

Bagging 280 15 285 20 5.83 5.00 6.67

RF 286 9 291 14 3.83 3.00 4.67

FL-BDE 300 4 296 0 0.67 1.33 0.00

The performance results of the FL-BDE, ML- and EL-based models are shown in
Figure 6 for the split ratio of 0.70. When these results were compared with the results
obtained from the split conditions of 0.60, it was seen that all of the models, aside from the
LR, DF, Bagging and RF based-models, improved their performances in terms of the most
of the metrics, with the growth occurring in the number of instances trained at the split
ratio of 0.70. The proposed model had the best performance in this period, improving its
performance by 1.2% for accuracy, 1% for recall, 1.42% for specificity, 1.38% for precision
and 1.2% for the F-measure, according to the performance results at the split conditions
of 0.60. From the performance results at the split ratio of 0.70, it can be clearly seen that
the FL-BDE model had a much better performance than the ML- and EL-based models
did, with an accuracy of 0.9933, a recall of 1.00, a specificity of 0.9867, a precision of
0.9868 and an F-measure of 0.9934. It also produced a better performance in terms of the
value differences, which are 3% or more for accuracy, 3.33% or more for recall, 1% or more
for specificity, 1.08% or more for precision and 2.99% or more for the F-measure, than those
of the RF, BPM and BDT-based models, which have the most similar performance results to
it in terms of most of the confusion matrix metrics. The NN-based model had the worst
performance in terms of all of the metrics, except for the recall metric. With a value of 0.99,
it came the closest to that of the proposed model with regard to this metric.

Appl. Sci. 2023, 13, 1484 19 of 26

Appl. Sci. 2023, 13, 1484 19 of 26

This decrease was by 0.3% in the Bagging model. On the other hand, the performance of
the remaining models in terms of this metric improved by 0.2% or more. From the
obtained results, it can be said that all of the models show good performances since they
all obtained an AUC performance of 0.98 or more in the split ratio of 0.70. When the AUC
results of the models were evaluated among themselves, the proposed model showed an
excellent performance, with a very high value of 0.999. The closest AUC performance to
this model was provided by the AdaBoost and RF-based models, with values of 0.993.

Figure 6. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.70.

Figure 7. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.70.

Figure 6. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.70.

Figure 7 shows the ROC curves and their AUC values for the models built using the
proposed FL-BDE, ML- and EL-based methods at the split ratio of 0.70. When the AUC
values of the models built here were compared with the AUC values at the split ratio of 0.60,
it was seen that while there was no change in the performance result of the BDT model, the
ones of the DF and NN-based models showed a decreasing tendency of 0.1. This decrease
was by 0.3% in the Bagging model. On the other hand, the performance of the remaining
models in terms of this metric improved by 0.2% or more. From the obtained results, it
can be said that all of the models show good performances since they all obtained an AUC
performance of 0.98 or more in the split ratio of 0.70. When the AUC results of the models
were evaluated among themselves, the proposed model showed an excellent performance,
with a very high value of 0.999. The closest AUC performance to this model was provided
by the AdaBoost and RF-based models, with values of 0.993.

Figure 8 shows the error rates related to the classification performance of the FL-BDE,
ML- and EL-based models obtained using five-fold cross-validation. From the error rate
values in the figure, it can be clearly understood that the FL-BDE model showed the best
performance among all of the models, reaching the lowest error rate, with 1% and 0.1%
values, respectively, in terms of both the MCR and the FPR. The proposed model achieved
lower error rates of 2.1% in the MCR and 3% in the FPR than those of even the BDT model,
which gave the most similar result to it. Although the NN model achieved the lowest error
rate, with a value of 1.5 in terms of the FNR, it also has a high error rate value of 10.40% in
terms of the MCR as a result of its very high FPR of 19%. This made it the best-performing
model among all of the models. The LR was the model with the worst performance in
terms of the FNR, with a value of 6.20%. When these results were compared with the results
obtained in the conditions with the split ratios of 0.6 and 0.7 in terms of the MCR, it was
seen that the error rate values of the Ensemble based-BDT, AdaBoost and Bagging models
obtained by five-fold cross-validation were lower than the ones of the same models at both
of the split ratios. Such as the model we proposed, most of the other models achieved an
error rate value that was below the 0.6 split ratio, while providing an error rate value that
was above the 0.7 split ratio for this metric in five-fold cross-validation. The FNR of the
FL-BDE model in the relevant validation conditions produced an error rate that was above
the values obtained in both of the split conditions. However, in all of the conditions, it

Appl. Sci. 2023, 13, 1484 20 of 26

obtained a result that was much lower than the error rate values of the other models, except
for the NN model.

Appl. Sci. 2023, 13, 1484 19 of 26

This decrease was by 0.3% in the Bagging model. On the other hand, the performance of
the remaining models in terms of this metric improved by 0.2% or more. From the
obtained results, it can be said that all of the models show good performances since they
all obtained an AUC performance of 0.98 or more in the split ratio of 0.70. When the AUC
results of the models were evaluated among themselves, the proposed model showed an
excellent performance, with a very high value of 0.999. The closest AUC performance to
this model was provided by the AdaBoost and RF-based models, with values of 0.993.

Figure 6. Performance results of FL-BDE, ML- and EL-based models at the split ratio of 0.70.

Figure 7. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.70. Figure 7. ROC curves of FL-BDE, ML- and EL-based models at the split ratio of 0.70.

Appl. Sci. 2023, 13, 1484 21 of 26

Figure 8. Error rates of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 9. Performance results of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 10 shows the ROC curves and AUC values obtained for the FL-BDE, ML- and
EL-based models in the condition of five-fold cross validation. From the performance
outputs that are depicted, it can be seen that the proposed model had a better performance
than the other models did, with an AUC output of 0.997. As in the performance results of
other metrics, the ensemble learning-based BDT model had the best performance after our
model, with a value of 0.993 in terms of this metric. For the conditions of five-fold
validation, the SVM model has the lowest AUC score among all of the models. In fact, the
SVM showed the worst performance in both the random split conditions and the five-fold
cross-validation conditions.

Figure 8. Error rates of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 9 illustrates the performance results of FL-BDE, ML- and EL-based models
created using five-fold cross-validation. From the performance values depicted in the figure,
the FL-BDE model performed considerably better than the ML- and EL-based models did
in terms of the accuracy, recall, specificity, precision and F-measure metrics, as well as
the performance results in the split ratios of 0.60 and 0.70. The proposed model achevied
the results of an accuracy of 0.990, a recall of 0.981, a specificity of 0.999, a precision of
0.999 and an F-measure of 0.990. In fact, the model showed a better performance of 2.1% in

Appl. Sci. 2023, 13, 1484 21 of 26

terms of the accuracy and 3% in terms of the specificity, precision and F-measure metrics
than the BDTmodel did, which produced the most similar result to it, except for the recall
metric. The RF was the model that has the most similar result to that of our model, with
accuracy values of 0.962, a recall of 0.969, a specificity of 0.954, a precision of 0.955 and an
F-measure value of 0.962 after those of the BDT model. As in the split ratios of 0.60 and 0.70,
the NN model gave the worst performance for all of the metrics, except the recall metric.
When the performance results of Figures 4 and 9 were compared, it can be understood
that the FL-BDE based model tested in five-fold cross-validation conditions had a better
performance values in terms of all of the metrics, except the recall metric at the split ratio
of 0.60. When Figures 6 and 9 were examined, a similar situation can be observed for
the performance results at the split ratio of 0.70 in terms of the specificity, precision and
F-measure metrics.

Appl. Sci. 2023, 13, 1484 21 of 26

Figure 8. Error rates of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 9. Performance results of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 10 shows the ROC curves and AUC values obtained for the FL-BDE, ML- and
EL-based models in the condition of five-fold cross validation. From the performance
outputs that are depicted, it can be seen that the proposed model had a better performance
than the other models did, with an AUC output of 0.997. As in the performance results of
other metrics, the ensemble learning-based BDT model had the best performance after our
model, with a value of 0.993 in terms of this metric. For the conditions of five-fold
validation, the SVM model has the lowest AUC score among all of the models. In fact, the
SVM showed the worst performance in both the random split conditions and the five-fold
cross-validation conditions.

Figure 9. Performance results of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Figure 10 shows the ROC curves and AUC values obtained for the FL-BDE, ML- and
EL-based models in the condition of five-fold cross validation. From the performance
outputs that are depicted, it can be seen that the proposed model had a better performance
than the other models did, with an AUC output of 0.997. As in the performance results
of other metrics, the ensemble learning-based BDT model had the best performance after
our model, with a value of 0.993 in terms of this metric. For the conditions of five-fold
validation, the SVM model has the lowest AUC score among all of the models. In fact, the
SVM showed the worst performance in both the random split conditions and the five-fold
cross-validation conditions.

The experimental results showed that the proposed FL-BDE model produced the best
performance in terms of most performance metrics in the random split ratio conditions and
the five-fold cross-validation conditions. Here, it was decided which classifiers used in the
voting and routing process would be included in the positive and negative classifier groups
using the experimental results of the classifier errors. When the performances of ML-based
models in both the split conditions and the cross-validation were evaluated according to the
average FPR and FNR error rates, it was found that the LR, BPM, and BDT-based models
provided the best performances in terms of the classification of negative instances, while
the NN, DF and SVM-based models had the best performances in classifying the positive
instances. This information is critical in structuring the proposed model.

Appl. Sci. 2023, 13, 1484 22 of 26

Appl. Sci. 2023, 13, 1484 22 of 26

The experimental results showed that the proposed FL-BDE model produced the best
performance in terms of most performance metrics in the random split ratio conditions
and the five-fold cross-validation conditions. Here, it was decided which classifiers used
in the voting and routing process would be included in the positive and negative classifier
groups using the experimental results of the classifier errors. When the performances of
ML-based models in both the split conditions and the cross-validation were evaluated
according to the average FPR and FNR error rates, it was found that the LR, BPM, and
BDT-based models provided the best performances in terms of the classification of
negative instances, while the NN, DF and SVM-based models had the best performances
in classifying the positive instances. This information is critical in structuring the
proposed model.

In the literature, many studies have been conducted to detect malware through
different classification methods by using static and dynamic analysis methods. Among
them, artificial intelligence-based methods such as ML, DL and FL, as well as hybrid and
EL-based approaches, have performed better in malware detection than the others have.
A summary of the proposed model is presented in Table 5, along with information about
the relevant studies in the literature and their performances in terms of the accuracy,
recall, precision, F-measure and AUC metrics.

Figure 10. ROC curves of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

Table 5. A summary of the proposed model and the relevant studies in the literature and their per-
formance results.

No. Author Method(s) Dataset Acc (%) Prec (%) Rec (%) F-m (%) AUC (%)

1 Lu and Wang [24] CNN
Drebin and CIC-

MalDroid - 96.03 96.3 96.08 -

2 Jerbi et al. [27] Bi-Level Optimization
Drebin and

AAGM 98.18 98.06 98.34 97.79 86.80

3 Mat et al. [22] Naïve Bayes
Drebin and An-

droZoo 94 91.1 - 91 96.75

4 Yang et al. [26] Contrastive Learning Drebin and AMGP 97.53 96.66 98.41 97.53 -

5 Taha et al. [30] Fuzzy-Integral
Based Ensemble approach C.E.R.T. Drebin 95.08 92.40 94.63 93.50 95.0

Figure 10. ROC curves of FL-BDE, ML- and EL-based models for 5-fold cross-validation.

In the literature, many studies have been conducted to detect malware through differ-
ent classification methods by using static and dynamic analysis methods. Among them,
artificial intelligence-based methods such as ML, DL and FL, as well as hybrid and EL-
based approaches, have performed better in malware detection than the others have. A
summary of the proposed model is presented in Table 5, along with information about the
relevant studies in the literature and their performances in terms of the accuracy, recall,
precision, F-measure and AUC metrics.

Table 5. A summary of the proposed model and the relevant studies in the literature and their
performance results.

No. Author Method(s) Dataset Acc (%) Prec (%) Rec (%) F-m (%) AUC (%)

1 Lu and Wang [24] CNN Drebin and
CICMalDroid - 96.03 96.3 96.08 -

2 Jerbi et al. [27] Bi-Level
Optimization

Drebin and
AAGM 98.18 98.06 98.34 97.79 86.80

3 Mat et al. [22] Naïve Bayes Drebin and
AndroZoo 94 91.1 - 91 96.75

4 Yang et al. [26] Contrastive Learning Drebin and
AMGP 97.53 96.66 98.41 97.53 -

5 Taha et al. [30]
Fuzzy-Integral

Based Ensemble
approach

C.E.R.T. Drebin 95.08 92.40 94.63 93.50 95.0

6 Mohamad Arif
et al. [18]

Fuzzy AHP
(Analytical Hierarchy

Process)

Drebin and
AndroZoo 90.54 - - - -

7 Mazaed Alotaibi
and Fawad [31]

A Multifaceted Deep
Generative
Adversarial

Networks approach

AndroZoo and
Drebin 96.2 95.1 94.6 94.7

Appl. Sci. 2023, 13, 1484 23 of 26

Table 5. Cont.

No. Author Method(s) Dataset Acc (%) Prec (%) Rec (%) F-m (%) AUC (%)

8 Atacak et al. [32]
Hybrid approach

based on CNN
and ANFIS

Drebin and
CICMalDroid 94.67 94.78 94.67 94.66 94.87

9
FL-BDE model

(Proposed
approach)

Mamdani type-Fuzzy
Inference

System-based
Ensemble approach

Drebin and
Google Play

Store
99.33 98.68 100.00 99.34 99.90

When the studies in Table 5 were compared with each other in terms of the perfor-
mance metric results, it was found that the studies based on EL, comparative learning and
DL were highly successful at malware detection. In comparison to the relevant models,
the FL-BDE model, which was proposed as a FIS-based dynamic ensemble approach in
our work, demonstrated a more competitive performance. The bi-level malware detection
(BMD) model proposed by Jerbi et al. [27] and the Bi-LSTM model using comparative
learning suggested by Yang et al. [26] are the other approaches that have performance
results that are similar to that of the FL-BDE model. The data in the table make it clearly
evident that the proposed model outperformed both of the models in terms of all of the
performance metrics. When the performance of the proposed model is compared with the
performance of the other models shown in Table 5, it can be seen that it performed much
better than these models did.

5. Conclusions

Due to the explosive growth in the current usage of mobile devices, the market share
of the Android operating system, which powers these devices, has increased dramatically.
Consequently, malware has made them its target. So far, although the research and the
developed applications for malware detection by Android application developers have
made a partial contribution to the solution of the problem, they have been insufficient
to completely eliminate this problem due to some of the characteristics and behavioral
features of malware.

In this study, a dynamic model that combines the outputs of ML-based methods
through FIS was proposed for Android malware detection. Two thousand application
instances in the form of APK files were employed in the study, one thousand of which were
malicious applications downloaded from the Drebin database, and one thousand of which
were benign applications downloaded from the Google Play Store. The APK files were
first analyzed by reverse engineering, and the Manifest.xml file was obtained. Then, the
permissions, intentions and activities contained in this file were determined. After that, by
querying each APK file, the data vector of 2000 × 1134 consisting of 1’s and 0’s was saved
to the csv file to be used as a dataset in malware detection.

The experimental results of the proposed model were obtained by applying this
dataset to the model whose feature extraction, feature selection, data splitting, multi-
classification, voting and routing and combining scores processes were built using the
necessary components in the Azure ML environment. The accuracy of this model was also
evaluated against the ML-based models, including the SVM, LR, BPM, BDT, DF and NN
methods built in this environment. The classification error rates including the MCR, FNR
and FPR, the confusion matrix metrics including the accuracy, recall, specificity, precision
and F-score and the AUC metric obtained from ROC curves were used for the assessment
of the models. The experiments performed in the random split ratio and five-fold cross
validation conditions showed that the proposed FL-BDE model outperformed the ML-based
models in terms of both the classification error rates and the confusion matrix metrics. With
performance differences of 0.5% or more for the 0.60 split conditions and 0.7% or more for
the 0.70 split conditions, the proposed model outperformed the ML-based models in terms

Appl. Sci. 2023, 13, 1484 24 of 26

of the ROC curves. When the proposed model was compared with similar ensemble-based
current literature studies, it was observed that it performed better, with a smaller difference.
In comparison with other studies in the literature that produced performance results that
are similar to those of our model, it was seen that it had a much better performance in
terms of all of the metrics.

In the future, real-time malicious detection applications can be realized by creating a
hybrid model that obtains the feature vectors from APK application files with DL-based
approaches, and then implementing the malicious application detection process by using
the FL-BDE approach we propose here.

Funding: This research received no external funding.

Data Availability Statement: The data presented here are available in the article.

Acknowledgments: The author would like to thank Gazi University Academic Writing Application
and Research Center for proofreading the article.

Conflicts of Interest: The author declares no conflict of interest.

References
1. Statista. Smartphone Subscriptions Worldwide 2027. Available online: https://www.statista.com/statistics/330695/number-of-

smartphone-users-worldwide/ (accessed on 23 October 2022).
2. Population Division United Nations. World Population Prospects. Available online: https://population.un.org/wpp/ (accessed

on 23 October 2022).
3. Statista. Global Mobile OS Market Share. 2022. Available online: https://www.statista.com/statistics/272698/global-market-

share-held-by-mobile-operating-systems-since-2009/ (accessed on 23 October 2022).
4. Oh, T.; Stackpole, B.; Cummins, E.; Gonzalez, C.; Ramachandran, R.; Lim, S. Best security practices for Android, BlackBerry, and

iOS. In Proceedings of the 2012 the 1st IEEE Workshop on Enabling Technologies for Smartphone and Internet of Things, ETSIoT
2012, Seoul, Republic of Korea, 18 June 2012; pp. 42–47.

5. Felt, A.P.; Finifter, M.; Chin, E.; Hanna, S.; Wagner, D. A survey of mobile malware in the wild. In Proceedings of the ACM
Conference on Computer and Communications Security, Chicago, IL, USA, 17 October 2011; pp. 3–14. Available online:
https://dl.acm.org/doi/10.1145/2046614.2046618 (accessed on 19 December 2022).

6. Eslahi, M.; Salleh, R.; Anuar, N.B. MoBots: A new generation of botnets on mobile devices and networks. In Proceedings of
the ISCAIE 2012—2012 IEEE Symposium on Computer Applications and Industrial Electronics, Kota Kinabalu, Malaysia, 3–4
December 2012; pp. 262–266.

7. Statista. Volume of Detected Mobile Malware Packages. 2021. Available online: https://www.statista.com/statistics/653680
/volume-of-detected-mobile-malware-packages/ (accessed on 23 October 2022).

8. Caviglione, L.; Gaggero, M.; Lalande, J.F.; Mazurczyk, W.; Urbański, M. Seeing the unseen: Revealing mobile malware hidden
communications via energy consumption and artificial intelligence. IEEE Trans. Inf. Forensics Secur. 2016, 11, 799–810. [CrossRef]

9. Ahvanooey, M.T.; Li, Q.; Rabbani, M.; Rajput, A.R. A Survey on Smartphones Security: Software Vulnerabilities, Malware, and
Attacks. Int. J. Adv. Comput. Sci. Appl. 2017, 8, 30–45.

10. Das, S.; Liu, Y.; Zhang, W.; Chandramohan, M. Semantics-based online malware detection: Towards efficient real-time protection
against malware. IEEE Trans. Inf. Forensics Secur. 2016, 11, 289–302. [CrossRef]

11. Liu, K.; Xu, S.; Xu, G.; Zhang, M.; Sun, D.; Liu, H. A Review of Android Malware Detection Approaches Based on Machine
Learning. IEEE Access 2020, 8, 124579–124607. [CrossRef]

12. Bulazel, A.; Yener, B. A survey on automated dynamic malware analysis evasion and counter-evasion: PC, Mobile, and Web. In
Proceedings of the ACM International Conference Proceeding Series. Association for Computing Machinery, Vienna, Austria,
16–17 November 2017. Available online: https://dl.acm.org/doi/10.1145/3150376.3150378 (accessed on 19 December 2022).

13. Mat, S.R.T.; Ab Razak, M.F.; Kahar, M.N.M.; Arif, J.M.; Mohamad, S.; Firdaus, A. Towards a systematic description of the field
using bibliometric analysis: Malware evolution. Scientometrics 2021, 126, 2013–2055. Available online: https://link.springer.com/
article/10.1007/s11192-020-03834-6 (accessed on 19 December 2022). [CrossRef] [PubMed]

14. Li, J.; Sun, L.; Yan, Q.; Li, Z.; Srisa-An, W.; Ye, H. Significant Permission Identification for Machine-Learning-Based Android
Malware Detection. IEEE Trans. Industr. Inform. 2018, 14, 3216–3225. [CrossRef]

15. Onwuzurike, L.; Mariconti, E.; Andriotis, P.; de Cristofaro, E.; Ross, G.; Stringhini, G. MaMaDroid. ACM Trans. Priv. Secur. 2019,
22, 14. Available online: https://dl.acm.org/doi/10.1145/3313391 (accessed on 19 December 2022). [CrossRef]

16. Venkatraman, S.; Alazab, M. Use of Data Visualisation for Zero-Day Malware Detection. Secur. Commun. Netw. 2018, 2018, 1728303.
[CrossRef]

17. D’Angelo, G.; Ficco, M.; Palmieri, F. Malware detection in mobile environments based on Autoencoders and API-images. J.
Parallel Distrib. Comput. 2020, 137, 26–33. [CrossRef]

https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
https://population.un.org/wpp/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://www.statista.com/statistics/272698/global-market-share-held-by-mobile-operating-systems-since-2009/
https://dl.acm.org/doi/10.1145/2046614.2046618
https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-packages/
https://www.statista.com/statistics/653680/volume-of-detected-mobile-malware-packages/
http://doi.org/10.1109/TIFS.2015.2510825
http://doi.org/10.1109/TIFS.2015.2491300
http://doi.org/10.1109/ACCESS.2020.3006143
https://dl.acm.org/doi/10.1145/3150376.3150378
https://link.springer.com/article/10.1007/s11192-020-03834-6
https://link.springer.com/article/10.1007/s11192-020-03834-6
http://doi.org/10.1007/s11192-020-03834-6
http://www.ncbi.nlm.nih.gov/pubmed/33583978
http://doi.org/10.1109/TII.2017.2789219
https://dl.acm.org/doi/10.1145/3313391
http://doi.org/10.1145/3313391
http://doi.org/10.1155/2018/1728303
http://doi.org/10.1016/j.jpdc.2019.11.001

Appl. Sci. 2023, 13, 1484 25 of 26

18. Arif, J.M.; Ab Razak, M.F.; Tuan Mat, S.R.; Awang, S.; Ismail, N.S.N.; Firdaus, A. Android mobile malware detection using fuzzy
AHP. J. Inf. Secur. Appl. 2021, 61, 102929.

19. Jerlin, M.A.; Marimuthu, K. A New Malware Detection System Using Machine Learning Techniques for API Call Sequences.
J. Appl. Secur. Res. 2017, 13, 45–62. Available online: https://www.tandfonline.com/doi/abs/10.1080/19361610.2018.1387734
(accessed on 19 December 2022). [CrossRef]

20. Wang, S.; Chen, Z.; Yan, Q.; Yang, B.; Peng, L.; Jia, Z. A mobile malware detection method using behavior features in network
traffic. J. Netw. Comput. Appl. 2019, 133, 15–25. [CrossRef]

21. Martín, A.; Lara-Cabrera, R.; Camacho, D. Android malware detection through hybrid features fusion and ensemble classifiers:
The AndroPyTool framework and the OmniDroid dataset. Inf. Fusion 2019, 52, 128–142. [CrossRef]

22. Mat, S.R.T.; Razak, M.F.A.; Kahar, M.N.M.; Arif, J.M.; Firdaus, A. A Bayesian probability model for Android malware detection.
ICT Express 2022, 8, 424–431. [CrossRef]

23. Nguyen, G.; Nguyen, B.M.; Tran, D.; Hluchy, L. A heuristics approach to mine behavioural data logs in mobile malware detection
system. Data Knowl. Eng. 2018, 115, 129–151. [CrossRef]

24. Lu, T.; Wang, J. F2DC: Android malware classification based on raw traffic and neural networks. Comput. Netw. 2022, 217, 109320.
[CrossRef]

25. Amer, E.; El-Sappagh, S. Robust deep learning early alarm prediction model based on the behavioural smell for android malware.
Comput. Secur. 2022, 116, 102670. [CrossRef]

26. Yang, S.; Wang, Y.; Xu, H.; Xu, F.; Chen, M. An Android Malware Detection and Classification Approach Based on Contrastive
Lerning. Comput. Secur. 2022, 123, 1–15. Available online: https://dl.acm.org/doi/10.1016/j.cose.2022.102915 (accessed on 19
December 2022). [CrossRef]

27. Jerbi, M.; Chelly Dagdia, Z.; Bechikh, S.; ben Said, L. Android malware detection as a Bi-level problem. Comput. Secur. 2022, 121,
102825. [CrossRef]

28. Azad, M.A.; Riaz, F.; Aftab, A.; Rizvi, S.K.J.; Arshad, J.; Atlam, H.F. DEEPSEL: A novel feature selection for early identification of
malware in mobile applications. Future Gener. Comput. Syst. 2022, 129, 54–63. [CrossRef]

29. Taheri, L.; Kadir, A.F.A.; Lashkari, A.H. Extensible android malware detection and family classification using network-flows and
API-calls. In Proceedings of the International Carnahan Conference on Security Technology, Chennai, India, 1–3 October 2019.

30. Taha, A.; Barukab, O.; Malebary, S. Fuzzy Integral-Based Multi-Classifiers Ensemble for Android Malware Classification.
Mathematics 2021, 9, 2880. [CrossRef]

31. Mazaed Alotaibi, F.; Fawad. A Multifaceted Deep Generative Adversarial Networks Model for Mobile Malware Detection. Appl.
Sci. 2022, 12, 9403. [CrossRef]

32. Atacak, İ.; Kılıç, K.; Doğru, İ.A. Android malware detection using hybrid ANFIS architecture with low computational cost
convolutional layers. PeerJ Comput. Sci. 2022, 8, e1092. Available online: https://peerj.com/articles/cs-1092 (accessed on
18 December 2022). [CrossRef] [PubMed]

33. Arp, D.; Spreitzenbarth, M.; Hubner, M.; Gascon, H.; Rieck, K.; Internet Society. DREBIN: Effective and Explainable De-
tection of Android Malware in Your Pocket. Available online: https://www.scinapse.io/papers/2122672392 (accessed on
19 December 2022).

34. Getting Started with v2. Available online: https://developers.virustotal.com/v2.0/reference/getting-started (accessed on
19 December 2022).

35. MFDroid: A Stacking Ensemble Learning Framework for Android Malware Detection. Available online: https://www.
researchgate.net/publication/359593753_MFDroid_A_Stacking_Ensemble_Learning_Framework_for_Android_Malware_
Detection (accessed on 14 January 2023).

36. Şahin, D.Ö.; Kural, O.E.; Akleylek, S.; Kılıç, E. A novel Android malware detection system: Adaption of filter-based feature
selection methods. J. Ambient Intell. Humaniz. Comput. 2021, 1–15. Available online: https://link.springer.com/article/10.1007/s1
2652-021-03376-6 (accessed on 14 January 2023). [CrossRef]

37. Abdulla, S.; Altaher, A. Intelligent approach for android malware detection. KSII Trans. Internet Inf. Syst. 2015, 9, 2964–2983.
38. Altaher, A.; Barukab, O. Android malware classification based on ANFIS with fuzzy c-means clustering using sig-

nificant application permissions. Turk. J. Electr. Eng. Comput. Sci. 2017, 25, 2232–2242. Available online: https:
//www.researchgate.net/publication/317343365_Android_malware_classification_based_on_ANFIS_with_fuzzy_c-means_
clustering_using_significant_application_permissions (accessed on 14 January 2023). [CrossRef]

39. Feng, P.; Ma, J.; Sun, C.; Xu, X.; Ma, Y. A novel dynamic android malware detection system with ensemble learning. IEEE Access
2018, 6, 30996–31011. Available online: https://www.researchgate.net/publication/325612491_A_Novel_Dynamic_Android_
Malware_Detection_System_With_Ensemble_Learning (accessed on 14 January 2023). [CrossRef]

40. Rustam, Z.; Kristina, A.L.; Satria, Y. Comparison between Fisher’s Ratio and Information Gain with SVM classifier for
3 levels of enthusiasm classification through face recognition. J. Phys. Conf. Ser. 2021, 1752, 012042. Available on-
line: https://www.researchgate.net/publication/349326381_Comparison_between_Fisher\T1\textquoterights_Ratio_and_
Information_Gain_with_SVM_classifier_for_3_levels_of_enthusiasm_classification_through_face_recognition (accessed on
14 January 2023). [CrossRef]

41. Rajagopal, S.; Kundapur, P.P.; Hareesha, K.S. Towards Effective Network Intrusion Detection: From Concept to Creation on Azure
Cloud. IEEE Access 2021, 9, 19723–19742. [CrossRef]

https://www.tandfonline.com/doi/abs/10.1080/19361610.2018.1387734
http://doi.org/10.1080/19361610.2018.1387734
http://doi.org/10.1016/j.jnca.2018.12.014
http://doi.org/10.1016/j.inffus.2018.12.006
http://doi.org/10.1016/j.icte.2021.09.003
http://doi.org/10.1016/j.datak.2018.03.002
http://doi.org/10.1016/j.comnet.2022.109320
http://doi.org/10.1016/j.cose.2022.102670
https://dl.acm.org/doi/10.1016/j.cose.2022.102915
http://doi.org/10.1016/j.cose.2022.102915
http://doi.org/10.1016/j.cose.2022.102825
http://doi.org/10.1016/j.future.2021.10.029
http://doi.org/10.3390/math9222880
http://doi.org/10.3390/app12199403
https://peerj.com/articles/cs-1092
http://doi.org/10.7717/peerj-cs.1092
http://www.ncbi.nlm.nih.gov/pubmed/36262124
https://www.scinapse.io/papers/2122672392
https://developers.virustotal.com/v2.0/reference/getting-started
https://www.researchgate.net/publication/359593753_MFDroid_A_Stacking_Ensemble_Learning_Framework_for_Android_Malware_Detection
https://www.researchgate.net/publication/359593753_MFDroid_A_Stacking_Ensemble_Learning_Framework_for_Android_Malware_Detection
https://www.researchgate.net/publication/359593753_MFDroid_A_Stacking_Ensemble_Learning_Framework_for_Android_Malware_Detection
https://link.springer.com/article/10.1007/s12652-021-03376-6
https://link.springer.com/article/10.1007/s12652-021-03376-6
http://doi.org/10.1007/s12652-021-03376-6
https://www.researchgate.net/publication/317343365_Android_malware_classification_based_on_ANFIS_with_fuzzy_c-means_clustering_using_significant_application_permissions
https://www.researchgate.net/publication/317343365_Android_malware_classification_based_on_ANFIS_with_fuzzy_c-means_clustering_using_significant_application_permissions
https://www.researchgate.net/publication/317343365_Android_malware_classification_based_on_ANFIS_with_fuzzy_c-means_clustering_using_significant_application_permissions
http://doi.org/10.3906/elk-1602-107
https://www.researchgate.net/publication/325612491_A_Novel_Dynamic_Android_Malware_Detection_System_With_Ensemble_Learning
https://www.researchgate.net/publication/325612491_A_Novel_Dynamic_Android_Malware_Detection_System_With_Ensemble_Learning
http://doi.org/10.1109/ACCESS.2018.2844349
https://www.researchgate.net/publication/349326381_Comparison_between_Fisher\T1\textquoteright s_Ratio_and_Information_Gain_with_SVM_classifier_for_3_levels_of_enthusiasm_classification_through_face_recognition
https://www.researchgate.net/publication/349326381_Comparison_between_Fisher\T1\textquoteright s_Ratio_and_Information_Gain_with_SVM_classifier_for_3_levels_of_enthusiasm_classification_through_face_recognition
http://doi.org/10.1088/1742-6596/1752/1/012042
http://doi.org/10.1109/ACCESS.2021.3054688

Appl. Sci. 2023, 13, 1484 26 of 26

42. Yetginler, B.; Atacak, İ. Sentiment Analyses on Movie Reviews using Machine Learning-Based Methods. Artif. Intell. Stud. 2020,
3, 1–12. [CrossRef]

43. Cortes, C.; Vapnik, V.; Saitta, L. Support-vector networks. Mach. Learn. 1995, 20, 273–297. Available online: https://link.springer.
com/article/10.1007/BF00994018 (accessed on 19 December 2022). [CrossRef]

44. Schölkopf, B.; Smola, A.J. Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond; The MIT Press:
Cambridge, MA, USA, 2018. Available online: https://direct.mit.edu/books/book/1821/Learning-with-KernelsSupport-Vector-
Machines (accessed on 19 December 2022).

45. Lindström, J. Predictive Maintenance for a Wood Chipper using Supervised Machine Learning. 2018. Available online: http:
//urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149304 (accessed on 19 December 2022).

46. Hung, Y.H. Investigating how the cloud computing transforms the development of industries. IEEE Access 2019, 7, 181505–181517.
[CrossRef]

47. Syed, A.H.; Khan, T. Machine learning-based application for predicting risk of type 2 diabetes mellitus (t2dm) in saudi arabia: A
retrospective cross-sectional study. IEEE Access 2020, 8, 199539–199561. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.30855/AIS.2020.03.02.01
https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
http://doi.org/10.1007/BF00994018
https://direct.mit.edu/books/book/1821/Learning-with-KernelsSupport-Vector-Machines
https://direct.mit.edu/books/book/1821/Learning-with-KernelsSupport-Vector-Machines
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149304
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-149304
http://doi.org/10.1109/ACCESS.2019.2958973
http://doi.org/10.1109/ACCESS.2020.3035026

	Introduction
	Literature Review
	Materials and Methods
	Dataset
	Dynamic Model Proposed for Android Malware Detection
	Feature Extraction
	Feature Selection
	Splitting Data
	Multi-Classification
	Voting and Routing
	Combining Scores

	Performance Assessment

	Results and Discussion
	Conclusions
	References

