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Abstract: Affected by shooting angle and light intensity, shooting through transparent media may
cause light reflections in an image and influence picture quality, which has a negative effect on the
research of computer vision tasks. In this paper, we propose a Residual Attention Based Reflection
Removal Network (RABRRN) to tackle the issue of single image reflection removal. We hold that
reflection removal is essentially an image separation problem sensitive to both spatial and channel
features. Therefore, we integrate spatial attention and channel attention into the model to enhance
spatial and channel feature representation. For a more feasible solution to solve the problem of
gradient disappearance in the iterative training of deep neural networks, the attention module is
combined with a residual network to design a residual attention module so that the performance of
reflection removal can be ameliorated. In addition, we establish a reflection image dataset named the
SCAU Reflection Image Dataset (SCAU-RID), providing sufficient real training data. The experimental
results show that the proposed method achieves a PSNR of 23.787 dB and an SSIM value of 0.885
from four benchmark datasets. Compared with the other most advanced methods, our method has
only 18.524M parameters, but it obtains the best results from test datasets.

Keywords: artificial neural network; image processing; image restoration; computer vision; artificial
intelligence; supervised learning; multi-layer neural network

1. Introduction

Images captured through glass have a noticeable layer of reflection due to the shooting
angle and light intensity. Image reflection can reduce the image quality and adversely
affect the results of computer vision tasks, such as image classification and object detection.
Accordingly, reflection layers are expected to be removed to obtain clear images.

In this study, the research objective of image reflection removal is to predict the
transmission layer T from a given reflection image I. According to [1], let I be the reflection
image, T the transmission layer and R the reflection layer, then the reflection image can be
approximately modeled as a combination of T and R. It can be seen that to any I, both the
transmission layer T and the reflection layer R are unknown. As there are no additional
constraints or priors, the equation has infinite feasible solutions.

To solve this problem, it is imperative for researchers to impose constraints and
artificial priors on the solution space, thus a separation of the reflection image closer to
an ideal target solution can be obtained. As for the ill-posed problem, [2] proposed the
concept of relative smoothness for reflection image separation. That is, the reflection layer
is considered to be smoother relative to the transmission layer, so a smooth gradient is
applied to the objective function of the reflection layer, and a sparse gradient is applied
to the objective function of the transmission layer. There are other solutions proposed.
For example, [3] introduced the use of ghosting cues that exploit the asymmetry between
layers, thus helping to reduce the discomfort of eliminating reflections in images taken
through thick glass. The authors of [4] proposed a simple yet effective reflection-free cue
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to remove reflection with robustness from a pair of flash and ambient (no-flash) images.
However, if the camera is placed far from the subject which cannot be reached by the
flashlight, the flash-only image obtained at this time may be a black image. As can be seen
above, the physical model-based approach consists of developing a mathematical model
for reflection removal and using the model to estimate the reflection parameters. These
methods usually require a lot of manual intervention to tune the model parameters and
may not be able to handle complex reflection scenarios. In addition, these a priori designs
have high requirements and limited application in reflection removal.

As machine learning research develops and computer hardware devices improve
in performance, more and more methods use machine learning techniques (e.g., neural
networks) to solve reflection removal problems by applying the learned models to new
images. These methods are often more flexible than physical model-based methods in
handling more complex reflection scenarios. However, most of the existing methods
for deep learning methods have more complex network structures with a large number
of parameters, thus requiring a long training time. Furthermore, these methods fail to
make good use of the spatial intensity inhomogeneity of the reflection and transmission
layers. Driven by the above reasons, we would like to develop a new image reflection
removal method.

We consider reflection removal as a typical image separation problem. Therefore, it
can be assumed that the transmission and reflection layers correspond to specific channels,
which implies the need to enhance the model for channel feature representation. However,
as for the reflection removal task, it is not sufficient to rely only on channel concerns.
Moreover, the reflection layer can be viewed as a translucent soft mask over the transmission
layer, and the spatial intensity of both layers is inhomogeneous, depending on the camera
angle and light intensity. To better focus on the inhomogeneity of the spatial intensity
distribution, we integrated a residual attention module into the encoder used in our method
to combine channel attention with spatial attention. Both channel attention and spatial
attention can be used to improve the performance of the neural network by allowing it to
focus on the most important parts of the input data. In addition, thanks to the introduction
of the residual network and ConvLSTM [5], this module partially deepens the network
depth while accelerating the convergence rate, without causing network degradation.

In this paper, RABRRN consists of an encoder with a residual attention mechanism
to extract semantic features and two decoders as two branches to separately predict the
transmission and reflection layers. Our network has a simpler structure and can be trained
more efficiently than a cascaded network that requires two encoder-decoders. The encoder
with a residual attention mechanism can focus on the background information to be
recovered and avoid problems such as color distortion. The iterative training network uses
the output of the previous network as the input for the next training to improve the quality
of the predicted transmission layer images through continuous iterations. However, due
to the multiple iterations of training, the model convergence training becomes difficult
with the occurrence of the gradient vanishing problem. Therefore, to avoid the vanishing
gradients in iterative training, we introduced two convolutional LSTM (convolutional
LSTM) modules. One is used in the transmission layer prediction branch and the other in
the reflection layer prediction branch, which preserves the information from the previous
iterations and allows the gradient to remain constant. The related design is described in
detail in Section 3.

The contributions of this paper include:
(1) We propose the RABRRN, an iterative deep neural network based on a residual

attention mechanism. Compared with state-of-the-art studies on the same problem, our
method is composed of fewer parameters, which can improve the training efficiency while
ensuring the reflection removal effect.

(2) We add a residual attention mechanism to the encoder, which enables the network
to enhance the channel and spatial representation, focus on the key information of the
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background that needs to be recovered, and prevent problems such as color distortion and
deformation of the main area.

(3) We have established a dataset, named SCAU-RID, of image pairs with reflection
kept or removed for further research on reflection removal.

2. Related Work

Research on image reflection removal dates back decades. Previous studies in this
research field can be classified into multi-view reflection removal and video-based reflection
removal [6–11], and single image reflection removal (SIRR) [12–28].

Single image reflection removal is a professionally demanding problem with a single
reflected image as the input. In 1990, Wolff [15] proposed a simple Fresnel reflection model
where a polarizer is placed in front of the camera sensor and images are taken from different
directions to determine the polarization state of the reflected light. The polarization state of
the reflected light received at the pixel can be obtained by observing the polarization state
of the reflected light transmitted through the polarizer which is a function of the polarizer
direction. It enables the separation of the reflected light from the transmitted light via a
polarizing material before image acquisition. In 2002, Levin [16] proposed the solution
of superimposing two natural images and then separating them, which was then applied
to the image reflection removal task, but the reflection removal results achieved were not
satisfactory. Then, in 2004, Levin and Weiss [17] proposed an algorithm that performs
the decomposition using an extremely simple form of prior knowledge. That is, when
the input is a single image, the algorithm decomposes it into two images by minimizing
the total number of edges and corners, which, however, did not separate the reflective
layers well. Subsequently, in 2007, Levin [18] further refined the algorithm using a gradient
sparsity prior and a superconducting filter. He optimized this sparsity prior using an
iterative reweighted least squares (IRLS) method, in addition to a manual labeling aid
employed to mark which pixel domains belong to the transmission or reflection layers.
Nevertheless, it increased the workload on labeling. In 2016, Wan [19] proposed a visual
depth-guided reflection removal method based on Kullback–Leibler scattering to compute
multi-scale scenes to efficiently classify edge pixels. Additionally, based on the edge map
results of edge classification, the reflection and transmission layers are then separated
using Li and Brown’s method. Then, in 2017, Arvanitopoulos [20] proposed a new method
for suppressing reflections based on the Laplace data fidelity term and the L0 gradient
sparsity term which are imposed on the output. This method does not try to separate the
transmission and reflection layers as in previous work, but it suppresses the reflections
from the input image as much as possible. However, as mass iteration training is required,
efficiency needs to be improved. These traditional methods based on optimization have
achieved some good results, but the image acquisition process is often affected by factors
such as lighting, surrounding scenery, and framing angle, making real reflection scenes
diverse and complex, which brings problems in using these methods. Meanwhile, relying
on specific a priori methods has limitations.

The rapid development of deep learning technology enables researchers to use deep
neural networks to address SIRR-related problems. For example, in 2017, Fan [21] was
the first to explore the use of deep neural network models to solve the reflection removal
problem. He used edge maps as auxiliary cues to guide the separation of the reflective
and transmission layers, as well as a linear approach to synthesizing reflective images
for the model training. However, the method is rather problematic because it ignores
the high-dimensional semantic information of the image that helps to remove reflections.
Meanwhile, low-dimensional semantic information cannot be used to guide the separation
of reflection images with blurred colors. In 2018, Zhang [1] proposed a deep neural network
with perceptual loss and exclusion loss to perform single image reflection separation. Lim-
ited by the linear image synthesis paradigm, the method cannot be extended to other real
scenes. In 2018, Chi [22] proposed a new deep convolutional encoder-decoder method to
remove reflections from images by learning mappings between reflective and non-reflective
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image pairs. The neural network was trained to model the physical formation of reflec-
tions in images. In addition, a large number of photo-realistic reflection-contaminated
images were synthesized from reflection-free images collected on the network. In the same
year, Wan et al. [23] argued that the reflective layer information existed in the surface
layer and the transmission layer information in deeper layers, so they designed a two-
stage network CRRN, where the first stage infers the gradient of the transmission layer
and the second stage uses the output of the first stage to predict the final transmission
layer. In this way, the CRRN integrates the surface layer information and the gradient
information of multiple degrees to guide the reflection separation. The following year,
Wan [24] proposed a network, CoRRN, with features sharing the strategy based on CRRN
to tackle this problem, combining image contextual information with multi-scale gradient
information. Wen [25] proposed a synthetic network, in which they used one decoder and
three encoders as a three-streamline reflection removal network to predict the transmission
layers, generating reflection images from them with the predicted alpha mixing mask in a
beyond-linear manner. Li et al. proposed the IBLCN [26], a recursive LSTM-based network
for the successive refinement of the reflection and transmission layers. In IBLCN, two
pairs of decoder-encoder structures are used to predict the transmission and reflection
layers, respectively. Dong [27] proposed a position-aware reflection removal network,
which has a reflection detection module that accepts multi-scale Laplace features as in-
put, then outputs a reflection confidence map. The confidence map indicates the region
dominated by the reflection layer, and the input image is reorganized to input into the
separation network. The ERRNet proposed by Wei [28] introduces a multi-scale channel
attention mechanism in the decoder of the network so that it can reorganize and enhance
the different channel features. The above learning-based approaches have achieved sig-
nificant improvements in individual image reflection removal compared to the traditional
optimization-based approaches.

To sum up, although methods based on convolutional neural networks have outper-
formed traditional polarization-based methods, only ERRNet [28] exploits the channel
attention mechanism, which values the importance of different features. However, ERRNet
does not harness spatial attention, nor does it pay attention to which spatial regions of
the feature map are more important. In this paper, we try to construct a residual atten-
tion module using a Convolutional Block Attention Module (CBAM) [29] and residual
networks that combine spatial attention and channel attention to design an iterative dual
streamline network. The reflection removal problem is solved by continuously refin-
ing the reflection-related information in the generative and discriminative networks in
each iteration.

3. Proposed Method
3.1. Network Architecture

The RABRRN proposed by us is an iterative network based on ConvLSTM, whose
architecture is shown in Figure 1. It is a dual-stream network consisting of one encoder
and two decoders as two branches. Additionally, there are skip connections between
some layers of the encoder and the corresponding layers of the two decoders to avoid
ambiguous results. Furthermore, a ConvLSTM is added between the decoder and the two
branches. One branch is used to predict the transmission layer T, while another branch is
utilized to predict the reflection layer R. As shown in Figure 1, for the encoder, there are
11 convolutional layers, and a ResCbamBlock is added after the first, the third, and the sixth
layers, respectively. There are 8 convolutional layers in each decoder and the two decoders
share the same structure. Both the encoder and the decoders use a ReLU activation function
behind each layer. A Sigmoid activation function and a Tanh activation function are used
in the ConvLSTM. The discriminator in our model has a 6-layer network, which will be
described in detail below. The role of the discriminator is to receive the generated images
and identify the authenticity of the images.
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Figure 1. The framework of RABRRN. Where the symbol⊕ denotes the feature stitching of the image.
⊗ denotes the combination of the transmitting and reflecting layers. For the encoder, the first Conv
+ ReLU block denotes layer 1 convolution, the second Conv + ReLU block denotes layers 2–3, the
third Conv + ReLU block denotes layers 4–6, and the last Conv + ReLU block denotes the remaining
convolution layers.

It is well known that attention exerts a remarkable impact in human perception. One
of the most fundamental characteristics of the human visual system is that there is no need
to process an entire scene at once. Instead, humans deliberately focus on some important
sections of the image through a series of partial glimpses to better capture the visual
structure. Therefore, we argue that reflection removal is an issue of spatial variational
occlusion removal sensitive to both spatial and channel factors, rather than just a problem
of basic picture layer separation.

CBAM is a type of attention mechanism that adaptively refines features in channel
and space, which are two separated dimensions. Before the residual network [30] was
proposed, the problem of vanishing gradient occurred as a result of increased depth in
deep neural networks. The training set loss gradually lowers as the amount of network
layers grows, and then the loss tends to become saturated. If the network depth increases
continuously, the training loss will decline step by step. With the residual block (ResBlock)
introduced, which is the fundamental block of the residual network, the neural network
can reach a much greater depth, and the performance will also be better.

In this paper, we combined CBAM and ResNet into a residual attention network
module (ResCbamBlock), which increases the depth of the network and enhances the
channel and spatial representation, thus improving the feature extraction ability of the
network. The structure of the ResCbamBlock is illustrated in Figure 2. The input of
the ResCbamBlock is feature map x. Additionally, after two convolutions, the refined
feature map x′′ can be acquired from x. Then, in the channel attention block, two pooling
operations (max-pooling and average-pooling) are added to x′′ to extract two vectors. These
two vectors are input into the shared network (SN), then merged with the output feature
vectors using element-wise summation to obtain the channel attention map (Mc(x′′)). The
SN consists of a multi-layer perceptron (MLP) and a hidden layer. The feature map x′ ′′ with
enhanced channel features is obtained by multiplying Mc(x′′) and x′′ in an element-wise
manner. Subsequently, in the spatial attention block, two pooling operations are used
to generate two 2D maps representing the mean-pooling and max-pooling features of
the entire channel, respectively. The two maps are connected with each other, and then,
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through a standard convolutional layer, a two-dimensional spatial attention map Ms(x′′ ′) is
generated. The element-wise multiplication of Ms(x′′ ′) and x′′ ′ is performed to obtain a
feature map f with enhanced spatial features, and the final output of ResCbamBlock is f + x.
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For discriminator networks, previous studies have experimentally demonstrated that
discriminator networks of typical generative adversarial networks (GAN) [31] are, in many
cases, not suitable for the domain of high-resolution, high-detail image recovery. Hence,
we designed PatchGAN discriminators for the reflection removal recovery task. Differing
from general networks in the discriminator, PatchGAN employs a Markov discriminator
that effectively builds the image as a random Markov field to divide a pair of images into
image blocks, assuming that the independence between pixels is greater than the size of the
image blocks, as shown in Figure 3. In contrast to the discriminators in a typical GAN, the
PatchGAN discriminator outputs a two-dimensional matrix instead of individual values.
In simple terms, the output of a typical GAN discriminator is a single value of 0 or 1. This
means that the discriminator looks at the entire image and determines whether the image
is real or false. If the image is real, it should equal 1. If the image is fake, it should give
0. Typical GAN discriminators focus on the whole image and, therefore, may ignore the
local texture details of the image. Each element of this matrix output by PatchGAN is
between 0 and 1. Finally, a matrix corresponding to the discriminant result of the image
block is output, and the discriminant result of the whole image is taken as the average of
the discriminant results of all image blocks. It is worth noting that each element represents
a local region in the input image, and the discriminator needs to view multiple local image
blocks to determine the authenticity of each image block. By doing so, the local texture
details of the generated image can be enhanced, further improving the visual quality of the
generated image.
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Figure 3. Our discriminator: the output is a two-dimensional matrix in which each element represents
a local region of the input image, and the value of the matrix element is 1 if the local region is real
and 0 otherwise.

Our discriminator network has six convolutional layers, and the first five convolutional
layers use a strided convolution with a convolutional kernel size of 3 × 3 and a step size of 2.
The first convolutional layer extracts 64 channels of features from the generated image,
except for the fifth stride convolutional layer, where the dimensionality of the feature map
is multiplied, while the other stride convolutional layers are down sampled. The last layer
is a 1 × 1 convolution operation, which compresses all the feature dimension information
into one channel dimension. After five stride convolution layers, the size of the feature map
is 1/32 of the original input, so the whole process essentially outputs the original input
image of a 256 × 256 size as an 8 × 8 matrix, and the final evaluation result of the whole
image is taken as the average of the discriminant results of all image blocks.

In general, we avoided using traditional convolutional networks as sub-networks
during the iterative training process, for those networks will make the training of the
entire model difficult. In the RABRRN, we use two convolutional LSTM blocks, one for
each decoder branch. ConvLSTM is from FC-LSTM [32], which uses the output of a fully
connected neural network as the input of LSTM to achieve a better performance. If the
time series data is an image, adding a convolution operation to LSTM can improve the
capacity to capture the spatial characteristics of the image, which will be more effective than
using LSTM only. As shown in Figure 4, the ConvLSTM module has four gates, including
input gate i, forgetting gate f, output gate o, and unit state c. Input gate i controls how
much information from the current computation is added to the cell state. Forgetting gate
f determines how much of the information passed over from the previous iteration will
be forgotten. Output gate o controls how much information from the current state will
be passed to the next iteration. Unit state c controls the state after passing through the
input gate and the forgetting gate, which determines the current state of a unit. In each
iteration, the information from the previous step is saved and provided to the next step in
the ConvLSTM, which can be used to solve the gradient elimination problem in recursive
convolutional neural networks. The key equation of ConvLSTM is shown in Equation
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(1), where ∗ denotes the convolution operation, ◦ denotes the Hadamard product, and b
represents the activation value of the cell.

it = σ(Wxi ∗ xt + Whi ∗ ht−1 + Wci ◦ ct−1 + bi)

ft = σ
(

Wx f ∗ xt + Wh f ∗ ht−1 + Wc f ◦ ct−1 + b f

)
ct = ft ◦ ct−1 + it ◦ tanh(Wxc ∗ xt + Whc ∗ ht−1 + bc)

ot = σ(Wxo ∗ xt + Who ∗ ht−1 + Wco ◦ ct + bo)
ht = ot ◦ tanh(ct)

(1)
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As shown in Figure 1, the reflection removal network progressively refines the predic-
tion results for the transmission and reflection layers through iterations. At the beginning
of training, the I and T are initialized as the original reflection image I, and R is set to be
a tensor of the same size as I, and the value of each pixel is set to 0.1 for the three RGB
channels. In addition, the input to the network is a cascade of T, I, and R. The predicted
values of the new transmission and reflection layers, T̂ and R̂, are then obtained by con-
volving two sub-networks of the LSTM utilized as inputs for the following time step, while
information is memorized in the LSTM network for the prediction of the next time step.
The predicted values of the transmission and reflection are reconstructed by the hybrid
image formation model for the hybrid image Î. The reconstructed hybrid image is used to
compare with the real input hybrid image to guide the output of the network; there are
corresponding loss functions between the predicted transmission layer image and the real
transmission layer image as well as between the predicted reflection image and the real
reflection image. Finally, the result of the prediction network for the transmission layer at
the final step n is the transmission layer’s final prediction result.

3.2. Loss Function

In this section, we present the loss functions utilized in the RABRRN network training.
Let T and R be the ground truth of the transmission layer and reflection layer, respectively,
and the predicted transmission layer and reflection layer at iteration t are denoted as T̂

t
and R̂

t
, respectively.

Pixel Loss and Structural Similarity Loss: Pixel loss is used to penalize pixel-level
differences between T and T̂

t
. The objective is to reduce the error between the generated

transmission layer and the ground truth. Since the L1 loss has a stable gradient for whatever
input value does not lead to the gradient explosion problem, we utilize the L1 loss function
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to calculate the pixel loss as a more robust solution. Summing up the reasons, our pixel
loss is summarized as:

Lpixel = ∑
T ∈D

N

∑
t=1

θN−tL1

(
T,T̂

t

)
(2)

in which θ is defined at 0.85.
Zhao [33] proposed that in image restoration, the combination of SSIM (Structural

Similarity Index Measure) [34] loss and L1 loss is better than L2 loss. Because of the
computational simplicity, most of the previous research used only pixel loss, but it may
lead to the generation of blurred images because it is different from the human visual
perception of natural images. Therefore, to provide more natural visual results, we took
the human visual perception of natural images into consideration when designing the
loss function. In our reflection removal task, the SSIM is used to calculate the degree of
similarity between the estimated T and T̂

t
and their associated ground truth. The SSIM is

described as:

SSIM(T, T̂
t
) =

(2µTµT̂
t
+ C1)(2σTT̂

t
+ C2)

(µ2
T + µ2

T̂
t

+ C1)(σ
2
T + σ2

T̂
t

+ C2)
(3)

where µT and µT̂
t

are the means of T and T̂
t
, σT and σT̂

t
are the variances in T and T̂

t
, and

σTT̂
t

is their corresponding covariances. SSIM measures the similarity between the real and

generated images in three dimensions: contrast, luminance, and structure.
Therefore, similar to [27], which also adopts LSSIM

t = 1− SSIM(T, T̂
t
) as the loss term

in each iteration t, the LSSIM used in this paper is formulated as:

LSSIM = ∑
T ∈D

N

∑
t=1

θN−tLSSIM
t (4)

in which θ is defined at the same value as Lpixel . The mixture of pixel loss and SSIM loss is
defined as follows:

Lmix = βLSSIM + (1− β)Lpixel (5)

in which the β set value is 0.84 according to [33].
Adversarial Loss: Noticeably, MSE loss networks based on simple convolutional

neural networks tend to produce images with unnatural and blurred backgrounds because
the image generated with this loss function is the average of several natural solutions. In
order to avoid this problem, Goodfellow proposed adversarial loss [31]. Adversarial loss
is used to encourage the generative network to output images that match natural image
distribution. The occurrence of color bias and blurred images is a common problem in
reflection removal tasks. Therefore, in our approach, applying adversarial loss can better
guide the generation of more natural images. The adversarial loss in our reflection removal
task is defined as:

Ladv = ∑
T ∈D
− log D

(
T, T̂

)
(6)

Reconstruction Loss: For the predicted transmission and reflection layers, we gen-
erate reflection images using an image synthesis operation. Then, the reconstructed loss
function is constructed from the composed picture and the original reflection image. The
experimental results show that the reconstructed loss works well. The experimental re-
sults demonstrate that the rebuilt loss is effective. One possible explanation is that the
two branch networks share the same network topology and have complementary goals.
With the same network structure, they could be simultaneously either under-trained or
over-trained, so the error of the reconstruction loss will be doubled if both sub-networks
are in an under-trained or over-trained state. Therefore, the use of reconstruction loss in
our task minimizes the error in both branch networks to ensure that the predicted reflection
image (recombination of the transmission and reflection layers) is similar to the original
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input. We use the mean least squared error (MSE) to calculate the reconstruction loss, and
the perceptual distance between the reconstructed image and the input image is defined as:

Lres = ∑
T ∈D

N

∑
t=1
LMSE

(
I, Î

t

)
(7)

Multi-scale Perceptual Loss: To extract features for perceptual loss, we utilize a
pre-trained VGG-19 network [35]. The multi-scale perceptual loss collects features from
multiple decoder levels and inputs them into convolution layers to generate outputs of
various resolutions, and then the distance between the generated image and real image is
calculated. We can gain additional contextual information from multiple layers of input by
employing this loss in training. The loss function is defined as:

LMP = ∑
T j∈D

N

∑
j=1,3,5

γjLVGG

(
T, T̂

j

)
(8)

where LVGG represents the loss between VGG features, T̂
j
represents the output of the last j

layer at time step N, and Tj represents the ground truth value at the same scale as T̂
j
. We

set γ1=1, γ3=0.8, and γ5=0.6, respectively. In the VGG-19 network, we compare the features
of the conv1_2 and conv2_2 layers.

Total Loss: In general, the total loss function for our network training is defined as:

L = λ1Lmix + λ2Ladv + λ3Lres + λ4LMP (9)

Experimental results showed that mixture loss objective functions play a key role in
obtaining high quality results. Therefore, the weights are set to 2. Reconstruction loss is
beneficial in guiding the two sub-networks to work together, allowing the generation of
visually better transmission images, so the weight parameter of the reconstruction loss
function is also set to 2. In addition, the experimentally verified adversarial loss and
perceptual loss are set to 0.25 and 0.1, respectively. Therefore, the weights of each loss in
the experiment are set as follows: λ1 = 2, λ2 = 0.25, λ3 = 2, and λ4 = 0.01.

4. Experiments

In the experiments, we used the 64-bit Ubuntu16.04 operating system and the deep
learning framework PyTorch1.2.0. The GPU-accelerated training was performed on a
GeForce GTX 1080Ti with a graphics card memory of 32G, and the CUDA version was 10.2.
To minimize the training loss, we employed the ADAM optimizer [36] to train our model
for 90 epochs, where β1 and β2 in ADAM were both set to 0.5, the batch size was set to 2,
and the learning rate for the whole network training was set to 0.0002. Too many training
epochs do not provide better experimental results, and we chose to train 90 epochs based
on our experiments.

Deep neural network training needs a significant amount of data; however, the avail-
able reflection datasets are limited. Therefore, we also collected more real reflection images.
We utilized a stand to hold the camera and a piece of movable glass in front of the camera
for taking photos. Images with reflections were obtained by setting the glass between the
camera and the objects to be photographed. Images without reflections were also obtained
by quickly removing the glass. In Figure 5, the device for taking pictures and two pictures
with and without reflection are illustrated. We published the dataset we collected in the
Data Availability Statement section of our paper.
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Figure 5. The method of SCAU-RID dataset collection and a pair of sample images.

As for the real data, we used 460 pairs of real images, which consisted of 250 pairs of
real data from ERRNet [28], 110 pairs of real data from Zhang [1], and 100 pairs from the
SCAU-RID dataset we collected. As for the synthetic data, we used the pictures dataset
from [25] for the synthetic data, with 8000 pairs of synthetic images available for comparison
(size: 512 × 512).

4.1. Quantitative Evaluation

To evaluate the performance of our method, we compared the model with RmNet [25],
Zhang [1], ERRNet [28], and IBLCN [26] in terms of both quality and quantity. As reference
standards, we also used the comparison of the hybrid image and the ground truth. We used
the code and pre-trained model supplied by the authors in their team for a fair comparison
and set the parameters as specified in their original publication. Meanwhile, we used
PSNR (Peak Signal to Noise Ratio) [37], SSIM, and LMSE [38] as evaluation metrics. Only
PSNR has units (dB) among these three evaluation metrics. PSNR is the most widely
used image quality evaluation index, and it is based on the difference in error between
corresponding pixels and error-sensitive image quality evaluation. The higher the value, the
better the predicted image’s visual perception. Real natural images are highly structured,
i.e., there are strong correlations between the pixels of the image, and these correlations
carry information about the structure of the object. SSIM senses the distortion information
of an image by detecting whether the structural information has changed, and measures
the similarity of two images in terms of brightness, contrast, and structure. Regarding
SSIM, the higher the SSIM value is, the better the overall image quality can be predicted
too, and the overall image performance is closer to the ground truth. Meanwhile, LMSE
represents the minimum mean square error of the output image and the real image, and a
smaller value of LMSE implies a better result.

The findings of the competing approaches on the four real datasets are summarized
in Table 1. The first row of the dataset is from the Nature test dataset of Li [26], and the
remaining three rows are from the SIR2 constructed by [39]; SIR2 includes three sub-datasets:
Object, Postcard and Wild. On the Nature and Wild datasets, our technique is clearly the
best, second on the combined dataset of objects, and third on Postcard. In addition, to make
the comparison of quantitative data acquired using different methods more intuitive, we
visualized the data of PSNR and SSIM, as shown in Figure 6. This has validated that our
method can achieve superior performance in various real-world scenarios.
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Table 1. A quantitative comparison of three real-world benchmark datasets and three alternative
techniques. The top result are highlighted in red, while the second best results are highlighted
in blue.

Dataset Index
Methods

RmNet [25] Zhang [1] ERRNet [28] IBLCN [26] Ours

Nature [28]
PSNR 20.525 22.221 21.351 23.422 24.284
SSIM 0.785 0.812 0.881 0.893 0.897
LMSE 0.032 0.025 0.023 0.014 0.021

Object [39]
PSNR 21.347 22.032 23.565 23.375 23.622
SSIM 0.772 0.802 0.874 0.868 0.859
LMSE 0.031 0.030 0.023 0.019 0.021

Postcard [39]
PSNR 22.125 21.415 23.637 23.601 23.521
SSIM 0.847 0.797 0.862 0.876 0.871
LMSE 0.027 0.024 0.017 0.014 0.019

Wild [39]
PSNR 21.576 21.051 23.153 23.675 23.721
SSIM 0.794 0.820 0.862 0.869 0.883
LMSE 0.029 0.027 0.025 0.018 0.016
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Figure 6. Data visualization of evaluation metrics PSNR and SSIM for qualitative comparisons, where
the x-axis displays various methods and the y-axis reflects the values, and the different colored bars
in the same method represent the results on different datasets.

4.2. Qualitative Evaluation

To further compare different algorithms through visual evaluation, we present some
test results in Figures 7 and 8, where each column represents the input of the image, the
result of the method comparison, and the ground truth, respectively. The first and second
rows in Figure 7 are from the Nature dataset, the third to fifth rows are from ERRNet-50,
and the last two rows are in our collected SCAU-RID dataset. The seven types of pictures
are toys, indoor potted plants, tripods, houses, pavilions, trees, and outdoor potted plants.
The three rows in Figure 8 are from three sub-datasets of the SIR2 dataset using pictures of
bridges, stationery, and toys. To make the evaluation more intuitive, some local patches
with strong reflection signals are marked with yellow rectangles in the input image.
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From the first 2 rows in Figure 7, it can be seen that our method had a good perfor-
mance in an indoor environment, and the reflection created by incandescent lamps in in-
door potted plants was well removed. RmNet performed poorly, even worse than the in-
put results. Zhang’s method darkened the restored background as a whole. As seen in the 
third and fifth rows, none of the methods for comparison can completely remove large-
area reflections and strong reflections. IBCLN performed the best on the third row but 
suffered from color distortion and significant reflection artifacts. By contrast, our method 
was effective, although it enlarged the original black spots. The reflection of houses in the 
fourth row was not very strong, and both our method and IBLCN obtained a near-perfect 
removal effect. For large-area reflections from pavilions, only ERRNet could achieve de-
sirable outcomes. At the same time, in the last two rows in Figure 7, we also listed the test 

Figure 7. Qualitative comparison between the proposed method and four state-of-the-art techniques.
The images are obtained from ‘Nature’ (Rows 1–2), ‘ERRNet-50’ (Rows 3–5), and our SCAU-RID
(Rows 6–7). In particular, the first column represents the input image, the last column represents the
ground truth image without reflections, and the other columns represent the output corresponding
to the comparison method. Column 2 from RmNet [25], column 3 from Zhang [1], column 4 from
ERRNet [28], column 5 from IBLCN [26] and column 6 from ours work.

From the first 2 rows in Figure 7, it can be seen that our method had a good per-
formance in an indoor environment, and the reflection created by incandescent lamps in
indoor potted plants was well removed. RmNet performed poorly, even worse than the
input results. Zhang’s method darkened the restored background as a whole. As seen in the
third and fifth rows, none of the methods for comparison can completely remove large-area
reflections and strong reflections. IBCLN performed the best on the third row but suffered
from color distortion and significant reflection artifacts. By contrast, our method was
effective, although it enlarged the original black spots. The reflection of houses in the fourth
row was not very strong, and both our method and IBLCN obtained a near-perfect removal
effect. For large-area reflections from pavilions, only ERRNet could achieve desirable
outcomes. At the same time, in the last two rows in Figure 7, we also listed the test results
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on our SCAU-RID dataset. It can be observed that our method could remove reflections
more effectively while recovering clearer high-frequency details of the background image,
although there were also some reflection artifacts.
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Figure 8. Qualitative comparison between the proposed method and four state-of-the-art techniques.
The images are obtained from ‘SIR2’ (Rows 1–3). In particular, the first column represents the input
image, the last column represents the ground truth image without reflections, and the other columns
represent the out-put corresponding to the comparison method. Column 2 from RmNet [25], column
3 from Zhang [1], column 4 from ERRNet [28], column 5 from IBLCN [26] and column 6 from
ours work.

As can be seen in Figure 8, the structure of the reflected church in the first row of the
bridge image is clear, indicating that our method has a good visual effect, with the majority
of the reflective layers properly removed while avoiding color distortion. In addition, it
is obvious that Zhang’s method caused serious chromatic aberrations. However, for the
stationery in the second row, as the high and low-frequency information was not obvious,
the reflection was mistaken for the background information in all methods, resulting in
a poor performance in reflection removal. In the third row, ERRNet and our method
performed better despite a few residual reflections in the image of toys. By contrast, RmNet
and Zhang are ineffective.

To better evaluate the performance of the proposed method comprehensively, we
show in Figure A1 in the Appendix A the experimental results of our method on a larger
number of samples.

4.3. Ablation Study

We ran an ablation study by altering the model components, removing or replacing
the loss function, and retraining the network to better assess our network design and
evaluate the loss function. In particular, we used the full Equation (9) for the ablation
analysis of the network structure. We analyzed the loss function using the complete network
structure as in Figure 1. We conducted three comparative experiments, respectively, deleting
ResCbamBlock, using CBAM to replace ResCbamBlock, and replacing the mixed loss with
pixel loss and the same network structure. PSNR and SSIM were obtained by evaluating the
retrained models in these experiments, and the experimental results of the ablation study
are shown in Table 2. Compared with using CBAM alone, using ResCbamBlock improved
the PSNR score by 1.406 dB and the SSIM score by 0.052. Removing ResCbamBlock reduced
PSNR by 2.930 dB and SSIM by 0.087. Compared with using pixel loss alone, the hybrid
function of pixel loss and structural similarity loss improved PSNR by 0.587 dB and SSIM
by 0.064 without changing the network structure.
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Table 2. A quantitative comparison of various network architectures and loss function approaches
was performed. The best outcomes are highlighted in red, while the second best results are highlighted
in blue.

Method PSNR SSIM LSME

Del ResCbamBlock 21.578 0.816 0.032
ResCbamBlock→ CBAM 23.102 0.852 0.027

Lmix → Lpixel 23.493 0.839 0.24
Complete 24.284 0.897 0.021

In addition, we analyzed the parameters of different models, as shown in Table 3. The
RABRRN achieved better removal results with parameters of only 18.524M, which was one
third of the RmNet parameters.

Table 3. The comparison of parameter quantity between our method, RmNet [25], and IBLCN [26],
indicating that our method has fewer parameters. The best outcomes are highlighted in red, while
the second best results are highlighted in blue.

Method Parameter PSNR SSIM

RmNet [25] 65.443M 21.393 0.779
IBLCN [26] 21.608M 23.518 0.876

Ours 18.524M 23.787 0.885

5. Conclusions

In this study, we proposed an RABRRN based on a residual attention mechanism
for single image reflection removal. It is a dual-streamline architecture composed of one
encoder and two decoders with identical structures, with two branches used to predict
the transmission layer and the reflection layer, respectively. To improve the quality of
predictions, we introduced a residual attention module in the encoder, which brings a
superior removal effect as shown from experimental data. For the network model training,
we combined pixel loss and structural similarity loss in order to produce results consistent
with human perception. Furthermore, we established a reflection image dataset named
SCAU-RID to study image reflection removal. By comparing our method with the state-of-
art, the quantitative and qualitative results revealed that the single image reflection removal
method proposed in this paper significantly improved the quality of restored images while
reducing the number of parameters.

There is a lack of a general framework in the field of image restoration, and the existing
models are developed and designed for specific tasks. In the near future, we aim to apply
the improved network to other image processing tasks such as rain removal, haze removal,
and shadow removal. Although we have achieved desirable results in our experiment, it
seems that we could not achieve good results for strong reflections over large areas, and
we will carry out more research on eliminating large and strong reflections afterwards.
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Appendix A

To better evaluate the performance of the proposed method comprehensively, we show
in Figure A1 the experimental results of our method on a larger number of samples. It can
be seen that for most of them, our method can remove most of the reflections. It is worth
noting that the experimental results for the strongly reflective images in the penultimate
row are not good. This is also a focus of our further research in the future.
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