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Abstract: The utility pole inclination angle is an important parameter for determining pole health
conditions. Without depth information, the angle cannot be estimated from a 2D image, and without
large labeled reference pole data, it is time consuming to locate the pole in the 3D point cloud.
Therefore, this paper proposes a method that processes the pole data from the 2D image and 3D point
cloud to automatically measure the pole inclination angle. Firstly, the mask of the pole skeleton is
obtained from an improved Mask R-CNN. Secondly, the pole point cloud is extracted from a PointNet
that deals with the generated frustum from the pole skeleton mask and depth map fusion. Finally,
the angle is calculated by fitting the central axis of the pole cloud data. ApolloSpace open dataset and
laboratory data are used for evaluation. The experimental results show that the AP75 of improved
Mask R-CNN is 58.15%, the accuracy of PointNet is 92.4%, the average error of pole inclination is
0.66◦, and the variance is 0.12◦. It is proved that the method can effectively realize the automatic
measurement of pole inclination.

Keywords: utility pole inclination angle; Mask R-CNN; PointNet; central axis fitting; 3D point cloud

1. Introduction

Utility poles, a common infrastructure feature of any city, play an important role for the
safety of transmission lines and the stable operation of power systems [1,2]. A large number
of utility poles are widely distributed throughout any city. The poles might tilt or even
collapse by natural events such as geological conditions, severe weather, collision damage,
and human activities such as engineering construction [3,4]. As a result, power failure and
casualties can occur [5]. Therefore, an effective pole inclination angle detection method
can monitor and predict the health conditions of utility poles. At present, research on the
detection method of pole inclination angle mainly focuses on the traditional instrument
measurement method, 2D image measurement method, and 3D point cloud measurement
method [6].

Traditional instrument measurement methods mainly include the plumb bob method,
theodolite measurement method, plane mirror measurement method, ground lidar method,
differential Global Positioning System (GPS) method, inertial sensor method, etc. [7,8]. The
plumb bob method requires the staff to lower a plumb bob from the top of the pole to the
ground, and the risk of climbing work is high. The theodolite measurement method and
plane mirror measurement method require multiple operations by professional surveyors,
which are inefficient and inaccurate. The ground lidar method first uses a reflected laser to
measure the positions of the four corners of the pole, then calculates the position of the top
and bottom center points, and finally obtains the inclination angle. The measurement error
of individual points is large, and the degree of automatic inspection is low. The differential
GPS method needs a receiver, and the inertial sensor method needs to arrange sensors;
obviously, the cost of implementation and maintenance is high. There are a few studies
on the detection of the inclination angle of the pole using either the 2D image or 3D point
cloud measurement method. The 2D image measurement method first detects the pole
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target, then extracts the centerline of the pole and calculates the inclination angle. Tragul-
nuch et al. [9] used image processing methods such as Canny edge detector and Hough
Transform to extract the linear features of the transmission tower, and then identified the
target of the transmission tower. Yang et al. [10] suggested the use of the backscattering
coefficient to roughly separate the transmission tower from the background, obtain the most
likely tower center point, and then calculate the inclination angle. Li et al. [11] proposed
that the shadow contour of the transmission tower was extracted by K-means clustering
and Hough Transform technique as the training dataset and the actual inclination angle was
used as the label, and the pre-trained back propagation (BP) neural network was adopted
to detect the inclination angle. Compared with traditional image processing algorithms,
deep learning can extract features with stronger robustness, better generalization ability,
and more accurate detection. Alam et al. [12] suggested that the pole images be segmented
by using the SegNet model, and then the segmented mask was filtered and morphologi-
cally processed; furthermore, Hough Transform was applied to get a line segment fitting
the pole skeleton and calculate the angle. Finally, the maximum inclination angle from
multiple perspectives was the detection result. Mo et al. [13] applied YOLO-V4 to detect
the transmission tower of interest in the region, the ResNet-50 model to detect the two
endpoints of the transmission tower, and then the inclination angle was calculated through
the endpoints. The authors [14–16] focused on using different deep learning models to
identify and locate magnetic pole targets without calculation of the pole inclination.

Angle detection based on a 3D point cloud is a normal approach. Lu et al. [17] extracted
the point cloud of the transmission tower from the point cloud data using unmanned
aerial vehicle-light detecting and ranging (UAV-LiDAR). Based on the height distribution
characteristics, it segmented the tower, located the central axis of the tower, and calculated
the inclination angle of the tower. Chen et al. [18] reconstructed the geometry of the
transmission tower based on the 3D point cloud from LiDAR, and realized the inclination
angle measurement of the transmission tower. Wang et al. [19] extracted the central axis
of the tower based on the contour line of the tower. The inclination of the tower was
determined according to the reference direction of the ground. Shi et al. [20] first obtained
ungrounded point clouds, and then extracted the pole-like objects by independence analysis
and circular or linear feature detection. Finally, the objects were classified as street lights,
utility poles, and traffic sign poles through 3D shape matching. Kang et al. [21] put forward
a shape-based segmentation model and region generation algorithm to detect pole-like
objects in voxelized point clouds, and then classified pole-like objects according to shape
and height features. Teo et al. [22] detected pole-like objects from coarse to thin. For the
preprocessed point cloud, the pole-like objects on the roadside were gradually segmented
through a variety of different segmentation methods. Thanh et al. [23] removed the ground
point cloud, and then used the horizontal cross section analysis and the minimum vertical
height standard to extract the pole-like objects from each clustered point cloud. Finally, the
pole-like objects were classified according to height and geometry.

The image segmentation algorithms based on deep learning methods include FCN,
U-Net, SegNet, DeepLab series, Mask R-CNN, YOLACT, SOLO, etc. [24,25]. FCN, U-Net,
Segnet, and the DeepLab series belong to semantic segmentation. FCN, with full convolu-
tion layer, is the first model to use deep learning to realize image semantic segmentation,
where the end-to-end network is constructed by convolution and deconvolution to realize
the classification of each pixel. U-Net adopts the U-shaped network structure for encoding
and decoding based on FCN, and uses skip connections to effectively fuse the encoded
shallow information and the decoded deep information. SegNet is similar to U-Net, but the
biggest difference is the use of down sampling and maximum pooling index for up sam-
pling instead of deconvolution during decoding, which reduces the training parameters.
The DeepLab series obtains multi-scale information through technologies such as atrous
convolution and atrous spatial pyramid pooling, and has high invariance to spatial trans-
formation. Mask R-CNN, YOLACT, and SOLO belong to instance segmentation, which
can complete segmentation and target detection tasks at the same time. YOLACT splits the
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instance segmentation task into two parallel subtasks, one of which uses FCN to generate
prototype masks, another of which generates detection boxes and mask coefficients. SOLO
series algorithms are not affected by the location of the anchor, and instance category
is introduced to transform the instance mask segmentation problem into a classification
problem. Mask R-CNN is improved from Faster R-CNN. The segmentation task is added in
parallel to the original classification and regression tasks, which realizes the high-precision
instance segmentation effect with a small computational cost. Compared with the above
image segmentation algorithms, instance segmentation has the function of target detection,
which can not only realize the positioning of the poles, but also is helpful to expand the
inspection content of the poles. Compared to the single-stage segmentation models, Mask
R-CNN [26] is a two-stage detection model that predicts masks in bounding boxes with
higher segmentation accuracy. Mask R-CNN is a flexible framework in which different
branches are easily added to complete different tasks, so it is more suitable for complex
street scene environments.

Point cloud segmentation algorithms based on deep learning usually include MVCNN,
VoxNet, PointNet, PointNet ++, RSNet and DGCNN, etc. [27]. MVCNN is a model based
on multi-view, which can be applied to extract features from projected images of point
clouds from different perspectives; however, the multi-view method will lose geometric
spatial information, resulting in inaccurate segmentation. VoxNet is a typical point cloud
voxelization method, which is convenient for feature extraction using neural networks.
However, there are also problems such as low efficiency of voxel grid arrangement due
to point cloud sparsity, large memory occupation, and information loss. PointNet is a
point cloud segmentation method directly based on point cloud, which directly takes a
point cloud as input, uses spatial transformation network to solve the problem of rotation
invariance, and uses symmetric function to fuse point cloud information to achieve global
feature extraction. PointNet reduces the computational complexity with higher classifi-
cation and segmentation accuracy. However, it also has the defects of weak extraction
of local information and loss of details in complex scenes. PointNet++ adds a local area
division module based on PointNet to fuse local features to improve the segmentation
effect. RSNet converts the unordered point cloud into an ordered sequence by slicing the
pooling layer, then processes the sequence by using the RNN layer, updates the features,
and finally, maps back to each point by slicing the pooling layer. DGCNN combines graph
convolution neural network (GCNN) with PointNet, replacing the multi-layer perception
(MLP) network in PointNet with edge convolution, and also achieves significant results.
The above segmentation models have achieved good segmentation results in the indoor
environment, but the outdoor environment is more abundant and complex, and the point
cloud segmentation is still difficult.

In all the studies reviewed here, these studies have together provided important
insights into the measurement of the pole inclination angle, but still have some limitations,
detailed as follows.

An effective and automatic pole inclination angle detection method is essential and
necessary for a power system [1–6]; however, there is still no such measurement method
at present.

The traditional instrument measurement method [7,8] is suitable for manually measur-
ing whether the pole installation meets the requirements, and not for automatic inspection.

1. The 2D image measurement method [9–16] can only measure the pole inclination
angle in one direction at a time, owing to the lack of depth information; therefore, the
pole inclination angle can be estimated by measuring several times.

2. Without large labeled reference pole data, locating the pole in the 3D point cloud is
time consuming; additionally, the resolution of the 3D point cloud is relatively low,
and thus, the pole segmentation result from the point cloud in a complex background
with a relatively large search space is usually not ideal [17–23].
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Aiming to address these challenges, we put forward a novel method using both 2D
image and 3D point cloud to realize the automatic measurement of the inclination angle of
poles at once. The main contributions of this paper are as follows:

1. The accuracy of pole skeleton segmentation is improved by expanding the bounding
box of Mask R-CNN to different values and adding attention mechanism to the head
network of Mask R-CNN.

2. The method of piecewise fitting is used to realize the fitting of the central axis of
cylinder-like objects, such as utility poles, and calculate the inclination angle, which
increases the accuracy of angle calculation in the case of interference points.

3. The fusion of 2D image and 3D point cloud makes full use of their complementary
features, which can not only realize the measurement of pole inclination at once, but
also meet the requirements of automatic inspection of poles.

The rest of the paper is organized as follows. Section 2 explains the proposed utility
pole inclination angle detection approach, followed by experiments and performance
evaluation in Section 3. Finally, conclusion and future works are given in Section 4.

2. The Proposed Method
2.1. The Framework of the Proposed Method

The detection flow is shown in Figure 1. Firstly, the pole mask obtained by the pole
image segmentation is fused with the depth map to generate a frustum, and then it is sent to
the point cloud segmentation model to obtain the pole point cloud. Finally, piecewise fitting
is used to obtain the central axis of poles and calculate the inclination angle of the poles.
During segmenting poles, in order to avoid background interference such as cross arms,
insulators, and wire on the poles, only the pole skeletons are marked when labeling, but the
accuracy of pole recognition is low. Therefore, the mask bounding box of Mask R-CNN is
modified to contain more feature information, and the convolutional block attention module
(CBAM) attention mechanism is added to the Mask R-CNN head network, which together
improve the accuracy of pole segmentation. Aiming at the incomplete cylinder-like [28]
point cloud of the outer contour of poles, this paper proposes a segmented processing
method. In the height direction, each small segment of the intercepted point cloud is
approximately processed into a cylinder and fitted using the Random Sample Consensus
(RANSAC) algorithm. The detection method makes full use of the feature that the image
can efficiently locate the pole object in complex scenes and the point cloud contains depth
information. It can not only detect the inclination angle of poles in any direction at one time,
but also reduces the difficulty of point cloud processing, improves the detection accuracy
of the pole inclination angle, and provides the possibility for automatic patrol inspection.

2.2. Pole Segmentation Based on Improved Mask R-CNN
2.2.1. Mask R-CNN

Mask R-CNN is a two-stage model. In the first stage, the pole image is sent to the
Backbone network to extract features, in which Mask R-CNN uses the feature pyramid
network (FPN) [29] for reference to fuse the feature maps of different stages. Then, the
region proposal network (RPN) is used to regress the anchor, and the proposal layer and
non-maximum suppression (NMS) are combined to filter out the region of interest (ROI). In
the second stage, ROI Align is performed on ROI to replace the original ROI Pooling. All
floating-point numbers are retained by bilinear interpolation to ensure feature resolution.
Then, the head network is implemented to achieve the classification and segmentation of
the final object. The mask branch of the head network adopts a fully convolutional neural
network (FCN) [30], which uses convolution and deconvolution to build an end-to-end
network to classify each pixel for achieving better results. The loss of Mask R-CNN is a
multi-target loss term, as shown in Equation (1), including classification loss, bounding box
regression loss, and mask loss.

L = Lcls + Lbox + Lmask (1)
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where, Lcls is the classification loss, Lbox is the bounding box regression loss, and Lmask is
the mask loss.
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2.2.2. Improvement of Mask R-CNN

Mask R-CNN does not work well for pole skeleton segmentation. Therefore, we
expanded the width of the bounding box generated by the mask. The expanded bounding
box can contain more pole features, and as the ground truth of the model, it affects the
convergence effect of the loss function of RPN and head network. In addition, an attention
mechanism is added to the head network, which allows the network to focus on key
confidence adaptively. The network structure of the improved Mask R-CNN is shown in
Figure 2. This chapter will introduce it in detail in the following sections.
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The pole is mainly composed of the skeleton, the cross arm and its facilities, wires,
and other parts, as shown in Figure 3a. The inclination angle of the pole mainly depends
on the skeleton, so only the skeleton part needs to be segmented. The pole skeleton
is labeled during training, and the skeleton mask is directly obtained during prediction,
avoiding interference from cross arms and wires. Since Mask R-CNN uses the circumscribed
rectangle of the mask as the target bounding box, and the pole skeleton is similar to the
light pole, traffic sign pole, and other pole-like objects, this leads to the problem of high
error rate in the recognition of the pole by Mask R-CNN. Cross arms and wires are also
important features for identifying poles. In Figure 3b, we expand the width w0 and height
h0 of the original bounding box, respectively, so that the network can extract more pole
features and increase the accuracy of identification. As shown in Figure 3c, we observed
that the more other features are covered with the larger angle ∂ = arctan

(
w0
h0

)
between the

diagonal and the vertical line of the original bounding box, the smaller the size needs to be
expanded in the original width direction. Therefore, the original width w0 is expanded to
different values according to the angle ∂.
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Figure 3. Expanding bounding box. (a) The structure of the pole; (b) Bounding box expansion;
(c) Bounding box expanding to different values according to ∂. In this case, the red line represents
the original bounding box and the blue line represents the expanded bounding box. The left side is
expanded by 0.51 w0 and the right side by 1.33 w0 in the width direction of the original bounding box.

According to the statistical results of the angles ∂ in the data set, it is found that most
of the angles ∂ are concentrated between 0–10◦; furthermore, the angle is divided into three
intervals: 0–3◦, 3◦–6◦, and greater than 6◦. The expanded bounding box can be described as

wn =


w0 + 2× (1.6− ∂× 0.1)× w0 0 ≤ ∂� 3

◦

w0 + 2× (1.1− ∂× 0.1)× w0 3
◦
< ∂� 6

◦

w0 ∂ > 6
◦

hn = h0 + w0

(2)

where, wn is the width of the newly generated bounding box and hn is the height of the
newly generated bounding box.

Figure 4 shows the comparison of the original bounding box and the expanded
bounding box, where the red line represents the original bounding box and the blue line
represents the expanded bounding box.
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CBAM is a lightweight feed-forward neural network module that can be easily inte-
grated into any convolutional neural network (CNN) architecture. By adaptively adjusting
channel weight parameters and feature weight parameters, it can help the network learn to
focus on key information to improve the accuracy of mask segmentation [31]. The segmen-
tation accuracy of the pole mask has a great impact on the quality of the 3D point cloud, so
the CBAM is referenced in the second stage of Mask R-CNN. As shown in Figure 5, CBAM
is a combination of the Channel Attention Model and Spatial Attention Model. Given
an intermediate feature map F ∈ RC×H×W , a 1D channel attention map MC ∈ RC×1×1

is inferred through Channel Attention Model. After element-wise multiplication of MC
and F, the adjustment result F′ of the Channel Attention Model is obtained, which is also
used as the input of the Spatial Attention Model. Then, the 2D feature attention map
MS ∈ R1×H×W is inferred through the Spatial Attention Model, which is multiplied by F′

to get the final output feature map F′′ ∈ RC×H×W .

F′ = Mc(F)⊗ F
F′′ = Ms(F′)⊗ F′

(3)
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The CBAM attention mechanism is integrated into the convolution (Conv) and de-
convolution (Deconv) parts of the Mask R-CNN head network, which are the Conv_cbam
block and the Decon_cbam block, respectively. The head network structure followed by the
introduction of the CBAM attention mechanism is shown in Figure 6.
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2.3. Pole Mask and Depth Map Fusion

The method of mask and depth map fusion has the following advantages: (1) Using
the two-dimensional recommendation area provided by the mask, most of the interfering
background can be quickly excluded. The mask is fused with the depth map to form a
frustum [32], which reduces the 3D search space, the number of point clouds, and the
difficulty of point cloud processing. (2) The image has rich color and texture information,
so the image detector can detect instance objects more accurately and efficiently, which can
be used as a front-end strategy for point cloud processing. At the same time, the point cloud
has three-dimensional spatial structure information, which can make up for the image lack
of depth information.

By using the depth information of the depth map and the known projection matrix,
the 2D pixel points of the segmented pole mask can be raised to the 3D frustum containing
the pole object, which is used as the input of point cloud segmentation model. Further, after
eliminating the interference points through point cloud segmentation processing, a more
accurate pole point cloud can be obtained. The frustum generated by the predicted mask
is used as the point cloud segmentation object during testing. When training the point
cloud segmentation model, the frustum generated by the ground-truth mask is used as the
training dataset to ensure the correctness of the training dataset and labels. The randomly
transformed ground-truth mask is closer to the predicted mask of the image segmentation
model, which helps to improve the robustness of the point cloud segmentation model.

2.3.1. Labeling Mask Random Transform

The random transformation of the mask is realized by randomly changing the center
point position and outline size of the mask. The principle of random transformation is
shown in Figure 7. The process is as follows.
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Equation (4) is used to calculate the original center point position, the distance and
slope of the line connecting the center point, and the contour point. The original center
point position refers to the average coordinate position of all contour points.

x0 = 1
n

n
∑

i=1
xi

y0 = 1
n

n
∑

i=1
yi

d0 =
√
(x0 − xi)

2 + (y0 − yi)
2

k0 = (yi − y0)/(xi − x0)

(4)

where, (x0 , y0) is the coordinate position of the center point, (xi , yi) is the coordinate
position of the contour point, d0 is the distance from the center point to the contour point,
and k0 is the slope of the line connecting the center point and the contour point.

(1) The center point position, distance and slope are randomly transformed by
Equation (5). {

xn0 = x0 + r0 × w , r0 ∈ (−0.1, 0.1)
yn0 = y0 + r0 × h, r0 ∈ (−0.1, 0.1)
dn = d0 × r1, r1 ∈ (0.9, 1.1)
kn = k0 × r1, r1 ∈ (0.9, 1.1)

(5)

where, (xn0, yn0) is the coordinate position of the center point after the transformation, dn
and kn are the distance and slope after the transformation, respectively.

(2) The new contour point coordinates from the transformed center point, slope, and
distance are calculated as Equation (6):{

dn =
√
(xni − xn0)

2 + (yni − yn0)
2

kn = (yni − yn0)/(xni − xn0)
(6)

where, (xni , yni) is the coordinate position of the transformed contour point.
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2.3.2. 3D Reconstruction of Utility Poles

The transformation of the world coordinate system, camera coordinate system, image
coordinate system, and pixel coordinate system will be involved in the generation of the
pole. In Figure 9, Pw is a point in space, which is represented by (XPw, YPw, ZPw) in the
world coordinate system and (XPC, YPC, ZPC) in the camera coordinate system. The point
Pw on the imaging plane is denoted by p, which is represented as (x, y) in the image
coordinate system and (u, v) in the pixel coordinate system.

Appl. Sci. 2023, 13, 1688 11 of 23 
 

 
Figure 9. Coordinate system transformation. 

The spatial point 𝑃  (𝑋 , 𝑌 , 𝑍 ) in the world coordinate system can be trans-
formed into the imaging point p (u, v) in the pixel coordinate by the transformation matrix, 
as shown in Equation (7). 

𝑍 𝑢𝑣1 = ⎣⎢⎢
⎢⎡ 1𝑑𝑥   0   𝑢0   1𝑑𝑦   𝑣0    0     1 ⎦⎥⎥

⎥⎤ 𝑓  0  0  00  𝑓  0  00  0  1  0 𝑅  𝑡0   1 𝑋𝑌𝑍1                                          (7)

where, dx and dy represent the actual physical size of a single pixel along the x-axis and 
y-axis, (𝑢 , 𝑣 ) is the coordinate value of the camera coordinate system origin o in the 
pixel coordinate system, f represents the camera focal length, and R and t represent the 
rotation matrix and offset vector converted from the world coordinate system to the cam-
era coordinate system, respectively. 

Similarly, combined with the depth information provided by the depth map, the 
pixel points provided by the pole mask can be transformed into the spatial points in the 
world coordinate system by using the transformation matrix, and the frustum point cloud 
containing the poles and interference points can be obtained. Figure 10 illustrates the 
transformation results. 

 
Figure 10. 3D reconstruction results. 

  

Figure 9. Coordinate system transformation.



Appl. Sci. 2023, 13, 1688 11 of 22

The spatial point Pw (XPw, YPw, ZPw) in the world coordinate system can be trans-
formed into the imaging point p (u, v) in the pixel coordinate by the transformation matrix,
as shown in Equation (7).

ZPC

u
v
1

 =

 1
dx 0 u0
0 1

dy v0

0 0 1


 f 0 0 0

0 f 0 0
0 0 1 0

[ R t
0T 1

]
XPw
YPw
ZPw

1

 (7)

where, dx and dy represent the actual physical size of a single pixel along the x-axis and
y-axis, (u0, v0) is the coordinate value of the camera coordinate system origin o in the
pixel coordinate system, f represents the camera focal length, and R and t represent the
rotation matrix and offset vector converted from the world coordinate system to the camera
coordinate system, respectively.

Similarly, combined with the depth information provided by the depth map, the
pixel points provided by the pole mask can be transformed into the spatial points in the
world coordinate system by using the transformation matrix, and the frustum point cloud
containing the poles and interference points can be obtained. Figure 10 illustrates the
transformation results.
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2.4. Utility Pole Point Cloud Segmentation
2.4.1. Preprocessing

The frustum point cloud obtained by the 3D reconstruction still contains some back-
ground interference points. Before the point cloud segmentation, preprocessing is per-
formed to remove noise and enhance features for the segmentation. The processing method
is as follows.

(1) Because the statistical filter has a better effect on the removal of outliers with
large density differences, the statistical filter is used to filter the frustum point cloud. The
principle of the statistical filter is as follows. Calculate the average distance di from each
point to the k points in the neighborhood. The average distance of all point clouds conforms
to the Gaussian distribution. A distance threshold dmax is set by the mean µ and standard σ

deviation of the Gaussian distribution. Points whose average distance exceeds the distance
threshold are defined as outliers outlieri. The statistical filter can be written as

di =
1
k

k

∑
j=1

√(
xij − xi

)2
+
(
yij − yi

)2
+
(
zij − zi

)2 (8)

µ =
1
n

n

∑
1

di (9)
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σ =

√
1
n

n

∑
1
(di − µ)2 (10)

dmax = µ± α·σ (11)

outlieri =

{
true, di > dmax
f alse, others

(12)

where, (xi , yi , zi) represents the coordinate of any point in the point cloud,
(

xij , yij , zij
)

represents the coordinate of any adjacent point among the k points in the neighborhood, n
represents the number of point clouds, and α represents the standard deviation coefficient.

(2) The visible point is determined from the viewpoint position, and the color is added
to the visible point, which can not only increase the color feature of the pole and improve
the point cloud recognition rate, but also distinguish the pole and the noise point, which is
conducive to the point cloud labeling.

(3) The down sampling process can reduce the density of the point cloud. In order
to ensure that the point cloud after down sampling maintains the original structure as
much as possible, a uniform down sampling method is used. The number of frustum point
clouds varies, which is inconvenient as an input sample for the PointNet model. Randomly
select N point from the point cloud for a fixed number, and repeat the selection when the
number of point clouds is less than N.

(4) Normalization can accelerate the convergence speed of the model. The frustum point
cloud contains 6 dimensions (x, y, z, r, g, b), and the point cloud is normalized using Equation (13).{

x1 = x0−µ
σ

c1 = c0/255
(13)

where, x0 represents the position (x, y, z) data of the original coordinate point, x1 represents
the position data of the normalized coordinate point, µ is the mean of the original coordinate
point position data, σ is the variance of the original coordinate point position, c0 represents
the color of the original coordinate point (r, g, b) data, c1 representing normalized color data.

Here, k is set to 20, and α is set to 2. The down sampling multiple is 5. After down
sampling, the original point cloud of about 25 k is reduced to about 5 k. N = 4096 is selected as
the fixed number of point clouds. Figure 11 shows the intermediate process of preprocessing.
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2.4.2. PointNet Point Cloud Segmentation

The instance segmentation of the pole images has been classified into categories; there-
fore, point cloud segmentation only needs to distinguish the foreground and background.
Although Pointnet [33] is a lightweight network model, it has achieved good results in both
point cloud classification and point cloud segmentation. Considering the segmentation
speed and accuracy requirements, PointNet is selected as the point cloud segmentation
model. Figure 12 shows the PointNet point cloud segmentation model. The preprocessed
frustum is input. Firstly, the MLP network is used to gradually upgrade the point cloud
from 6 (x, y, z, r, g, b) dimensions to a high-dimensional space of 1024 dimensions, in which
two T-Net networks are introduced to solve the point cloud rotation invariance problem.
Then, the Max Pooling is taken as a symmetric function to extract the global features of
the point cloud. Finally, the local features of each point are fused with the global features,
and then the point cloud dimension is gradually reduced to two dimensions through
MLP again.
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During data acquisition, the poles probably exist on the left and right sides of the
acquisition device, so there are the pole point cloud data in the positive and negative
intervals of the camera coordinate system. Compared to the rectified linear unit (ReLU)
function, the leaky ReLU (LReLU) function has a relatively small slope α on the negative
axis, as shown in Equations (14) and (15). To avoid the disappearance of the gradient,
LReLU replaces the ReLU activation function as the intermediate layer activation function.
The activation function of the output layer uses the Sigmoid function and the binary cross
entropy loss function is applied to calculate the loss, which is calculated as Equation (16).

ReLU(x) =
{

x, x > 0
0 , x ≤ 0

(14)

LReLU(x) =
{

x, x > 0
αx, x ≤ 0

(15)

Loss = − 1
n

[
n

∑
i=1

yi log y′i + (1− yi) log
(
1− y′i

)]
(16)

where, i represents the ith sample, n represents the number of samples, yi represents the
true label value, y′i represents the predicted value, and Loss represents the loss value.

2.5. Pole Central Axis Fitting and Angle Calculation

The shape of the outer contour of the pole is mostly an approximate cone or cylinder.
The pole point cloud is a set of point clouds with an outer contour of half arc surface and
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inclination in any direction of space. It is difficult to directly fit the regular geometric model
to obtain an accurate central axis. Hence, the method of piecewise fitting is implemented
to obtain the central axis of the pole point cloud and calculate the inclination angle. The
specific steps are as follows:

(1) The pole point cloud is divided in the height direction (Y-axis), and then the point
cloud data is cut out in two planes every 0.5 meters along the Y-axis direction, and each
piece of the segmented data is processed separately.

(2) Each intercepted point cloud is processed into a cylinder model, which is fitted
using the RANSAC algorithm [34]. The basic flow of the algorithm is as follows:

Step 1: Randomly select n points from the sample data set to construct the initial model.
Generally, the least mean square algorithm is used to calculate the model parameters, where
n needs satisfy the minimum data required for the model, for the cylinder model, n > 6.

Step 2: The constructed model is used to test other data points, then the deviation of
all sample points from the model is calculated. Set a threshold T. Next, the sample points
whose deviation is less than the threshold T are considered as inner points, otherwise, they
are considered as outer points.

Step 3: Only the more accurate model is retained according to the number of interior
points and the error rate of the model.

Step 4: Repeat the above steps until the set number of iterations k is met.
Here, n is set to 100, T is set to 0.3, and k is set to 10,000, experimentally. In addition,

the estimated radius of the cylinder R is set to 0–3, and the distance weight of the surface
normal is set to 0.2. After the RANSAC algorithm iteration, the output result is an inner
point set with noise-free and seven model parameters including the position coordinate
(x, y, z) of a point on the axis, the axis direction vector

(→
x ,
→
y ,
→
z
)

, and the cylinder radius
R. The parameters uniquely determine a cylinder model, and then the coordinates of any
other point on the axis can be expressed as Equation (17). Select five points equidistant
from the axis of each section as the center point.

x1 = x + t×→x
y1 = y + t×→y
z1 = z + t×→z

(17)

where, (x1, y1, z1) is the position coordinate of any point on the axis, t is a constant, which
is determined by the intercepted interval position and the number of selected points.

(3) Referring to the space linear equation, as shown in Equation (18), the least squares
method is used to fit the spatial straight line for the center points obtained by all the
segments [35], which is expressed as Equation (19), and the fitted spatial straight line is the
central axis of the pole.

The fitting results of the central axis of the pole are shown in Figure 13.

xi − x0

m
=

yi − y0

n
=

zi − z0

p
(18)

[
m x0
n y0

]
=

[
∑ xizi ∑ xi
∑ yizi ∑ yi

][
∑ zi

2 ∑ zi
∑ zi n

]−1

(19)

(4) Arbitrarily take two points on the central axis of the pole, and use Equation (20) to
calculate the inclination angle of the pole.

θ = 90
◦ − arctan

 Y2 −Y1√
(X2 − X1)

2 + (Z2 − Z1)
2

× 180
π

(20)

where, (X1, Y1, Z1), (X2, Y2, Z2) are the coordinate values of the two points on the central
axis, respectively.
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3. Experiment and Analysis
3.1. Datasets

This study uses the open-source dataset ApolloScape [36]. Compared to real-world
datasets such as KITTI or Cityscapes [37], ApolloScape contains larger and richer scenes
and the point clouds generated by LiDAR are more dense, which contains a large number
of complete roadside objects such as signboards, street lamps, and utility poles, providing
RGB images with a resolution of 3384 × 2710 pixels and corresponding depth maps. When
training the image segmentation model, 3000 pictures containing utility pole objects are
selected as the data set, of which, 2000 are used as training sets, 500 are used as test sets
and 500 are used as verification sets.

When training the pole point cloud segmentation model, 5000 frustums generated by the
pole mask and depth map were selected, of which, 3000 were used for training, 1000 for test set
and 1000 for verification set, and frustums were annotated by CloudCompare software.

3.2. Model Training

The experiment was performed on an Inspurserver with operating system UBUNTU18.04
and two NVIDIA Tesla T4 16G GPUs. The deep learning framework was TensorFlow1.15.0.
The COCO dataset contains complex scenes of common objects in the natural environment,
which is often used for object detection and instance segmentation [38]. The improved Mask
R-CNN is transfer learning based on the pre-trained weights for the COCO dataset. The image
resolution is adjusted to 1024 × 1024 (pixels). Stochastic gradient descent was performed with
the stochastic gradient descent with momentum (SGDM) optimizer, of which, a batch size is 2,
an initial learning rate is 0.001, and a momentum factor is 0.9. The head network is trained for 20
epochs, and all network layers are trained for 40 epochs. ResNet50-FPN, ResNet101-FPN, and
ResNet152-FPN backbone networks were used for testing, respectively [39]. From the training
results in Figure 14, it is found that the loss curve of ResNet101-FPN has the best convergence
effect, and the loss is reduced to less than 0.2. Therefore, ResNet101-FPN is selected as the
backbone network of the model.

The open-source SUN-RGBD dataset is a large-scale 3D dataset with dense annotations,
often used for scene understanding [40]. When training PointNet, the SUN-RGBD dataset
label is first modified to retain only the foreground and background, and then it is used to
pre-train PointNet to enable the network to perform feature extraction. On this basis, the
manually annotated frustum point cloud is trained, and gradient descent using adaptive
moments estimation (Adam) optimizer with batch size 8 is used. An exponential decay
learning rate is adopted, the initial learning rate is 0.001, the decay period is 300,000 steps,
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and the decay rate is 0.5. A total of 50 epochs were trained. In Figure 15, the Loss curve
and Accuracy curve of the training process show that the loss value decreases rapidly at
the beginning of training, the accuracy rate increases rapidly, and then gradually stabilizes.
Finally, the loss value decreases to less than 0.2, and the accuracy rate gradually increases
to about 94%.
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3.3. Model Evaluation and Result Analysis

The Mask R-CNN model is evaluated by average precision (AP). AP refers to the area
surrounded by precision-recall (P-R) curves and coordinates under a certain intersection
union ratio (IoU), which is used to represent the average correctness of detection under
different recall rates. For example, AP50 represents the value of AP when the IoU threshold
is 0.5. The recall rate (R), precision (P), and AP are displayed as

R =
TP

TP + FN
(21)

P =
TP

TP + FP
(22)

AP =
∫ 1

0
Prdr (23)

where, TP represents the part correctly predicted as the pole, FN represents the part where
the pole is incorrectly predicted as the background, and FP represents the part where the
background is incorrectly predicted as the pole. P(r) refers to the P-R curve.
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Table 1 shows the experimental results. The accuracy of the original Mask R-CNN
for pole skeleton segmentation is relatively low, and the AP75 is significantly lower when
the IoU is at a high threshold of 0.75. Compared with the original Mask R-CNN, the
segmentation accuracy after expanding bounding box has been significantly improved.
Among them, P is increased by 30%, and AP75 is increased by 50%, which proves that the
correction of the bounding box has a greater impact on the segmentation accuracy. Only
adding the CBAM attention mechanism can improve the detection effect of the pole to a
certain extent. The combination of bounding box modified and CBAM attention mechanism
has the best effect with AP50 and AP75, improving by 1% and 52%, respectively. When the
IoU is 0.5, P and R increase by 32% and 0.5%, respectively, which reduces the error rate of
pole recognition and increases the accuracy of pole segmentation.

Table 1. Comparison of segmentation effect.

Method P R AP50 AP75

Mask R-CNN 63.3% 99.25% 90.55% 6.58%
Mask R-CNN + box expanded 93.16% 99.5% 90.11% 57.05%

Mask R-CNN + CBAM 67.23% 95.3% 90.62% 8.03%
Mask R-CNN + box expanded + CBAM 95.03% 99.7% 91.13% 58.15%

The test effects of the original model and the improved model are intuitively shown in
Figure 16.
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The point cloud segmentation effect is evaluated by accuracy (ACC) and IoU. After
training, the accuracy and intersection over union of PointNet segmentation are 92.4% and
83.7%, respectively. ACC and IoU can be obtained from the following equations.

ACC =
PCt

PCp
(24)

IoU =
PCt

PCp + PCgt − PCt
(25)

where, PCt is the number of point clouds correctly predicted as the poles, PCp is the number
of point clouds predicted as the poles, and PCgt is the number of point clouds that actually
contain pole.

After the central axis fitting and angle calculation, the overall detection results are
shown as Figure 17, where the detected angle is the inclination angle in the camera coordi-
nate system.
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3.4. Angle Verification and Analysis
3.4.1. Experimental Environment

In order to verify the correctness of the measurement of the pole from different
observation directions at a fixed inclination angle, a pole model for simulation was designed
and built in the laboratory. The depth camera Percipio DS460 is used to obtain the depth
map of the pole.
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The pole is fixed on the inclined platform, and the camera is adjusted to the horizontal
position. For simplified calculation, the camera coordinate system and the world coordinate
system are set to the same coordinate system. The inclination angle is adjusted by the
inclined platform every 2◦ from 0–10◦ and the observation direction is adjusted by rotating
the platform every 45◦ in a clockwise direction from 0–360◦. The average value of five
measurements is taken as the final result of this inclination angle and observation direction.
The experimental environment is shown in Figure 18. Where, 1. pole model, 2. depth
camera, 3. image processing system, 4. rotating platform, 5. inclined platform, and 6. angle
measuring instrument.
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Figure 18. The experimental environment of the simulated pole. Where, 1. pole model, 2. depth
camera, 3. image processing system, 4. rotating platform, 5. inclined platform, and 6. angle
measuring instrument.

3.4.2. Processing

The intermediate process is shown as Figure 19. Firstly, the collected depth map is
manually segmented and the pole skeleton is randomly transformed. Then, using the
camera projection matrix, the frustum is generated through 3D reconstruction and the pole
point cloud is obtained after the frustum is preprocessed and segmented by the PointNet.
Finally, the central axis of the pole is fitted, and then the inclination angle is obtained.
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where the pole points are in the white dot line box; (f) Central axis fitting.
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3.4.3. Analysis of Experimental Results

The error range of the inclination angle of the pole is 0–1.35◦, the average error is
0.66◦, and the variance is 0.12◦ (Table 2). Under the same inclination angle and different
observation directions, the average error range of detection is 0.61◦–0.72◦. Among them,
there is a maximum error of 1.35◦ when the inclination is 2◦ and the observation direction is
270◦. One possible reason is that the inclination angle error is affected by the measurement
error of the angle sensor and remote observation error of the depth camera. The variance
range is 0.11◦–0.2◦ under different observation directions at the same inclination angle,
the reason for which is that under different observation angles, the distribution of pole
objects and background interference points in the frustum generated by the mask fusion
depth map are different, so the segmented pole point cloud is naturally different, which
eventually leads to the difference in the inclination angle calculated by the central axis
fitting.

Table 2. Pole angle distribution.

Inclination Angle
Rotation Angle

Average Error Variance
0 45 90 135 180 225 270 315

0 0.91 0.35 0.82 0.45 0.65 1.15 0.32 1.14 0.72 0.11
2 2.35 2.34 2.65 2.42 2.85 2.32 3.35 2.92 0.65 0.14
4 4.33 4.27 4.53 5.15 4.71 4.53 5.12 5.07 0.71 0.13
6 6.56 6.69 6.05 6.74 7.32 6.15 7.13 6.32 0.62 0.20
8 8.35 8.86 8.44 9.13 8.62 8.81 8.06 8.78 0.63 0.11
10 10.53 10.36 10.94 10.43 10.52 11.11 10.84 10.13 0.61 0.11

4. Conclusions

A new method using 2D image and 3D point cloud to estimate the inclination angle of
a pole has been proposed. The method has the following features:

1. The expanded bounding box and the attention mechanism are the main influencing
factors for improving Mask R-CNN in pole detection. It effectively executes to locate
the pole by reducing the searching space in the 3D point cloud.

2. It can segment high-quality pole data from the raw point cloud by introducing the
pole mask feature and depth map fusion.

3. It can estimate the inclination angle of the pole point cloud by fitting the central axis
of the cylinder-like objects, even in scenarios of noise or missing point cloud.

The method could be improved by:

1. As the quality of the pole visible light (RGB) image could be insufficient in variable
light, such as strong sunlight or rain, the improved Mask R-CNN might not accurately
detect the pole. The preprocessing step of enhancing the RGB image is necessary for
the automatic detection method.

2. As the unmatched 2D image is captured from a visible light camera and the 3D point
cloud is captured from LiDAR or a depth camera, the reduced point cloud searching
space in the new method might not able to locate the pole.

In the future, the present study will be extended to optimize the algorithm running
speed on edge computing devices for large-scale pole inclination angle estimations in a city.
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