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Abstract: As Machine Learning technologies evolve, there is a desire to add vision capabilities to
all devices within the IoT in order to enable a wider range of artificial intelligence. However, for
most mobile devices, their computing power and storage space are affected by factors such as cost
and the tight supply of relevant chips, making it impossible to effectively deploy complex network
models to small processors with limited resources and to perform efficient real-time detection. In
this paper, YOLOv5 is studied to achieve the goal of lightweight devices by reducing the number
of original network channels. Then detection accuracy is guaranteed by adding a detection head
and CA attention mechanism. The YOLOv5-RC model proposed in this paper is 30% smaller and
lighter than YOLOv5s, but still maintains good detection accuracy. YOLOv5-RC network models
can achieve a good balance between detection accuracy and detection speed, with potential for its
widespread use in industry.

Keywords: object detection; lightweight; deep learning; reduce channels; coordinate attention

1. Introduction

With the advent of the Internet of Everything, IoT devices are developing at a rapid
pace. We are entering the era of “Artificial Intelligence + Internet of Things” at a fast pace.
At the same time, computer vision has been developed for many years and has now entered
a phase of large-scale application. Hence, the first idea to enable AI for IoT devices is to add
vision to IoT devices. However, for most of the current IoT mobile devices, such as logistics
robots, floor sweepers, and commercial drones, the storage space of their devices is affected
by cost factors, making it difficult to use high-precision models with large object detection
networks. In many application scenarios, the devices in question have limited computing
power and memory capacity. It is difficult to deploy large object detection network models
with large weight parameters for applications. Compared to traditional machine learning
object recognition methods, the current object detection algorithms include one-stage and
two-stage categories. The two-stage methods are RCNN [1], Fast R-CNN [2], Faster R-
CNN [3], Mask R-CNN [4], SPP-net [5], while the one-stage methods include YOLO [6–9]
and SSD [10]. Therefore, it is important to make the mainstream large object detection
network models somewhat lighter, which is also a popular and important focus in the field
of object detection research.

In today’s booming world of deep learning, it is particularly important to build object
detection networks with attention mechanisms that are capable of autonomous learning.
Attention mechanisms are currently widely used in the field of computer vision. On the
one hand, such neural networks can learn the attention mechanism autonomously through
back propagation, and on the other hand, the attention mechanism can in turn help us to
understand the world seen by the neural network.

To address these issues, this paper selects the YOLOv5 network for the object lightweight
improvement. The main idea of the lightweight network is to reduce the number of
parameters per layer of convolution by reducing the channel width of the YOLO v5
network model. At the same time, the CA attention mechanism module is added to ensure
the accuracy of object detection. By experimentally comparing the position of the CA
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attention module, the optimal position is determined, which ultimately compensates for
the disadvantage of reduced accuracy of object detection due to the reduced number of
channels and network width.

This paper proposes the optimized lightweight YOLOv5-RC (YOLOv5-Reduced chan-
nel and Coordinated attention) model. The following innovations are proposed:

(1) It reduced the number of channels of YOLOv5, which is necessary to add a new
net-work to extract different resolution feature maps,

(2) Then added a matching detection head based on the feature maps in (1),
(3) Finally it continued to add a coordinated attention module in the best place.

The rest of this paper is as follows: Section 2 describes some existing work and ideas
on a lightweight detection model based on deep learning. Section 3 describes how to adjust
the number of channels and model replacement in the baseline YOLOv5 network. Section 4
describes the experimental environment, experimental procedures, and result analysis.
Finally, Section 5 concludes the entire text.

2. Related Work
2.1. Lightweight Detection Based on Deep Learning

This section reviews some classical approaches to lightweight networks and the
contributions made by previous authors to lightweight networks. Recently, a lot of research
has focused on multi-class detection based on deep learning and convolutional neural
networks. Firstly we would summarize the lightweight detection model of two-stage
models. Arun R. A et al [11] demonstrated that Faster R-CNN ResNet101 V1 which
developed as a lightweight model as 9MB size outperformed every other model and
achieved mAP of 74.77%. Rossi Leonardo et al. [12] designed the Self-Balanced R-CNN
(SBR-CNN), an evolved version of the Hybrid Task Cascade (HTC) model, which brought
brand new loop mechanisms of bounding box and mask refinements. It shows the same or
even better improvements if adopted in conjunction with other state-of-the-art models—in
fact, with a lightweight ResNet-50 as backbone. Park J [13] presented a lightweight Mask
RCNN model which had the former backbone replaced with MobileNetV2, while the
convolution operation of the RPN was replaced with Depthwise Separable Convolution
operation. This lightweight Mask RCNN model showed a 64% lower number of parameters
compared to the base model, achieving similar mAP to the other base models. Park [14]
proposed a lightweight network efficient shot detector (ESDet) based on deep training
with small parameters which used depthwise and pointwise convolution to minimize the
computational complexity during the feature extraction process.

Although the above two-stage models had be lightweight, they maybe still unsuitable
for detecting multi-scale elements in time. Hence, let us focus on the one-stage model.
Bouderbal Imene et al. [15] proposed a CS_SSD lightweight model which focused the
Single-Shot Detector (SSD) network redesigned to operate in CS networks function, con-
taining a compression-reconstruction approach as an encoder-decoder neural network.
Their CS_SSD achieves a compelling accuracy while being 30% faster than its original
counterpart on small GPUs. Panigrahi [16] worked on MultiScale MultiLevel SqueezeNe-
tYOLOv3 which is a modified lightweight YOLOv3. Two Squeeze & Expand blocks are
embodied in SqueezeNet at specific levels of the network to extract a hierarchical feature
representation. Cheng, Rao [17] designed SAS-YOLOv3-tiny detection algorithm which
has a light Sandglass-Residual (SR) module based on depthwise separable convolution;
the channel attention mechanism is constructed to replace the original convolution layer,
and the convolution layer of stride two is used to replace the max-pooling layer for ob-
taining more informative features and promoting detection performance while reducing
the number of parameters and computation. Li [18] proposed a lightweight YOLOv3
with Mobilenetv2 as the backbone which used depthwise separable convolution to replace
3 × 3 convolutional kernels in the detection head. Gu Y [19] researched a lightweight
real-time traffic sign detection integration framework based on YOLOv4 by combining
deep learning methods in the field of intelligent transportation. Its framework optimizes
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the latency concern by reducing the computational overhead of the network, and facilitates
information transfer and sharing at diverse levels. Ma [20] solved the problem of deploying
on edge devices with limited computing resources and memory, so that they worked on a
lightweight detector named Light-YOLOv4. They performed sparsity training by applying
L1 regularization to the channel scaling factors, so the less important channels and layers
could be found. Channel pruning and layer pruning would be enforced on the network
to prune the less important parts, which could significantly reduce the network’s width
and depth. Moreover, compared with other state-of-the-art methods, such as SSD and FPN,
Light-YOLOv4 is more suitable for edge devices.

2.2. Lightweight YOLOv5

As we know, traditional object detection has resulted in large model size and slow
detection speed; as such, the application of object detection technologies under different
application environments needs better real-time and lightweight performance. Because of
this, a lightweight object detection method based on the You Only Look Once (YOLO) v5
algorithm and attentional feature fusion have been proposed to address this problem, and
to produce a harmonious balance between accuracy and speediness for target detection
in different environments. Liu W et al. [21] proposed YOLOv5-tassel to detect tassels
in UAV-based RGB imagery. A bidirectional feature pyramid network was adopted for
the path-aggregation neck to effectively fuse cross-scale features. The robust attention
module of SimAM was introduced to extract the features of interest before each detection
head. It is better than well-known object detection approaches, such as FCOS, RetinaNet,
and YOLOv5. Wan F [22] presented a lightweight model YOLO-LRDD for road damage
identification by enhancing the YOLOv5s approach. Its backbone network Shuffle-ECANet
worked by adding an ECA attention module into the lightweight model ShuffleNetV2.
Furthermore, it employed BiFPN rather than the original feature pyramid network since
it improves the network’s capacity to describe features. So that YOLO-LRDD provided a
good balance of detection precision and speed.

Currently, the standard convolution is the main part of the convolution neural network,
which is also the most computationally complex part of the whole network model. The FLOPs
and parameters of the convolution can be basically considered as the following equation:

FLOPs = k2 ∗ Hout ∗ Wout ∗ Cin ∗ Cout (1)

Parameters = k2 ∗ Cin ∗ Cout (2)

where FLOPs are the number of floating point operations, and can be seen as the amount
of computation, k2 is the size of the convolution kernel, Cin and Cout are the number
of channels of input and output, Hout and Wout are the width and length of the output
feature map.

Many approaches have been used to modify the convolution network in terms of
changing the convolution strategy. For example, Howard A et al. proposed MobileNet.
They believe that this network pushes the state of the art for mobile-tailored computer
vision models; the core is depth-wise separable convolutions and it is a key building block
for many efficient neural network architectures [23,24]. Replacing normal convolution
with depth-wise separable convolution can significantly reduce the computational effort.
In addition, there are similar examples of the ShuffleNet. Thanks to pointwise group
convolution with channel shuffle, all components in a ShuffleNet unit can be computed
efficiently [25,26]; the group convolution mentioned in the paper is also a convolution
strategy to reduce the FLOPs and the number of parameters. Similarly, there are examples
in GhostNet. The paper mentions the supposition that the output feature maps are “ghosts”
of a handful of intrinsic feature maps with some cheap transformation [27]. It uses the
unique ghost convolution. The ghost convolution uses normal convolution to obtain only
some features, and then uses a linear operation to obtain some redundant features.
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These methods have been shown to be effective, and the use of these convolution
strategies to replace the YOLOv5 network could achieve a reduction in FLOPs and the
number of parameters, but it also leads to some degradation in detection accuracy. We
believe that using these lightweight modules to modify the YOLOv5 network would
undermine the integrity of the network model, and in using these strategies to reduce
the feature maps obtained by convolution, a portion of the feature maps that are useful
for the final detection would inevitably be removed, bringing a reduction in detection
accuracy. However, the number of channels of the network model could be adjusted
directly according to the size of the data set. Although this would result in obtaining
fewer underlying features, since we would adjust the number of channels in a way that
matches the size of the data set, it would allow for smoother removal of features that are not
very helpful to the results. This would keep the feature maps that are more helpful to the
detection results as much as possible. Finally, for a lightweight network, the degradation of
detection accuracy could be kept within acceptable limits by using methods that increase
the detection head and attention module.

3. Proposal Model

This section will introduce the comparison of the parameters of YOLOv5-RC and
YOLOv5s. Then we review how the coordinate attention works, and finally give the
changes in the network structure brought about by the addition of the detection head and
the attention.

3.1. Reduce the Number of Network Channels

Firstly, the YOLOv5-RC model is focused to reduce the network width of YOLOv5
by lowering the width factor from 0.5 to 0.2 and 0.3, from Equations (1) and (2), when the
overall number of channels is reduced by 40% or 60%, and both by 40% or 60%, which
should result in a 64% and 84% reduction in both the number of convolution parameters
and FLOPs in the backbone.

From Table 1, it can be found that depending on the setting of the width factor, the
number of most convolution parameters is reduced by approximately 64% and 84%. The
first convolution is used to replace the previous Focus layer with a specific requirement for
the number of channels, which made the number of parameters in the first three layers drop
less. At the same time, reduction of channels is an intuitive method that inevitably loses
some features, which also brings some accuracy loss. We would therefore add a detection
head and insert attention in the backbone. Table 1 also reflects the additional layers of the
new detection head in the backbone and the new coordinate attention.

Table 1. Comparison of the parameters of the modules in backbone after reducing the number of
channels of YOLOv5s by 40% and 60% respectively.

YOLOv5s YOLOv5-RC-0.3 YOLOv5-RC-0.2

Block Parameters Cin Cout Parameters Cin Cout Parameters Cin Cout

Conv 3520 3 32 2640 3 24 1760 3 16
Conv 18,560 32 64 8720 24 40 4672 16 32

C3 18,816 64 64 7440 40 40 4800 32 32
Conv 73,984 64 128 28,960 40 80 16,240 32 56

C3 115,712 128 128 45,440 80 80 22,400 56 56
Conv 295,424 128 256 115,520 80 160 52,624 64 104

C3 625,152 256 256 244,800 160 160 103,792 104 104
Conv / / / 334,544 160 232 150,080 104 160

C3 / / / 243,600 232 232 116,160 160 160
Conv 1,180,672 256 512 652,000 232 312 299,936 160 208

C3 1,182,720 512 512 439,920 312 312 195,936 208 208
CA / / / 9075 312 312 5432 208 208

SPPF 656,896 512 512 244,296 312 312 108,784 208 208
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3.2. Coordinate Attention

It is important to ensure that the reduction in detection accuracy is not significant. It3
may be useful to provide a brief review of how coordinated attention approach [28–31]
works.The CA attention mechanism is achieved by averaging pooling in the horizontal
and vertical directions respectively. The spatial information is then encoded using a
converter, and finally the spatial information is fused into the channels in a weighted
manner so that the CA attention mechanism takes into account the spatial and channel
information in a comprehensive manner. Figure 1 shows the workflow of the coordinate
attention mechanism. It can be easily found that as the coordinate attention acquires
feature mapping in both vertical and horizontal directions separately, it will perform the
following operations:
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Firstly it uses the pooling kernels of (H,1) and (1,W) to average pooling along the
horizontal and vertical. Respectively, its output of the height and width can be expressed as:

zh
c (h) =

1
W ∑

0≤i<W
xc(h, i) (3)

zw
c (w) =

1
H ∑

0≤i<H
xc(j, w) (4)
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Then, a concatenate operation is performed on the obtained output, followed by
a convolution operation and a nonlinear activation function, which is the intermediate
feature map that encodes spatial information in both the horizontal direction and the
vertical direction.

Finally, the feature mapping is again split along two spatial directions into two separate
tensors. Then the resulting tensor is transformed by convolution and activation functions
to a tensor that matches the number of channels in the output.

3.3. Modified Network Model

Our proposed YOLOv5-RC network is obtained after modifying the network structure
by the previously mentioned method, and the network model changes as shown in Figure 2.
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In this paper we have made four improvements:

(1) In order to extract different resolution feature maps,we reduced the number of chan-
nels of YOLOv5.

(2) Then added a matching detection on the head model.
(3) Finally by addition of Coordinated Attention module, it is to get our optimized model

YOLOv5-RC.
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In Figure 2, Conv module is a basic convolution module, which includes a normal
convolution layer, a batch normalization layer and an activation function. In particular,
the first Conv structure is to split the input image into four copies as a way to improve the
receptive field and reduce the loss of original information. C3 is a simplified version of
BottleneckCSP that serves to fuse features and reduce computational effort. SPPF serially
uses three convolutions of the same convolution kernel and is designed to fuse more
features of different resolutions. Relative to Figure 2a, the marked box portion of Figure 2b
shows an additional detection head, and the network structure matches the additional
detection head.

YOLOv5-RC in Figure 2b adds a new set of Conv and C3 structures in Backbone,
which can obtain additional feature maps of different resolutions for input to the feature
pyramid composed of FPN+PAN structures. Due to the input of this different set of feature
maps, the number of layers of the feature pyramid in Neck is increased from 3 to 4, and
the feature maps of the new layer are input into Head. Finally, a new Detect Head with a
different object detection size range is added. The best location of attention insertion will
be discussed in the next section. In summary, it is obvious that to reduce the number of
channels and then add a detection head later seems to be an optimization for lightweight.

4. Experiment and Discussion

This section introduces the data set used for the experiment, and describe the experi-
mental environment and experimental hardware. Then it gives a comparison of YOLOv5-
RC with YOLOv5s for two width factors by experimental results and analysis.

4.1. Data Sets and Experiment Environment

The operating environment of the experiment is introduced as shown in Table 2.

Table 2. Experimental Environment.

Hardware and Software Models and Versions

CPU Intel(R) Xeon(R) CPU E5-2678 v3 @ 2.50GHz
GPU NVIDIA GTX 1070Ti
OS Ubuntu 16.04
Development Language Python 3.8
Deep Learning Framework Pytorch 1.8.0

The data sets used include PASCAL VOC2007 and PASCAL VOC2012 and Global-
Wheat2020. The VOC data set is one of the commonly used data sets in object detection,
where there are 20 categories of object, all of which are common objects in daily life. The
training data set is the official training set of VOC2012 and VOC2007 with 16,551 images,
and the validation data set and test data set are the official test data set of VOC2007 with
4952 images. The GlobalWheat2020 data set is the data used for the kaggle wheat detec-
tion competition, with only 1 object category wheat_head, the training data set including
3422 images, the validation data set with 748 images, and the test data set with 1276 images.

(1) The use of VOC data set is due to the moderate size of the data set, while the detection
categories are more appropriate to the actual application. Based on this size of the
data set, we reduce the number of channels for light weighting to produce a more
intuitive end result.

(2) The GlobalWheat2020 data set has a smaller size and fewer object categories, and
performing lightweight work on such a data set can visualize the advantages of
the approach in this paper, for which we use smaller channel number factors, thus
verifying the generalizability of this approach.
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4.2. Result Evaluation

For the lightness of the network, FLOPs and Parameters can be evaluated more
intuitively, the smaller these two metrics are, the simpler and lighter the network structure
is. In addition, the FPS of the test is used as the evaluation criterion, and the FPS in
this paper is the inference speed obtained when the batch size is set to 32; the FPS is
more focused on the evaluation of the speed performance in actual use than the first two
evaluations of the network model. As for the detection accuracy, mAP50 refers to the AP
calculation when the average iou threshold is set to 0.5 under different categories, and a
larger mAP50 indicates that the detection accuracy of the model is better. The goal of this
paper is to keep the decrease in mAP50 small and significantly reduce both GFLOPs and
Parameters while improving FPS.

4.3. Better Use of Coordinate Attention

Attention often has better results, but little attention is paid to how to use it better.
Specifically, coordinate attention cannot be used anywhere in the network without restric-
tions, but should have certain methods. On the question of how to better use attention,
we conducted ablation experiments by inserting the coordinate attention into different
positions of the YOLOv5s network backbone, so as to find the best working location of
the coordinate attention, and applied this law to our YOLOv5-RC. This experiment was
conducted based on a slightly earlier version of YOLOv5.

In Table 3, the first column shows the insertion position of the coordinate attention
in the backbone of YOLOv5s, the second column shows the mAP50 of the corresponding
experiment, and the third column shows the difference in mAP50 between the correspond-
ing experiment and the previous position. It can be found that the coordinate attention
works better in the backward position of the Backbone, and we believe this is because the
attention is better able to guide the network to learn valuable features at the larger number
of channels. To show this trend more visually, a line graph was drawn after summarizing
the data in Table 3.

Table 3. Ablation Experiment of the best working position of attention.

Model mAP50 mAP50 Change

YOLOv5s-CA-1 71.3 -
YOLOv5s-CA-2 66.6 −4.7
YOLOv5s-CA-3 73.5 +6.9
YOLOv5s-CA-4 69.4 −4.1
YOLOv5s-CA-5 77.1 +7.7
YOLOv5s-CA-6 73.5 −3.6
YOLOv5s-CA-7 80.3 +6.8
YOLOv5s-CA-9 79.9 −0.4
YOLOv5s-CA-10 81.8 +1.9

As shown in Figure 3, the x-axis indicates the location of the CA module inserted
into YOLOv5’s backbone. It is easy to find that the accuracy of the network gradually
increases as the coordinate attention insertion location is moved backwards. Finally, from
the above results, the best location of coordinate attention insertion is the 10th which is
nearly the end of YOLOv5’s Backbone. We believe that coordinate attention has dual
attention characteristics of space and channel, and the spatial attention aspect will be
influenced by the Conv and C3 structures. In YOLOv5’s Backbone, Conv will extract
features to make the feature map smaller, while C3 will fuse features to make them richer.
Therefore, when inserting coordinate attention in Backbone in turn, detection accuracy will
show a wave-like trend after each Conv and C3. In YOLOv5’s Backbone, the number of
channels gradually increases, and the channel attention part of coordinate attention will
play a bigger role, making the overall trend of detection accuracy rise.
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4.4. Result Analysis

This section takes YOLOv5s as the baseline, gives the three lightweighting methods
we mentioned, and then compares it with our YOLOv5-RC, where YOLOv5s-ghost refers
to the use of ghost convolution instead of the original Backbone in convolution.

In Table 4, the first column indicates the name of the modified network, the second
column is the size of the image used, and the third and fourth columns are the previously
mentioned network model evaluation criteria Parameters and GFLOPs, which can visualize
the degree of lightness of the network structure. The table includes YOLOv5s as the
baseline, and YOLOv5 networks modified using some special convolution strategies, as
well as YOLOv5-RC networks with width factors of 0.2 and 0.3. It can be observed that
the YOLOv5-RC network Parameters with a width factor of 0.2 is only 2.14M and the
FLOPs are 3.4G, which are 30% and 20% of the baseline, respectively. In addition, these
two figures are also lower than the YOLOv5 network modified with three special strategies,
which can indicate that the proposed method in this paper can reduce the complexity of
the network very well. As opposed to the intuitive criteria given in Table 3, the results
given in Table 4 are the actual data obtained from the network model during training and
validation. Similarly, the evaluation criteria mAP50 and FPS mentioned previously are
used to measure the real detection accuracy and detection speed of YOLOv5-RC.

Table 4. Parameters and GFLOPs in YOLOv5 lightweight work under different methods.

Model Image Size Parameters (M) GFLOPs

YOLOv5s(baseline) 640 7.11 16.5
YOLOv5-ghost 640 3.73 8.2

YOLOv5-mobilenet 640 3.59 6.4
YOLOv5-shufflenet 640 4.8 4.8

YOLOv5-RC-0.2 640 2.14 3.4
YOLOv5-RC-0.3 640 4.67 6.7
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Table 5 uses different evaluation criteria. The third column Speed refers to the time
used to detect each graph, which mainly includes Inference and NMS time consumption.
Speed can be calculated from the fourth column corresponding to the FPS. FPS is an
important symbol to evaluate the speed of a network detection. The mAP50 in the fifth
column responds to the detection accuracy of the network model. The results are similar
to those in Table 3. In terms of lightweight, it can be observed that the FPS of the first
three methods does improve, but at the cost of a larger decrease in mAP50, which is due
to the use of some lightweight convolution strategies causing the inevitable loss of some
features during feature extraction. In comparison, YOLOv5-RC-0.2 shows a significant
improvement in FPS, but at the same time the mAP50 drops by only 4.8, while YOLOv5-
RC-0.3 shows a mAP50 drop of only 2.9. The use of two different width factors reflects the
flexibility to adjust to the size of the data set and the actual problem requirements.

Table 5. FPS and mAP50 in YOLOv5 lightweight work under different methods.

Model Epoch Speed (ms) FPS mAP50

YOLOv5s(baseline) 300 7.2 138.9 84.7
YOLOv5-ghost 300 6.0 166.7 75.9

YOLOv5-mobilenet 300 5.2 192.3 70.9
YOLOv5-shufflenet 300 4.9 204.1 76.2

YOLOv5-RC-0.2 300 4.8 208.3 79.9
YOLOv5-RC-0.3 300 5.9 169.5 81.8

The ablation experiments with the insertion of the coordinate attention were mentioned
in Section 4.3 of this paper. From the accuracy point of view, the mAP50 with the insertion
of the coordinate attention at the optimal position is still lower than that of YOLOv5s as
the baseline. In the more lightweight YOLOv5-RC, however, the coordinate attention has a
certain improvement on the mAP50, which could be found in Table 6. In this case, it may be
because the attention mechanism makes the network model fit faster and also exacerbates
the over-fitting problem, which is more prominent for large and complex network models
and has less impact on lightweight network models. In addition, we observed that the
main time-consuming Inference part of the detection speed YOLOv5-RC has a significant
reduction. The NMS time-consuming of YOLOv5-RC is more compared to YOLOv5s, for
which we did not modify the hyper parameters meticulously due to the limitation of the
device, which indicates that YOLOv5-RC still has room for improvement, and this is one of
the directions for subsequent research.

Table 6. Result table of changing the number of channels according to the size of data set.

Model Data Set Parameters (M) GFLOPs FPS mAP50

YOLOv5s VOC 7.11 16.5 138.9 84.7
YOLOv5-RC-0.2 VOC 2.14 3.4 208.3 79.9
YOLOv5-RC-0.3 VOC 4.67 6.7 169.5 81.8

To verify the generalized ability of YOLOv5-RC, we tested YOLOv5-RC on the Glob-
alWheat2020, and made a comparison with other lightweight YOLO models which are
shown in Table 7.

(1) First, in the comparison of the indicators for the Parameters(M), it is to find significant
YOLOv5-RC using fewest parameters and GFLOPs.

(2) In order to apply the lightweight object detection model in mobile equipment, we
need higher FPS than traditional application scenarios. Our YOLOv5-RC gets the
highest FPS in the comparison of relevant detection networks.

(3) Finally, the accuracy is also a key evaluation indicator. Because of the reduction of
channels, YOLOv5-RC gets less mAP than the original YOLOv5, but is better than
other lightweight object detection models.
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Table 7. Results for the data set GlobalWheat2020.

Model Data Set Parameters (M) GFLOPs FPS mAP50

YOLOv3 GlobalWheat2020 61.49 154.7 22.6 94.3
YOLOv3-tiny GlobalWheat2020 8.67 12.9 69.4 89.7

YOLOv5 GlobalWheat2020 142.98 120.9 16.3 94.5
YOLOv5s GlobalWheat2020 7.1 16.5 34.8 95

YOLOv5-Ghost GlobalWheat2020 3.68 8.1 45.5 92.4
YOLOv5s-transformer GlobalWheat2020 7.05 16.1 9.9 93.7

YOLOv5-RC GlobalWheat2020 0.56 1.0 86.2 94.2

5. Conclusions

In this paper, we propose the following steps: (1) Reduce the number of channels,
(2) add a new network to extract different resolution feature maps, (3) add a matching
detection head based on the feature maps in (2), and (4) add an attention module.

With two width factors, the above method reduces the number of parameters to 30%
and 66% and FLOPs to 20% and 40%, resulting in a reduction in the number of parameters
to 30% and 66% and FLOPs to 20% and 40%, but with a small decrease in mAP. In addition,
for the use of attention in YOLOv5, we also mentioned: (1) coordinate attention can be
inserted in the last position of Backbone, which is the position with the largest number
of channels and works best, (2) attention helps network fitting, which works better on
lightweight networks and may have the opposite effect in complex networks. The method
proposed in this paper ensures the integrity of the network and is more robust than previous
convolution modification of YOLOv5 networks using various special strategies, and is
also simpler and easier to use in practical applications. This approach provides ideas
and references for the construction of lightweight networks. In addition, the reduction
of the number of channels should relate to the size of the data set and the number of
target categories. Two different data sets, VOC and GlobalWheat2020, were used in the
experiments to verify the generalizability of this method. However, since we only verified
the feasibility of this method in YOLO series networks, whether this method has a similar
relevance on other network models is the direction of subsequent research.
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