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Featured Application: The transformer based subject-sensitive hashing algorithm proposed in this
paper could be applied to data security of HRRS images to provide integrity authentication services
for later use of HRRS images, and to generate watermark information for digital watermarks.

Abstract: The implicit prerequisite for using HRRS images is that the images can be trusted. Oth-
erwise, their value would be greatly reduced. As a new data security technology, subject-sensitive
hashing overcomes the shortcomings of existing integrity authentication methods and could realize
subject-sensitive authentication of HRRS images. However, shortcomings of the existing algorithm,
in terms of robustness, limit its application. For example, the lack of robustness against JPEG com-
pression makes existing algorithms more passive in some applications. To enhance the robustness,
we proposed a Transformer-based subject-sensitive hashing algorithm. In this paper, first, we de-
signed a Transformer-based HRRS image feature extraction network by improving Swin-Unet. Next,
subject-sensitive features of HRRS images were extracted by this improved Swin-Unet. Then, the
hash sequence was generated through a feature coding method that combined mapping mechanisms
with principal component analysis (PCA). Our experimental results showed that the robustness of
the proposed algorithm was greatly improved in comparison with existing algorithms, especially the
robustness against JPEG compression.

Keywords: deep learning; HRRS images; subject-sensitive hashing; transformer; U-net; perceptual
hashing; integrity authentication

1. Introduction

High-resolution remote sensing (HRRS) images have come to play an increasingly
important role in urban planning, surveying, mapping, and land use. However, the implicit
prerequisite for using HRRS images is that the images can be trusted. If tampered HRRS
images are used, erroneous analytical conclusions may be drawn and wrong decisions may
be made.

Several sets of comparisons (before and after HRRS images were tampered with) are
shown in Figure 1. Without integrity authentication technology, it would be difficult for
users to determine whether the HRRS image shown in Figure 1b had been tampered with.
In such a case, the credibility and value of the HRRS image would be reduced, even losing
its value entirely.
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Figure 1. Comparisons before and after HRRS image tampering: (a) original images, (b) tampered-
with HRRS images. From left to right, the alterations of each figure are: a building in the enclosed 
area replaced with trees, a building added to the enclosed area, a building in the enclosed area de-
faced, and buildings in the enclosed area deleted. Photoshop is the tool used to tamper with the 
images. 

Tampering with HRRS images, similar to the above, not only reduces the credibility 
of HRRS images, but also negatively impacts social stability. For example, if a city plan-
ning department uses HRRS images that have been tampered with, it may lead to incor-
rect planning. If a military department uses HRRS images that have been tampered with, 
it may issue incorrect instructions. Although integrity authentication methods, such as 
fragile watermark, cryptographic hash, and perceptual hashing solve the above problems 
to a certain extent, there is still considerable room for improvement. The most prominent 
problem is that mainstream integrity authentication technologies are oriented to general 
integrity authentication problems. Thus, they cannot solve the authentication problem in 
a specific field. 

Compared with ordinary images, HRRS images mainly reflect the characteristics of 
ground objects and often have no clear theme; this makes HRRS images more difficult 
than ordinary images for the human eye to recognize. In actual tampering of HRRS im-
ages, attackers often add or remove specific types of image content instead of modifying 
images at will. This kind of content-biased behavior is inherently subject-sensitive and is 
more concealed and harmful than random tampering. Moreover, due to the human visual 
attention mechanism, alteration of the region of interest to the human eye is more notice-
able and more damaging to HRRS images. For example, in the examples shown in Figure 
2, although the area of Figure 2b that had been tampered with was even smaller than that 
of Figure 2c, the tampering in Figure 2b was more destructive to HRRS, especially for 
users for whom buildings are the main object of use. 

   
(a) (b) (c) 

Figure 1. Comparisons before and after HRRS image tampering: (a) original images, (b) tampered-
with HRRS images. From left to right, the alterations of each figure are: a building in the enclosed area
replaced with trees, a building added to the enclosed area, a building in the enclosed area defaced,
and buildings in the enclosed area deleted. Photoshop is the tool used to tamper with the images.

Tampering with HRRS images, similar to the above, not only reduces the credibility of
HRRS images, but also negatively impacts social stability. For example, if a city planning
department uses HRRS images that have been tampered with, it may lead to incorrect
planning. If a military department uses HRRS images that have been tampered with,
it may issue incorrect instructions. Although integrity authentication methods, such as
fragile watermark, cryptographic hash, and perceptual hashing solve the above problems
to a certain extent, there is still considerable room for improvement. The most prominent
problem is that mainstream integrity authentication technologies are oriented to general
integrity authentication problems. Thus, they cannot solve the authentication problem in a
specific field.

Compared with ordinary images, HRRS images mainly reflect the characteristics of
ground objects and often have no clear theme; this makes HRRS images more difficult
than ordinary images for the human eye to recognize. In actual tampering of HRRS
images, attackers often add or remove specific types of image content instead of modifying
images at will. This kind of content-biased behavior is inherently subject-sensitive and
is more concealed and harmful than random tampering. Moreover, due to the human
visual attention mechanism, alteration of the region of interest to the human eye is more
noticeable and more damaging to HRRS images. For example, in the examples shown in
Figure 2, although the area of Figure 2b that had been tampered with was even smaller
than that of Figure 2c, the tampering in Figure 2b was more destructive to HRRS, especially
for users for whom buildings are the main object of use.
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Figure 2. Comparison of subject-related and subject-unrelated tampering (taking buildings as an exam-
ple of a subject): (a) original HRRS image, (b) subject-related tampering, (c) subject-unrelated tampering.
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As a new data security technology derived from perceptual hashing [1–5], subject-
sensitive hashing [6] can perform more stringent integrity authentication on image areas of
interest to users. However, subject-sensitive hashing methods still have certain deficiencies,
especially since subject-sensitive hashing has not been proposed for a long time. The
outstanding problem is that the robustness of existing subject-sensitive hashing algorithms
require further improvement in order to meet actual authentication needs. The most
typical problem is that the robustness against JPEG (Joint Photographic Experts Group)
compression is not ideal.

The success of Transformer [7] in multiple research fields has provided new research
ideas for solving the existing problems of subject-sensitive hashing. Dosovitskiy et al. [8]
applied Transformer to computer vision for the first time; the proposed ViT (Vision Trans-
former) turned image data into a sequence of tokens through splitting and flattening,
achieving excellent performance in the study of image classification. In this paper, Trans-
former was applied to subject-sensitive hashing, and an improved Swin-Unet network was
proposed to improve the robustness of subject-sensitive hashing.

The main contributions of this paper were as follows:

1. To the best of our knowledge, this was the first study to apply Transformer to integrity
authentication of HRRS images, and the first research on Transformer-based subject-
sensitive hashing;

2. We modified the Swin-Unet structure to make the model more suitable for HRRS
subject-sensitive hashing, which helped the algorithm comprehensively outperform
existing algorithms, including the original Swin-Unet;

3. We proposed a feature encoding method combining the mapping mechanism and
principal component analysis (PCA) for the generation of hash sequences.

2. Related Work
2.1. Perceptual Hashing

Perceptual hashing, also known as perceptual hash algorithms, is a family of algo-
rithms that generate content-based hash sequences, including perceptual image hashing,
perceptual audio hashing [9], and perceptual video hashing [10]. Unlike cryptographic
hash, which takes binary representation of an image to generate hash sequences [11,12],
perceptual hashing takes the content of an image to generate the hash sequence.

Perceptual image hashing has received widespread attention and has been studied in
depth. Qin et al. [13] applied singular value decomposition (SVD) and Gaussian low-pass
filtering on color image perceptual hashing to improve the robustness of the algorithm.
Tang et al. [14] proposed a perceptual hashing algorithm with the histogram of CVA
(Color vector angle), which was able to resist rotation with arbitrary angle and reach
good discrimination. Hamid et al. [15] proposed a perceptual hash algorithm, based on
the difference of Laplacian pyramids, which was able to detect minute-level tampering.
Biswas et al. [16] proposed a perceptual hashing for face verification, which was able to
protect against AERO (Adversarial Eye Region Occlusion) attack. Wang et al. [17] proposed
a perceptual hash method for image tampering detection and localization which used
hybrid features to generate hash sequence. Huang et al. [18] proposed a perceptual hash
method for copy detection of images.

2.2. Subject-Sensitive Hashing

Subject-sensitive hashing, also known as subject-sensitive hash algorithm, inherently
has the robustness and sensitivity to tampering of perceptual hashing [6]. It can meet
customized requirements in specific fields for integrity authentication and perform sen-
sitive integrity authentication for specific subjects (such as buildings or roads). Subject-
sensitive hashing is not an upgraded version of perceptual hashing, nor can it replace
perceptual hashing.

However, it is difficult for traditional image technology to define subject-related
features. Subject-sensitive feature extraction is essentially a feature extraction process in
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which information of specific feature types is weighted. Deep learning has an excellent
capacity for feature expression, and can achieve feature-weighted feature extraction by
learning specific samples, reducing the complexity of artificially-designed features [19–21].

Existing subject-sensitive hashing methods mainly use convolutional neural networks
(CNNs) to achieve feature extraction of HRRS images. In addition to MUM-net [6], other
models, such as U-net [22], Attention U-net [23], M-net [24], and MultiResUNet [25] can
also be used to implement subject-sensitive hashing. However, CNNs need to continuously
stack convolutional layers to achieve the extraction of image local information to image
global information. This causes the model to be bloated, brings about the problem of gradi-
ent disappearance, and even leaves the network unable to converge. Moreover, methods
based on CNN adopt the method of feature downsampling, which reduces the ability of
the algorithm to detect small-scale tampering. In addition, current CNN-based, subject-
sensitive hashing algorithms are generally less robust to pixel-level content-preserving
operations. The outstanding performance issue is that the robustness of these algorithms
against JPEG compression needs to be further optimized. Although the introduction of
the attention mechanism enhances the algorithm robustness to a certain extent [26], it still
needs further improvement.

With the interdisciplinary development of deep learning, Transformer stands out in
computer vision (CV) and provides new possibilities for solutions to problems faced by
CNN-based subject-sensitive hashing [27]. Since ViT replaced the convolutional struc-
ture with the Transformer structure for vision tasks, Transformer has been successfully
applied in the fields of image segmentation [28,29], image classification [30,31], image
super-resolution [32,33], image restoration [34], and object detection [35,36].

Transformer-based computer vision methods exploit the self-attention mechanism in
Transformer to explore long-range dependencies and learn the attentional interactions of
different patch tokens. In VIT, the input image is cropped into fixed-size image patches to
transform the image into sequence data that the Transformer structure can process. Then,
each image patch is changed into a one-dimensional vector, which is linearly mapped and
then added to position encoding. Inspired by ViT, TransUNet [37] adopts a Transformer-
based encoder to process image patch sequences and combines the characteristics of U-net.
Swin Transformer (Shifted Windows Transformer) [38] uses a hierarchical strategy to restrict
the attention computation to a window, aiming to introduce a locality operation, similar to
CNN convolution, and significantly reduce the computational cost. Swin-Unet [39] com-
bines the characteristics of Swin Transformer and U-net, and is a pure Transformer-based
image segmentation network. Swin-Unet draws on the network structure characteristics of
U-net, and sends the tokenized image blocks to U-shaped network architecture composed
of pure Transformer through skip connections for local and global feature learning. This
method of using small image blocks as the basic processing unit (instead of pixels) brings
new possibilities to enhance the robustness of pixel-level operations.

Although Swin-Unet can be directly used for subject-sensitive hash algorithms, just like
AAU-net or U-net, subject-sensitive hashing needs to comprehensively consider robustness
and tampering sensitivity. Differing from application fields of Transformer such as image
classification, subject-sensitive hashing does not necessarily function better with more
feature extraction. Nevertheless, too many low-level features are not conducive to the
algorithm’s robustness. In this article, we built an improved Swin-Unet and proposed a
new subject-sensitive hashing based on this network.

3. Method

In this section, we have presented the Transformer-based subject-sensitive hash al-
gorithm. First, the network structure of our improved Swin-Unet was introduced. Then,
the feature-encoding, method combining the mapping mechanism with PCA, was explained.
Subsequently, the overall flow of the subject-sensitive hash algorithm was discussed. Finally,
the integrity authentication process of HRRS images, based on our algorithm, was introduced.
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3.1. Architecture of Improved Swin-Unet

As shown in Figure 3, the network framework of the improved Swin-Unet consisted
of the following parts: encoder (left part), decoder (right part), bottleneck block (bottom
part), and skip connection (middle jumper section). In each part, the Swin Transformer
model was the core module.
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The encoder split the HRRS image into non-overlapping blocks of size 4 × 4 and
converted the input image into sequence embeddings. The encoder consisted of multiple
modules to generate the hierarchical representations of HRRS image, and each module
contained two Swin Transformers and one Patch Merging layer. The Swin Transformer
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module [38] was built on a shifted window and was responsible for learning features.
The Patch Merging [39] was responsible for downsampling operation and increasing the
feature dimension.

The decoder also consisted of multiple modules. Except for the last module, each
module contained two Swin Transformers, one Patch Expanding and one Concatenating.
Patch Expanding [39] was used to perform feature dimension and upsampling. Similar to
the skip connection of original Swin Unet, Concatenating was responsible for feature fusion,
to alleviate the lost spatial information caused by Patch Merging. It should be pointed out
that there was no Patch Expanding on the last module.

The most obvious differences between our improved Swin-Unet and the original
Swin-Unet were:

(1) In order to improve the algorithm’s robustness, the patch expanding layer of the last
module of the Swin-Unet decoder was canceled. After all, higher-level Transformers
focus on encoding relatively complex high-level semantic information, and overly
complex information could weaken algorithm robustness;

(2) The position of the Skip connection between the first module of the encoder and
the last module of the decoder was changed to cater to the cancellation of the Patch
Expanding layer of the last module of the decoder, which reduced the impact of
extraneous features on the tampering sensitivity of the algorithm;

(3) Due to the network structure, the output image size of the improved Swin-Unet
was 128 × 128 pixels, while the output image size of the original Swin-Unet was
224 × 224 pixels—the input image size for both models was 224 × 224 pixels. This
input-output asymmetry helped to reduce the impact of redundant information and
improve the performance of hashing algorithm.

Although the network was structurally different from Swin-Unet, we did not rename
it. Instead, we called it the improved Swin-Unet.

3.2. Feature Coding Based on Mapping Mechanism and PCA

The output of the improved Swin-Unet was a single-channel feature image. To enhance
the robustness of the algorithm, we proposed a feature-encoding method that combined the
mapping mechanism and principal component analysis to further suppress the non-feature
pixels of the feature image. The mapping mechanism we designed was based on the sine
function, as follows:

f m(x, y) =
255.0× (1 + sin( f (x, y)× θ × π

255 −
π
2 ))

2
(1)

Above, f (x,y) represents the numeric value of image pixel, fm(x,y) represents the
mapped pixel value, π (radians) stands for 180 degrees, and θ is the adjustment factor.
Obviously, once mapped, the value of the pixels whose value is less than the median value
will be reduced, which is beneficial for enhancing the robustness and tampering sensitivity
of the algorithm. When θ is set to 1, the mapping examples of the pixel value are shown in
Table 1.

Table 1. Examples of mapping of different pixel values.

Raw Value of Pixel Mapped Value of Pixel

60 33.27
64 37.62

110 100.22
128 128.28
160 177.19
255 255
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As shown in Table 1, this mapping mechanism, based on sine function, was able to
suppress small values while enhancing large values.

The feature matrix processed by the mapping mechanism was then decomposed
by PCA. Since the first few columns of the principal components summarized the main
features of the matrix, we chose the first column of principal components as subject-sensitive
features of the HRRS image. The first column of principal components were binarized into
a 0–1 sequence.

3.3. Overview of the Subject-Sensitive Hashing Algorithm

As shown in Figure 4, the flow of our proposed subject-sensitive hash algorithm mainly
included: preprocessing of the image, image feature extraction based on the improved
Swin-Unet, and feature encoding based on the mapping mechanism and PCA.
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(1) Preprocessing was designed to process the HRRS image so that it met the requirements
of the input size of the improved Swin-Unet, which was 224 × 224 pixels. If the size
of the HRRS image was large (for example, larger than 512 × 512 pixels), it could
be divided into non-overlapping grid cells by grid division to ensure the accuracy
of integrity authentication. Since grid division-based methods have been discussed
repeatedly by existing algorithms [6,26], we chose not to repeat them in this paper.

(2) For feature extraction, the preprocessed HRRS image was input into the trained
improved Swin-Unet to obtain the feature map of the corresponding image. The
training process of the improved Swin-Unet was discussed in Section IV.

(3) Feature coding: the feature extracted by the improved Swin-Unet was essentially
a two-dimensional matrix of pixel gray values. After feature encoding, based on
the mapping mechanism and PCA, the obtained one-dimensional 0–1 sequence was
encrypted by the AES (Advanced Encryption Standard) algorithm [40,41] to get the
hash sequence, denoted as SH.

3.4. Integrity Authentication Process

The subject-sensitive hash sequence of an HRRS image needs to be stored together with
the corresponding image. When the content integrity of the image needs to be authenticated,
the subject-sensitive hash sequence of the image is recalculated and compared with the
previous hash sequence to determine whether the HRRS image has been tampered with.
Similar to existing subject-sensitive hashing, our algorithm also employed the normalized
Hamming distance [42] to compare differences between hash sequences.
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We denoted the hash sequences of the original image and the image to be authenticated
as SH and SH’, respectively. Then, the normalized hamming distance was as follows:

Dis =

(
Length

∑
i=1

∣∣SH(i)− SH′(i)
∣∣)/Length (2)

where Length represents the length of the hash sequence. Obviously, the value of normalized
hamming distance is a decimal in the range of 0 to 1. The larger the value of Dis, the greater
the difference between the two hash sequences; conversely, the smaller the value, the
smaller the difference between the two hash sequences. If Dis is 0, it means the two hash
sequences are completely consistent.

4. Experiments

In this part, we conducted experiments to compare our Transformer-based subject-
sensitive hash algorithm with other algorithms.

4.1. Implementation Details and Datasets

We leveraged Keras, a high-level neural network framework to implement our im-
proved Swin-Unet. Since Keras uses Python as the programming language, we used Python
to implement the proposed subject-sensitive hash algorithm. The hardware platform was:
Intel CPU I7-9700K; RTX2080Ti GPU with 11G of memory; 32G RAM. In the training
process, batch size was set to 4 due to the size of network model and memory of GPU;
regarding the optimization of model weights and biases, we chose the Adam [43] as opti-
mizer. In addition, we trained the model from scratch for 100 epochs. Improved Swin-Unet
had a total of 61,947,912 parameters. The size of the model after training was 236M, which
was slightly smaller than the original Swin-Unet.

According to the structural similarity of the network model, we compared the follow-
ing model-based algorithms with our algorithm: original Swin-Unet [39], MUM-Net [6],
U-Net [22], Attention U-Net [23], M-Net [24], MultiResU-Net [25], AAU-Net [26], Atten-
tion R2U-Net [44], and Attention ResU-Net [45,46]. In order to facilitate comparison with
existing algorithms, the flow of each algorithm was consistent with the MUM-Net-based
algorithm in [6] and AAU-net-based algorithm in [26]; that is, the process did not contain
feature mapping.

Experiments on subject-sensitive hashing algorithms involve multiple types of datasets:
datasets for training deep neural networks, datasets for testing algorithm robustness, and
datasets for testing algorithm tampering sensitivity. We used the dataset for training
AAU-net as the dataset to train the improved Swin-Unet and participating network model,
which was convenient when comparing the performance of our algorithm with existing
algorithms. This dataset as a variant dataset based on the WHU building dataset [47], with
some hand drawn training samples added.

4.2. Evaluation Indicator

The evaluation indicators of subject-sensitive hashing mainly include: robustness,
tampering sensitivity, security, computational performance, and digestibility.

(1) Robustness. For a single HRRS image, robustness means that, after the image under-
goes an operation, the hash sequence does not change, or the change is lower than
a preset threshold. Due to the strong chance of a single or a small number of test
data, we measured the robustness using the proportion of HRRS images whose hash
sequence variations were lower than the preset threshold T. The calculation method
was as follows:

R(T) =
NumR
NumT

(3)



Appl. Sci. 2023, 13, 1815 9 of 21

where NumT represents the number of instances participating in the test and NumR
represents the number of instances whose hash sequence has not changed or has
changed below the threshold T.

(2) Tampering sensitivity. Like cryptographic hash and fragile watermarking, a subject-
sensitive hash algorithm has to detect whether the image content has been tampered
with, which means that tampering sensitivity is an important evaluation indicator
for subject-sensitive hashing. For a single instance of image tampering, the hash
sequences before and after the image is tampered with should change by a greater
magnitude than the threshold T. Similar to the robustness test, tampering sensitivity
also requires more test instances to be more convincing. We used the proportion of in-
stances in which tampering was detected to describe tampering sensitivity, as follows:

S(T) =
NumS
NumT

(4)

where NumT represents the number of instances participating in the test and NumS
represents the number of tampering instances that were successfully detected.

(3) Digestibility. The storage space occupied by the hash sequence should be as small as
possible—that is, the hash sequence should be as short as possible.

(4) Computational performance. Computational performance requires that the time to
calculate and compare hash sequences should be as short as possible. In fact, as the
comparison of hash sequences is very efficient due to digestibility, computational
performance generally focuses on the efficiency of generating hash sequences.

(5) Security. The security of subject-sensitive hashing means that the content of the image
cannot be obtained from the subject-sensitive hash sequence.

4.3. Examples of Integrity Authentication

Before fully comparing our proposed algorithm and existing algorithms, we first con-
ducted a preliminary comparison of the algorithms through a set of integrity authentication
instances, as shown in Figure 5. Figure 5a shows the original HRRS image stored in TIFF
format, while Figure 5b–h can be divided into 2 groups: instances that do not change the
content of the image, and instances that change the content of the image.
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image (TIFF format to BMP format); (c) the image after watermark embedding (least significant
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image; (e) subject-unrelated tampering; (f) subject-related tampering; (g) 8 × 8 random tampering;
(h) 16 × 16 random tampering.
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In the first group, Figure 5b–d, the operation of the images was: format conversion
(TIFF format to BMP format), digital watermark embedding (using the least significant
bit algorithm), and 95% JPEG compression. In the first group, each HRRS image carried
the same content as the original image shown in Figure 5a. The human eye could not
even distinguish whether these images were different from original; however, they were
changed drastically at the binary level.

The second group, Figure 5e–h, contains an image with subject-unrelated tampering,
an image with subject-related tampering, an image with an area of 8 × 8 pixels randomly
tampered with, and an image with an area of 16 × 16 pixels randomly tampered with,
respectively. Obviously, the contents of the second group of HRRS images were tampered
with. Their binaries were also changed dramatically.

Normalized hamming distances between hash sequences of Figure 5a and each image
of Figure 5b–h are shown in Table 2. Table 3 shows the integrity authentication results,
based on Table 2, when the threshold T was 0.02.

Table 2. Normalized hamming distance of each algorithm.

Model Each
Algorithm Was

Based on

Figure 5b Figure 5c Figure 5d Figure 5e Figure 5f Figure 5g Figure 5h

Format
Conversion

Watermark
Embedding

JPEG
Compression

Subject-
Unrelated
Tampering

Subject-
Related

Tampering

8 × 8 Random
Tampering

16 × 16
Random

Tampering

MUM-Net 0 0 0.0585 0.1679 0.2500 0.2578 0.2460
MultiResUnet 0 0 0.0234 0.0546 0.0781 0.0859 0.2578

U-net 0 0 0.0312 0.0234 0.0585 0.1835 0.2460
M-net 0 0 0.0625 0.0976 0.0859 0.1210 0.2578

Attention U-Net 0 0 0.0234 0.0078 0.0625 0.2226 0.2617
Attention
ResU-Net 0 0 0 0 0 0.0273 0.2734

Attention R2U-Net 0 0 0.0273 0.0664 0.0781 0.2226 0.2382
AAU-Net 0 0.0039 0.0195 0.0898 0.1054 0.2656 0.2578
Swin-Unet 0 0 0 0.0078 0.0390 0.0546 0.1562
Improved
Swin-Unet

(Our algorithm)
0 0 0.0039 0.0937 0.2656 0.2539 0.2773

Table 3. Integrity authentication results based on Table 2 (T = 0.02).

The Model That
Each Algorithm

Based on

Figure 5b Figure 5c Figure 5d Figure 5e Figure 5f Figure 5g Figure 5h

Format
Conversion

Watermark
Embedding

JPEG
Compression

Subject-
Unrelated
Tampering

Subject-
Related

Tampering

8 × 8 Random
Tampering

16 × 16
Random

Tampering

MUM-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
MultiResUnet Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered

U-net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
M-net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered

Attention U-Net Not tampered Not tampered Tampered Not tampered Tampered Tampered Tampered
Attention
ResU-Net Not tampered Not tampered Not tampered Not tampered Not tampered Tampered Tampered

Attention R2U-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
AAU-Net Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered
Swin-Unet Not tampered Not tampered Not tampered Not tampered Tampered Tampered Tampered
Improved
Swin-Unet

(Our algorithm)
Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered

Comparing the performance of each algorithm, shown in Table 3, we observed that
only our algorithm and the AAU-Net-based algorithm simultaneously kept robustness to
the operations, shown in Figure 5b–d, and tampering sensitivity to the malicious tampering,
shown in Figure 5e–h. Even compared with AAU-Net-based algorithms, our algorithm
performed better for the operations shown in Figure 5b–d, and more sensitively to tam-
pering for the operations shown in Figure 5e–h. Although the Attention ResU-Net-based



Appl. Sci. 2023, 13, 1815 11 of 21

algorithm and the Swin-Unet-based algorithm also had good robustness, they performed
poorly in tampering sensitivity, failing to fully detect the tampering shown in Figure 5e–h.

In the actual integrity authentication, different thresholds are often set for different
scenarios or authentication needs. Tables 4 and 5 show the results of integrity authentication,
based on Table 2, with T set to 0.05 and 0.01, respectively.

Table 4. Integrity authentication results based on Table 2 (T = 0.05).

The Model That
Each Algorithm

Based on

Figure 5b Figure 5c Figure 5d Figure 5e Figure 5f Figure 5g Figure 5h

Format
Conversion

Watermark
Embedding

JPEG
Compression

Subject
Unrelated
Tampering

Subject
Related

Tampering

8 × 8 Random
Tampering

16 × 16
Random

Tampering

MUM-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
MultiResUnet Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered

U-net Not tampered Not tampered Not tampered Not tampered Tampered Tampered Tampered
M-net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered

Attention U-Net Not tampered Not tampered Not tampered Not tampered Tampered Tampered Tampered
Attention
ResU-Net Not tampered Not tampered Not tampered Not tampered Not tampered Not tampered Tampered

Attention R2U-Net Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered
AAU-Net Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered
Swin-Unet Not tampered Not tampered Not tampered Not tampered Not tampered Tampered Tampered
Improved
Swin-Unet

(Our algorithm)
Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered

Table 5. Integrity authentication results based on Table 2 (T = 0.01).

The Model That
Each Algorithm

Based on

Figure 5b Figure 5c Figure 5d Figure 5e Figure 5f Figure 5g Figure 5h

Format
Conversion

Watermark
Embedding

JPEG
Compression

Subject-
Unrelated
Tampering

Subject-
Related

Tampering

8 × 8 Random
Tampering

16 × 16
Random

Tampering

MUM-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
MultiResUnet Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered

U-net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
M-net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered

Attention U-Net Not tampered Not tampered Tampered Not tampered Tampered Tampered Tampered
Attention
ResU-Net Not tampered Not tampered Not tampered Not tampered Not tampered Tampered Tampered

Attention R2U-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
AAU-Net Not tampered Not tampered Tampered Tampered Tampered Tampered Tampered
Swin-Unet Not tampered Not tampered Not tampered Not tampered Tampered Tampered Tampered
Improved
Swin-Unet

(Our algorithm)
Not tampered Not tampered Not tampered Tampered Tampered Tampered Tampered

As demonstrated in Table 4, the MultiResUnet- and Attention R2U-Net-based algo-
rithms also kept robustness to Figure 5b–d and detected the tampering shown in Figure 5e–h
when threshold T was 0.05. However, one can also from Table 5 that only our algorithm
maintained both robustness and tampering sensitivity when T was reduced to 0.01.

Tables 2–5, our algorithm and AAU-Net-based algorithm performed better than oth-
ers. Our algorithm was also more robust than AAU-Net-based algorithms. Overall, our
improved Swin-Unet-based algorithm achieved the best integrity authentication results, as
shown in Figure 5.

4.4. Robustness Testing of the Algorithms

The robustness of the algorithm required significant example testing to give stronger
confidence to the test results. We used the dataset Datasets10,000 in [26] to test each algo-
rithm’s robustness. Datasets10,000 contained 10,000 test HRRS images cropped from HRRS
images from GF-2 satellite, DOTA [48], WHU dataset [47], and other datasets. Each HRRS
image in Datasets10,000 was in TIFF format and sized at 256 × 256 pixels.
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First, we tested each algorithm’s robustness against JPEG compression. We used
C++ as a programming language and used OpenCV2.4.13 interface to implement JPEG
compression on the HRRS images of Datasets10,000, where the level of JPEG compression was
95%. We used the proportion of images that maintained robustness at a specific threshold
T, as shown in Equation (3) above, to describe the robustness of the algorithms. Moreover,
as the setting of threshold T is often not fixed in actual integrity authentication, depending
on the specific application and the strength of integrity authentication, we tested each
algorithm’s robustness under different thresholds; the results are shown in Table 6.

Table 6. Each algorithm’s robustness against JPEG compression under different thresholds.

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 79.57% 90.92% 97.61% 99.88% 100%
MultiResUnet 76.26% 85.95% 94.73% 98.11% 99.59%

U-net 63.28% 75.06% 88.85% 96.74% 99.81%
M-net 70.22% 80.08% 92.23% 97.58% 99.66%

Attention U-Net 85.94% 92.59% 97.14% 98.88% 100%
Attention ResU-Net 86.02% 91.08% 96.07% 99.26% 99.87%
Attention R2U-Net 58.53% 69.22% 82.97% 95.52% 99.26%

AAU-Net 73.57% 81.01% 93.33% 98.76% 99.82%
Swin-Unet 99.23% 99.85% 99.97% 100% 100%

Improved Swin-Unet
(our algorithm) 95.88% 99.02% 100% 100% 100%

As shown in Table 6, Transformers have a strong advantage in improving the ro-
bustness of subject-sensitive hashing: the Swin-Unet-based algorithm and our improved
Swin-Unet-based algorithm both greatly improved the robustness of JPEG compression
compared to existing subject-sensitive hash algorithms. With the threshold set to 0.05 or
greater, both of these Transformer-based algorithms were 100% robust against JPEG com-
pression. Even at low thresholds (such as 0.02), the robustness against JPEG compression
was higher than 95%, reaching a level that existing subject-sensitive hashing algorithms
have been unable to achieve.

Next, we tested the algorithm’s robustness against digital watermarks. Digital wa-
termarking information can be embedded in one band of HRRS images, or embedded in
each band. Since multiband watermark embedding makes greater changes to the data,
we focused on testing algorithm’s robustness against multiband watermarks, as shown in
Table 7.

Table 7. Each algorithm’s robustness against watermark embedding.

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 62.09% 74.27% 88.18% 97.32% 99.69%
MultiResUnet 87.48% 92.12% 96.84% 99.06% 99.85%

U-net 61.66% 81.75% 85.59% 95.84% 99.28%
M-net 68.67% 88.49% 89.97% 97.45% 99.59%

Attention U-Net 90.07% 94.16% 97.25% 98.99% 99.87%
Attention ResU-Net 93.58% 96.06% 98.02% 99.77% 99.98%
Attention R2U-Net 48.69% 60.24% 77.45% 91.98% 98.51%

AAU-Net 95.09% 97.07% 98.33% 99.58% 99.85%
Swin-Unet 99.66% 99.95% 100% 100% 100%

Improved Swin-Unet
(Our algorithm) 98.07% 99.74% 100% 100% 100%

As can be seen from Table 7, the Swin-Unet-based algorithm performed best against
multi-band watermark embeddings, while our improved Swin-Unet-based algorithm was
second to it, and superior to the other existing algorithms.



Appl. Sci. 2023, 13, 1815 13 of 21

Then, we tested each algorithm’s robustness against modification of a small number of
pixels. We randomly selected 4 pixels of each HRRS image in Datasets10,000 and set them to
0. Figure 6 shows a comparison of a set of images before and after modification. Obviously,
the differences between the modified and original images were very small; unless the
images were to be enlarged and carefully observed, the differences could not be found.
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Figure 6. Comparison of images before and after random modification of a small number of pixels
(4 pixels randomly selected and set to 0): (a) original HRRS images, (b) modified image.

The robustness test results for random modification of a small number of pixels are
shown in Table 8. The robustness of our algorithm was basically the same as that of the
Swin-Unet-based algorithm, and both of them were stronger than existing algorithms.

Table 8. Each algorithm’s robustness against modification to small number of pixels (4 pixels).

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 42.05% 52.27% 71.09% 90.38% 98.26%
MultiResUnet 79.69% 88.45% 95.98% 98.68% 99.82%

U-net 51.99% 64.22% 90.61% 93.36% 98.57%
M-net 53.52% 63.39% 78.54% 92.77% 98.64%

Attention U-Net 52.03% 64.24% 80.58% 93.39% 98.56%
Attention ResU-Net 81.49% 86.61% 92.07% 96.43% 98.88%
Attention R2U-Net 19.54% 27.02% 41.27% 64.24% 86.12%

AAU-Net 90.91% 93.65% 97.38% 99.44% 100%
Swin-Unet 94.55% 97.09% 99.36% 100% 100%

Improved Swin-Unet
(Our algorithm) 92.82% 97.25% 99.54% 100% 100%

A comprehensive analysis of our results (Tables 6–8) demonstrated that two Transformer-
based subject-sensitive hash algorithms, that is, our algorithm and the Swin-Unet-based
algorithm, greatly improved in robustness compared with existing subject-sensitive hash
algorithms, especially in robustness against JPEG compression. Of course, our improved
Swin-Unet-based algorithm as slightly inferior to the Swin-Unet-based algorithm because of
the sacrifices that our algorithm had to make to enhance tampering sensitivity. In addition,
the robustness of the Attention R2U-Net-based algorithm was the worst and would not be
recommended for practical use.
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4.5. Tampering Sensitivity Testing of Algorithms

If an algorithm’s tampering sensitivity is too weak, the algorithm will have no useful
value, even if the robustness of the algorithm is strong. Although tampering sensitivity and
robustness are largely a pair of contradictory attributes, a good subject-sensitive hashing
algorithm should try to balance both.

First, we tested each algorithm’s sensitivity to subtle tampering with random locations.
To simulate possible tampering in reality as much as possible, we performed position-
random tampering with HRRS images in Datasets10,000, with each tampering area measuring
8 × 8 pixels in size. A set of these tampering areas is shown in Figure 7.

Appl. Sci. 2023, 13, x FOR PEER REVIEW 15 of 23 
 

A comprehensive analysis of our results (Tables 6–8) demonstrated that two Trans-
former-based subject-sensitive hash algorithms, that is, our algorithm and the Swin-Unet-
based algorithm, greatly improved in robustness compared with existing subject-sensitive 
hash algorithms, especially in robustness against JPEG compression. Of course, our im-
proved Swin-Unet-based algorithm as slightly inferior to the Swin-Unet-based algorithm 
because of the sacrifices that our algorithm had to make to enhance tampering sensitivity. 
In addition, the robustness of the Attention R2U-Net-based algorithm was the worst and 
would not be recommended for practical use. 

4.5. Tampering Sensitivity Testing of Algorithms 
If an algorithm’s tampering sensitivity is too weak, the algorithm will have no useful 

value, even if the robustness of the algorithm is strong. Although tampering sensitivity 
and robustness are largely a pair of contradictory attributes, a good subject-sensitive hash-
ing algorithm should try to balance both. 

First, we tested each algorithm’s sensitivity to subtle tampering with random loca-
tions. To simulate possible tampering in reality as much as possible, we performed posi-
tion-random tampering with HRRS images in Datasets10,000, with each tampering area 
measuring 8 × 8 pixels in size. A set of these tampering areas is shown in Figure 7. 

(a) 

    
(b) 

Figure 7. Comparison of images before and after tampering with a random area (8 × 8 pixels): (a) 
original HRRS images, (b) altered images. 

The results of tampering sensitivity testing for random-position tampering areas 8 × 
8 pixels in size are shown in Table 9. We used the proportion of instances in which tam-
pering was detected to describe tampering sensitivity, as shown in Equation (4). 

Table 9. Tampering sensitivity testing for random 8 × 8 pixel area tampering. 

Model Each Algorithm 
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2 

MUM-Net 95.02% 90.98% 82.19% 56.24% 14.88% 
MultiResUnet 83.95% 78.25% 62.52% 35.01% 11.89% 

U-net 96.98% 94.94% 85.63% 61.39% 31.08% 
M-net 96.27% 94.31% 89.15% 66.77% 33.16% 

Attention U-Net 93.68% 91.29% 84.42% 68.61% 36.24% 
Attention ResU-Net 67.94% 58.09% 40.66% 23.15% 7.79% 
Attention R2U-Net 98.75% 98.07% 95.36% 80.93% 52.84% 

AAU-Net 92.76% 90.92% 83.04% 65.57% 29.52% 
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(a) original HRRS images, (b) altered images.

The results of tampering sensitivity testing for random-position tampering areas
8 × 8 pixels in size are shown in Table 9. We used the proportion of instances in which
tampering was detected to describe tampering sensitivity, as shown in Equation (4).

Table 9. Tampering sensitivity testing for random 8 × 8 pixel area tampering.

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 95.02% 90.98% 82.19% 56.24% 14.88%
MultiResUnet 83.95% 78.25% 62.52% 35.01% 11.89%

U-net 96.98% 94.94% 85.63% 61.39% 31.08%
M-net 96.27% 94.31% 89.15% 66.77% 33.16%

Attention U-Net 93.68% 91.29% 84.42% 68.61% 36.24%
Attention ResU-Net 67.94% 58.09% 40.66% 23.15% 7.79%
Attention R2U-Net 98.75% 98.07% 95.36% 80.93% 52.84%

AAU-Net 92.76% 90.92% 83.04% 65.57% 29.52%
Swin-Unet 84.61% 76.42% 56.01% 23.96% 6.92%

Improved Swin-Unet
(Our algorithm) 94.29% 90.16% 81.73% 55.42% 19.24%

As shown in Table 9, Attention R2U-Net-based algorithms performed best, in terms
of tampering sensitivity. However, the experiments in the previous section showed that
its robustness was too poor to be recommended for practical use. The Attention ResU-
Net-based algorithm had weaker tampering sensitivity. The tampering sensitivity of our
algorithm and the algorithms based on MUM-Net, U-net, M-net, Attention U-Net, and
AAU-Net were basically the same, all slightly inferior to the Attention R2U-Net-based
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algorithm. Moreover, our algorithm was stronger than the Swin-Unet-based algorithm, in
terms of tampering sensitivity.

To further test each algorithm’s tampering sensitivity against random-position tam-
pering, we increase the tampering area to 16 × 16 pixels. A set of these tampering areas
is shown in Figure 8, in which we selected the same original HRRS images as in Figure 7
to facilitate direct comparison of tampering sensitivity with different granularities. The
corresponding tampering sensitivity test results are shown in Table 10.
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Figure 8. Comparison of images before and after being tampered with random area (16 × 16 pixel
area): (a) Original HRRS images (The same as Figure 7a), (b) altered images.

Table 10. Tampering sensitivity test for random 16 × 16 pixel tampering.

The Model That Each
Algorithm Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 98.79% 98.52% 95.25% 78.71% 42.77%
MultiResUnet 99.05% 97.73% 92.43% 79.26% 54.29%

U-net 98.85% 97.98% 96.24% 86.41% 59.17%
M-net 99.16% 99.03% 96.22% 86.98% 60.71%

Attention U-Net 98.86% 97.95% 96.16% 86.39% 59.21%
Attention ResU-Net 83.92% 76.68% 57.52% 34.74% 12.11%
Attention R2U-Net 99.92% 99.90% 99.85% 98.03% 81.54%

AAU-Net 99.54% 99.19% 96.43% 87.01% 64.24%
Swin-Unet 93.23% 89.29% 75.22% 32.61% 7.64%

Improved Swin-Unet
(Our algorithm) 99.72% 99.41% 98.35% 88.62% 38.68%

As can be seen from Table 10, our algorithm’s tampering sensitivity was second only to
the Attention R2U-Net-based algorithm, superior to other existing algorithms, and superior
to Swin-Unet-based algorithms.

Subject-sensitive hashing algorithms are more sensitive to tampering related to a
particular subject. Since our algorithm chose buildings as the subject, the algorithms should
have had a higher tampering sensitivity to building-related tampering. However, subject-
sensitive hashing has not been proposed for a long time, and there was no available public
dataset for testing subject-related tampering. To test subject-related tampering sensitivity,
we distinguished subject-related tampering into adding buildings and deleting buildings
and constructed two datasets for testing these two types of tampering. The two datasets
each contained 200 sets of tampering instances, named Dataaddbuildings and Datadeletebuildings.
Figures 9 and 10 show tampering examples of adding buildings and deleting buildings,
respectively. The tampering sensitivity tests for adding buildings are shown in Table 11.
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Table 11. Tampering sensitivity tests for subject-related tampering (adding buildings).

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 100% 100% 99.0% 98.0% 60.5%
MultiResUnet 96.0% 94.5% 84.0% 56.0% 10.5%

U-net 100% 100% 99.5% 95.0% 65.0%
M-net 100% 100% 99.5% 94.0% 58.5%

Attention U-Net 100% 100% 98.0% 92.5% 50.0%
Attention ResU-Net 75.5% 67.0% 43.0% 19.5% 1.5%
Attention R2U-Net 100% 100% 100% 98.0% 77.0%

AAU-Net 100% 100% 98.0% 89.5% 36.0%
Swin-Unet 97.5% 90.0% 67.5% 20.0% 3.5%

Improved Swin-Unet
(Our algorithm) 100% 100% 99.5% 96.0% 41.5%
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As can be seen from Table 11, each algorithm demonstrated good sensitivity to tam-
pering by adding buildings. Each algorithm’s tampering sensitivity test for subject-related
tampering (adding buildings) was ideal, and our algorithm was second only to the Atten-
tion R2U-Net-based algorithm at a low threshold (less than or equal to 0.05).

The tampering sensitivity tests for deleting buildings are shown in Table 12. Although
the algorithms’ sensitivity to tampering by deleting buildings did not significantly vary,
our algorithm performed best at this test.

Table 12. Tampering sensitivity test for subject-related tampering (delete buildings).

Model Each Algorithm
Was Based on T = 0.02 T = 0.03 T = 0.05 T = 0.1 T = 0.2

MUM-Net 100% 100% 97.0% 80.5% 37.5%
MultiResUnet 92.0% 86.5% 63.5% 27.0% 8.0%

U-net 99.5% 98.0% 95.0% 76.0% 28.5%
M-net 100% 98.0% 94.5% 76.0% 27.0%

Attention U-Net 100% 97.0% 93.0% 78.5% 36.5%
Attention ResU-Net 90.0% 88.5% 76.0% 38.5% 11.0%
Attention R2U-Net 100% 100% 97.5% 65.0% 36.0%

AAU-Net 96.5% 94.0% 85.0% 56.5% 46.5%
Swin-Unet 95.0% 92.0% 82.5% 32.5% 2.5%

Improved Swin-Unet
(Our algorithm) 100% 100% 98.0% 81.0% 43.0%

Comprehensively analyzing and summarizing the data shown Tables 9–12, we con-
cluded that, among the compared algorithms, the Attention R2U-Net-based algorithm’s
tampering sensitivity was the best. However, its robustness was the worst, as stated in the
conclusion of the previous section, meaning that the comprehensive performance of the
algorithm was not good. Our algorithm’s tampering sensitivity was second only to that of
the Attention R2U-Net-based algorithm. Thus, our improved Swin-Unet compensated for
the original Swin-Unet’s lack of tampering sensitivity.

4.6. Computational Performance

Due to the influence of factors such as computing environment initialization and
GPU startup, the computing performance of each algorithm with respect to different data
amounts often differed. To test the computational performance of each algorithm under
different computational amounts, we selected 300, 1000, and 10,000 HRRS images, respec-
tively, from Datasets10,000 to construct three datasets. Table 13 shows the computational
performance of each algorithm with respect to these three datasets.

Table 13. Computational performance.

Model Each
Algorithm Was

Based on

300 Images 1000 Images 10,000 Images

Average Time
(ms) Total Time (s) Average Time

(ms) Total Time (s) Average Time
(ms) Total Time (s)

MUM-Net 35.13 10.54 24.20 24.20 23.43 234.30
MultiResUnet 44.07 13.22 33.89 33.89 32.37 323.68

U-net 21.20 6.36 13.34 13.34 12.78 127.79
M-net 27.57 8.27 17.79 17.79 15.75 157.50

Attention U-Net 21.47 6.44 15.60 15.60 13.38 133.82
Attention ResU-Net 46.83 14.05 26.60 26.60 22.12 221.24
Attention R2U-Net 30.40 9.12 20.84 20.84 19.24 192.36

AAU-Net 19.70 5.91 14.89 14.89 11.73 117.34
Swin-Unet 59.20 17.76 38.98 38.98 36.08 360.77

Improved Swin-Unet
(Our algorithm) 49.73 14.92 33.11 33.11 31.24 312.37

The computational performance of our algorithm was only slightly better than the
original Swin-Unet-based algorithm, and was essentially the same as the MultiResUnet-
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based algorithm. In fact, Transformer has had a similar problem in other fields, such as
Transformer-based image segmentation and image classification; that is, the computing
performance of Transformer is lower than CNN.

5. Discussion

Finding methods to improve the robustness of content-preserving operations for HRRS
images is one of the main problems faced by subject-sensitive hashing—especially robust-
ness against JPEG compression. Transformer has achieved excellent results in many tasks
and provided new research paths toward solving existing problems of subject-sensitive
hashing. However, there have been no Transformer-based integrity authentication tech-
niques, such as perceptual hashing and subject-sensitive hashing.

In this paper, we applied Transformer to subject-sensitive hash algorithms for HRRS
images and proposed a new subject-sensitive hash algorithm based on our improved
Swin-Unet. From the experiments, the following conclusions could be drawn:

1. Robustness

Transformer has demonstrated a significant advantage, in that it can improve the ro-
bustness of subject-sensitive hash algorithms. The robustness of the two Transformer-based
algorithms in this paper—the Swin-Unet-based algorithm and our improved Swin-Unet-
based algorithm—performed better than existing algorithms, especially in robustness
against JPEG compression. Compared with the Swin-Unet-based algorithm, our algorithm
was slightly less robust; this sacrifice had to be made to increase the algorithm’s tamper-
ing sensitivity. After all, robustness and tampering sensitivity are essentially a pair of
contradictory properties.

2. Tampering sensitivity

Compared to the algorithm based on the original Swin-Unet, our improved Swin-Unet-
based algorithm achieved better tampering sensitivity at the expense of a slight decrease in
robustness. Experiments showed that the tampering sensitivity of our improved Swin-Unet-
based algorithm was second only to the Attention R2U-Net-based algorithm, outperforming
other algorithms. The tampering sensitivity of the Attention R2U-Net-based algorithm was
the best among the algorithms compared herein, but its robustness was the worst. As such,
we could not recommend it for actual application.

3. Security, and Digestibility Analysis

The security of our algorithm was based on several aspects; the first of these was the
difficulty of Transformer interpretability [49]. In fact, the interpretability of Transformers,
in addition the interpretability of deep neural network models [50,51], has always been
a difficult problem for the academic community. However, the difficulty of Transformer
interpretability can guarantee the unidirectionality of subject-sensitive hashing; that is to
say, Transformer interpretability ensures that valid information from the original HRRS
image is hard to get from the hash sequence. The second aspect was the encryption
algorithm used in the encoding process. The security of the AES algorithm has been widely
recognized; thus, it ensured the security of sensitive hash sequences.

Third, the mapping mechanism used in the coding process made nonlinear modifica-
tions to the values of image features, which further increased the difficulty of obtaining
the original HRRS image features from the hash sequence and enhanced the security of
the algorithm.

Regarding digestibility, since the main difference of each comparison algorithm lay
in the deep neural network model and the feature encoding processes were the same, the
digestibility values of each algorithm were the same.

4. Computational performance

Compared to CNN, Transformer has higher computational complexity. Other appli-
cation areas of Transformer have faced the problems of long inference time and training
time. In this experiment, the two Transformer-based algorithms, namely our algorithm and
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the original Swin-Unet-based algorithm, also had the disadvantage of low computational
performance. In fact, the computational performances of these two algorithms were not
only inferior to algorithms based on CNN, such as U-net and M-net, they were also inferior
to algorithms based on attention mechanisms, such as AAU-net and Attention U-net.

In summary, considering robustness, tampering sensitivity, security, and summa-
rization, our algorithm, based on an improved Swin-Unet, gave the best comprehensive
performance among the algorithms in this comparison. In future research, we will strive
to focus on solving the problems uncovered in this work—namely, giving the algorithm
better robustness and tampering sensitivity while improving computational efficiency.

6. Conclusions

In this paper, we proposed a Transformer-based subject-sensitive hash algorithm
for HRRS images. The algorithm extracted the features of HRRS images based on the
improved Swin-Unet we constructed, and generated the hash sequence through a feature
coding method that combined the mapping mechanism with PCA. Experiments showed
that the robustness of our improved Swin-Unet-based algorithm was greatly improved,
compared with existing algorithms; for example, the robustness against JPEG compression
was significantly improved. Our algorithm addressed the original Swin-Unet’s lack of
tampering sensitivity, especially to subject-related tampering. The overall performance of
our proposed algorithm was better than existing algorithms

However, our algorithm, like other Transformer-based applications, suffered from
high model complexity and low computational performance. The model occupied a large
amount of storage space and took more time to calculate the hash sequence of an HRRS
image than the existing algorithm. In future research, we will focus on improving the
computational performance of the algorithm.
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